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Multi-view data refers to a setting where features are divided into feature sets, for

example because they correspond to different sources. Stacked penalized logistic

regression (StaPLR) is a recently introduced method that can be used for classification

and automatically selecting the views that aremost important for prediction.We introduce

an extension of this method to a setting where the data has a hierarchical multi-view

structure.We also introduce a new view importancemeasure for StaPLR, which allows us

to compare the importance of views at any level of the hierarchy. We apply our extended

StaPLR algorithm to Alzheimer’s disease classification where different MRI measures

have been calculated from three scan types: structural MRI, diffusion-weighted MRI,

and resting-state fMRI. StaPLR can identify which scan types and which derived MRI

measures are most important for classification, and it outperforms elastic net regression

in classification performance.

Keywords: multimodal MRI, machine learning, stacked generalization, penalized regression, feature selection

1. INTRODUCTION

In biomedical research, the integration of data from different sources into a single classification
model is becoming increasingly common (Fratello et al., 2017; Li et al., 2018). This is fueled by the
increasing availability of multi-source data, for example through the UK Biobank (Sudlow et al.,
2015; Littlejohns et al., 2020), the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller
et al., 2005), and various dementia registries around the world (Krysinska et al., 2017) such as the
Prospective Registry on Dementia (PRODEM) (Seiler et al., 2012). Training a model on multiple
data sources has been found to increase accuracy in the prediction of brain-age (Liem et al., 2017)
and the classification of Alzheimer’s disease (AD) (Li et al., 2011; Rahim et al., 2016; Schouten et al.,
2016).

A general term for data in which the features are divided into feature sets (for example, by source
or modality) is multi-view data, and the field of developing algorithms for such data is known as
multi-view (machine) learning (Zhao et al., 2017; Sun et al., 2019). Of particular interest to this study
is the multi-view learning framework known as multi-view stacking (Li et al., 2011; Garcia-Ceja
et al., 2018; van Loon et al., 2020a). The general idea of multi-view stacking is to first train a model
on each feature set (also called a view) separately. Then, each of these models is cross-validated to
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obtain a set of predictions of the outcome. Finally, another
algorithm (called the meta-learner) is trained on these cross-
validated predictions. The meta-learner thus learns how to
best combine the predictions from the view-specific models.
Several methods used in previous neuroscience studies can be
considered a form of multi-view stacking, and have shown better
performance than single-view or non-stacked approaches (Li
et al., 2011; de Vos et al., 2016; Rahim et al., 2016; Liem et al.,
2017; Salvador et al., 2019; Engemann et al., 2020; Guggenmos
et al., 2020; Ali et al., 2021). However, these methods are generally
ad-hoc approaches tailored specifically to the data at hand, and
there is little consistency between the used methods.

Although previous studies have mostly focused on improving
classification accuracy, it is also important to identify which
views are relevant for prediction. For example, if a certain scan
modality turns out to be irrelevant for prediction of a disease,
it may not have to be measured at all. Recently, a variant of
multi-view stacking called stacked penalized logistic regression
(StaPLR) has been developed specifically for this purpose (van
Loon et al., 2020a). StaPLR essentially integrates the penalized
logistic regression models which are already commonly used
in neuroimaging classification, such as ridge regression (Hoerl
and Kennard, 1970; Le Cessie and Van Houwelingen, 1992) and
the lasso (Tibshirani, 1996; Friedman et al., 2010), into a single
unified multi-view stacking methodology. StaPLR can be used to
select the feature sets that are most relevant for prediction, and
has been shown to have several advantages over earlier methods,
including a decreased false positive rate in view selection and
a large reduction in computation time, while maintaining good
classification accuracy (van Loon et al., 2020a). StaPLR is, to our
knowledge, the only multi-view learning method which can be
extended to hierarchical multi-view structures with an arbitrary
number of levels while keeping computational feasibility. By
hierarchical multi-view data we mean that feature sets are nested
in other feature sets. Consider, for example, data collected from
different domains, such as genetics, neuroimaging, and cognitive
tests. Each of these domains could be considered a different
view of the patients under consideration. These views could
then be further divided into subviews. For example, the higher-
level neuroimaging feature set could be further divided into
lower-level feature sets corresponding to different scan types.

In this study, we propose an extension of the StaPLR method
to hierarchical multi-view data. We show an application of
this extension to an Alzheimer’s disease classification problem
based on three MRI scan types: structural MRI, diffusion-
weighted MRI, and resting state functional MRI. For each of
these scan types, different MRI measures were computed, where
each measure is represented by multiple features. This yields a
hierarchical multi-view structure with three levels: the features
(base level) are nested in the MRI measures (intermediate level),
which in turn are nested in the different scan types (top level).
Parts of this multi-view data set, which consists of data collected
as part of PRODEM (Seiler et al., 2012) and the Austrian Stroke
Prevention Study (ASPS) (Schmidt et al., 1994; Freudenberger
et al., 2016), have been used in previous studies (Schouten
et al., 2016, 2017; de Vos et al., 2017), but this is the first time
these features are all included into a single analysis. Previous

applications of StaPLR have focused solely on a setting with
two levels (van Loon et al., 2020a,b). In this paper, we therefore
extend StaPLR to the hierarchical structure of the data. We will
show how StaPLR can be used to both perform classification
and identify the views that are most important for prediction.
To provide a “benchmark” for the classification performance and
interpretability of the model we additionally perform logistic
elastic net regression (Zou and Hastie, 2005), which has been
used in many previous multi-view neuroimaging classification
studies (Trzepacz et al., 2014; Teipel et al., 2015; Bowman et al.,
2016; de Vos et al., 2016; Nir et al., 2016; Schouten et al.,
2016). We also compare the proposed extension with the original
StaPLR algorithm.

In addition to its advantages in view selection and
computation time (van Loon et al., 2020a), the proposed
extension of StaPLR has important advantages in terms of the
interpretability of the resulting classifier. First, measures of
view and feature relevance are readily available in the form of
coefficients in a logistic regression model. This is in contrast to
previous multi-view stacking methods focused on prediction
accuracy, such as those using random forests as a meta-learner
(Liem et al., 2017; Engemann et al., 2020). Second, extending
StaPLR to match the hierarchical multi-view structure of the data
allows us to calculate suchmeasures of importance at each level of
the hierarchy. Thus, we can obtain estimates of the contribution
of each scan type, but also of each MRI measure within those
scan types. Finally, we show in section 2.4.1 how the proposed
extension of StaPLR allows us to compare the contribution of
different MRI measures even if they correspond to different
scan types.

The application to the current data set aims to provide
an example of a more general class of applications within
neuroimaging and biomedical science as a whole. Since our focus
is on demonstrating the methodology rather than on the specific
data set, we will refrain from any interpretation regarding the
specific clinical meaning of our findings with respect to the
target population.

2. MATERIALS AND METHODS

2.1. Participants
Our data set consisted of 76 patients clinically diagnosed with
probable AD, and 173 cognitively normal elderly controls, for a
total of 249 observations. The AD patients were scanned at the
Medical University of Graz as part of PRODEM (Seiler et al.,
2012). The elderly controls were scanned at the same scanning
site, with the same scanning protocol, and over the same time
period as part of the ASPS (Schmidt et al., 1994; Freudenberger
et al., 2016). We only included patients for which anatomical
MRI, diffusion MRI and rs-fMRI were available.

2.2. MRI Analysis
The scanning protocols, and an elaborate description of the
MRI analyses are provided in the Supplementary Materials. For
each scan type, several MRI measures were computed; below we
provide a brief description. An overview of the features included
in our analyses is presented in Table 1.
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The strutural MRI scans were used to calculate five different
MRI measures. Gray matter density refers to the percentage
of gray matter in a certain area of the brain. The 48 features
correspond to the 48 regions of the probabilistic Harvard-
Oxford cortical atlas (Center for Morphometric Analysis,
2006). Subcortical volumes describe the size of several
subcortical brain structures. The 14 features correspond to
the thalamus, caudate, putamen, pallidum, hippocampus,
amygdala, and accumbens of both hemispheres. The neocortex
was parcellated into the 68 regions of the Desikan-Killiany
atlas (Desikan et al., 2006). For each of these regions, the
mean cortical thickness, mean cortical curvature, and the
total area of the region’s cortical surface (“cortical area”)
was calculated.

The diffusion-weighted MRI scans were used to calculate
fractional anisotropy, mean diffusivity, axial diffusivity, and
radial diffusivity for the 20 white matter regions of the JHU
white-matter tractography atlas (Hua et al., 2008).

The resting state fMRI scans were used to calculate multiple
types of functional connectivity (FC) estimates. First, temporal
concatenation independent component analysis (ICA) was used
to extract both 20 and 70 components (de Vos et al., 2017).
For both of these configurations, FC matrices were calculated
using either full or sparse partial correlations, resulting in four
different FC matrices for each participant. These four matrices
were further used to calculate FC dynamics using a sliding
window approach. The FC matrices were calculated for each
time window, and the standard deviation of these matrices
over time reflect the FC dynamics. In addition, the sliding
window matrices of all participants were clustered into five
connectivity states using k-means clustering. The number of
sliding window matrices assigned to each of these five states was
calculated for each participant. The four FC matrices were also
used to calculate several common graph metrics. Additionally,
voxel-wise connectivity with 10 different resting state networks
was calculated using dual regression, as well as seed based
connectivity with both the left and right hippocampus as seed
regions. Furthermore, a voxel-wise eigenvector centrality map
was calculated. Eigenvector centrality attributes a value to each
voxel in the brain such that a voxel receives a large value
if it is strongly correlated with many other voxels that are
themselves central within the network. Lastly, the amplitude of
low frequency fluctuations (ALFF), and its weighted variant the
fractional ALFF (fALFF), were calculated for each voxel. Details
can be found in the Supplementary Materials and in de Vos et al.
(2016).

2.3. Logistic Elastic Net Regression
(Benchmark)
To provide a reference value for the accuracy and area under
the receiver operating characteristic curve (AUC) we performed
logistic elastic net regression (Zou and Hastie, 2005). Elastic
net regression employs a mixture of L1 and L2 penalties on
the vector of regression coefficients (Zou and Hastie, 2005).
The L1 penalty can perform feature selection by setting some
coefficients to zero, while the L2 penalty encourages groups of

TABLE 1 | Overview of the scan types, MRI measures, and corresponding

number of features used in this study.

(s) scan type (v) MRI measure number of

features

(1) structural

MRI

(1) gray matter density 48

(2) subcortical volumes 14

(3) cortical thickness 68

(4) cortical area 68

(5) cortical curvature 68

(2) diffusion

MRI

(6) fractional anisotropy 20

(7) mean diffusivity 20

(8) axial diffusivity 20

(9) radial diffusivity 20

(3) resting

state fMRI

(10) full FC correlation matrix (20 × 20) 190

(11) full FC correlation matrix (70 × 70) 2,415

(12) sparse partial FC correlation matrix (20 × 20) 190[∗]

(13) sparse partial FC correlation matrix (70 × 70) 2,415[∗]

(14) SD of full FC matrix (20 × 20) 190

(15) SD of full FC matrix (70 × 70) 2,415

(16) SD of sparse partial FC matrix (20 × 20) 190

(17) SD of sparse partial FC matrix (70 × 70) 2,415[∗]

(18) FC states of full FC matrix (20 × 20) 5

(19) FC states of full FC matrix (70 × 70) 5

(20) FC states of sparse partial FC matrix (20 × 20) 5

(21) FC states of sparse partial FC matrix (70 × 70) 5

(22) Graph metrics of full FC matrix (20 × 20) 124

(23) Graph metrics of full FC matrix (70 × 70) 424

(24) Graph metrics of sp. par. FC matrix (20 × 20) 124[∗]

(25) Graph metrics of sp. par. FC matrix (70 × 70) 424[∗]

(26) FC with visual network 1 190,981

(27) FC with visual network 2 190,981

(28) FC with visual network 3 190,981

(29) FC with default mode network 190,981

(30) FC with the cerebellum 190,981

(31) FC with sensorimotor network 190,981

(32) FC with auditory network 190,981

(33) FC with executive control network 190,981

(34) FC with frontoparietal network 1 190,981

(35) FC with frontoparietal network 2 190,981

(36) FC with left hippocampus 190,981

(37) FC with right hippocampus 190,981

(38) Fast eigenvector centrality mapping 190,981

(39) ALFF 190,981

(40) fALFF 190,981

Total 2,876,515[∗∗]

The indices s and v are used to refer to the different scan types and MRI measures in

Algorithm 1. [∗]Some of these features were removed due to having a variance of zero;

the total number of features after removal for each of these MRI measures is 189, 2337,

2414, 123 and 423, respectively. [∗∗]The removal of features due to zero variance is already

reflected in this total.

correlated features to be selected together. Elastic net regression
operates at the level of the features and thus ignores the multi-
view structure of the data completely. Elastic net regression has
two tuning parameters, one which determines the mixture of L1
and L2 penalties (α), and one which determines the amount of
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penalization (λ). We selected a value for both penalties through
10-fold cross-validation. For α, the set of candidate values is a
sequence from 0 to 1 in increments of 0.1. The set of candidate
values for λ is a sequence of 100 values adaptively chosen by the
software (Friedman et al., 2010). In particular, the 100 values are
decreasing values on a log scale from λmax to λmin, where λmax

is the smallest value such that the entire regression coefficient
vector is zero, and λmin = ǫλmax (Friedman et al., 2010). We
set ǫ = 0.01 (the default). To prevent overfitting, we assessed
the models classification performance using a double (nested)
cross-validation approach (Varma and Simon, 2006): an inner
loop is used to determine the values of the tuning parameters,
and an outer loop is used for determining classification accuracy
and AUC. For both the inner and outer loop we used 10 folds.
Additionally, we repeat this nested cross-validation approach 10
times to average out the effects of different allocations of the
subjects to the folds. Elastic net regression was performed in R
4.0.2 (Team, 2017), using the package glmnet 1.9–8 (Friedman
et al., 2010).

Since the elastic net ignores the multi-view structure of the
data, it is hard to infer the importance of a MRI measure or
scan type. After all, a single MRI measure can be represented by
anywhere from 5 to over 190,000 regression coefficients. With
a total of over 2.8 million features, showing the results for each
feature individually is infeasible. In order to summarize the
results at the MRI measure level we calculated for each measure
the following: (1) the number of non-zero coefficients, and (2) the
L2-norm (i.e., the square root of the sum of squared values) of the
associated regression coefficient vector.

2.4. Stacked Penalized Logistic Regression
From each of the three scan types several MRI measures are
derived. In turn, each MRI measure consists of multiple features,
as shown inTable 1. Thus, the data have a hierarchical multi-view
structure with three levels, and we therefore propose an extension
of the StaPLR algorithm to three levels. The previous version
of StaPLR only allowed for a two-level structure, where features
were nested within views (van Loon et al., 2020a). This means one
has to choose to either use theMRImeasures as views, or the scan
types. Thus, one would have to either ignore part of the hierarchy,
or perform two separate analyses. Algorithm 1 presents the
extension of StaPLR to 3 levels: We start by training a logistic
ridge regression model on each of the 40 MRI measures under
consideration (line 1). For each of these models we use 10-fold
cross-validation to choose an appropriate value for the penalty
parameter. The reason we use ridge regression at this step is that
we are not interested in selecting individual features, only entire
MRI measures. We refer to the classifiers that were obtained for
each of the 40 MRI measures as f̂1, . . . , f̂40. Since these classifiers
are probabilistic, they give predicted values in [0, 1].

For each scan type s, we want to obtain an intermediate

classifier f̂
(s)
inter that combines the predictions of the classifiers

trained on the corresponding MRI measures. For example, for
the structural MRI scan type, we want to obtain an intermediate

classifier f̂
(1)
inter that combines the predictions of f̂1 through f̂5,

which are the classifiers corresponding to gray matter density,

Algorithm 1 StaPLR with 3 levels, as applied to the current
data set.

Data: X(v), v = 1 . . . 40, the 40 different MRI measures as shown
in Table 1, and y the binary outcome variable, where a value of 1
indicates probable Alzheimer disease, and a value of 0 indicates a
healthy control.
1. Train a logistic ridge regression classifier (including cross-
validation for λ) on the pairs (X(v), y), v = 1, . . . , 40, to obtain

view-specific classifiers f̂1, . . . , f̂40.
2. Apply 10-fold cross-validation to obtain a vector of predictions

z(v) for each of the f̂v, v = 1, . . . , 40.
3. For each of the three scan types s = 1, 2, 3, collect the
predictions z(v) which correspond to that scan type column-wise
into the matrix Z(s).
4. Train a logistic nonnegative lasso classifier (including cross-
validation for λ) on the pairs (Z(s), y), s = 1, 2, 3, to obtain the

intermediate classifiers f̂
(1)
inter, f̂

(2)
inter, f̂

(3)
inter.

5. Apply 10-fold cross-validation to obtain a vector of predictions

z
(s)
inter for each of the f̂

(1)
inter, f̂

(2)
inter, f̂

(3)
inter.

6. Collect the predictions z
(1)
inter, z

(2)
inter, z

(3)
inter column-wise into the

matrix Zinter.
7. Train a logistic nonnegative lasso classifier (including cross-
validation for λ) on the pair (Zinter, y) to obtain a meta-classifier

f̂meta.
8. Define the final stacked classifier as:

f̂stacked(X) = f̂meta(f̂
(1)
inter(f̂1(X

(1)), . . . , f̂5(X
(5))),

f̂
(2)
inter(f̂6(X

(6)), . . . , f̂9(X
(9))),

f̂
(3)
inter(f̂10(X

(10)), . . . , f̂40(X
(40)))).

subcortical volumes, cortical thickness, cortical area, and cortical
curvature. In order to train such a combination model, we need
a vector of predictions for each of the classifiers f̂1 through

f̂5. We could simply use the fitted values for each of these
classifiers, but this would yield overly optimistic estimates of
predictive accuracy, because the same data would be used for
fitting the model and generating predictions. Instead, we would
like to obtain a vector of estimated out-of-sample predictions
(Wolpert, 1992).We obtain such estimates through 10-fold cross-
validation (line 2). We divide the observations into 10 folds,
train each classifier on 9 folds, then generate predictions for the
observations in the left-out fold. We repeat this procedure to
obtain predictions for each of the folds. Note that “training the
classifier” includes the selection of penalty parameters; the cross-
validation loop used to select the penalty parameter is nested
within the loop used to generate the predictions. This means
the predictions are truly made on data which the classifier has
never seen.

Once we obtained a vector of cross-validated predictions
for each of the 40 classifiers, we collect them into 3 separate
matrices, one for each scan type (line 3). These matrices then
become the training data for the next step in the hierarchical
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StaPLR algorithm, where we train a nonnegative logistic lasso
model on each of the 3 matrices of predictions (line 4). We
apply the nonnegative lasso at this step because we would like to
select a subset of the available MRI measures. The nonnegativity
constraints have previously been shown to improve performance;
see van Loon et al. (2020a) for empirical evidence and theoretical
support. We end up with 3 intermediate classifiers, one for each
scan type.

In order to train the meta-learner, we need to obtain a
vector of estimated out-of-sample predictions for each of the 3
intermediate classifiers. We again do this using 10-fold cross-
validation (line 5). We then collect these in another matrix (line
6), and train another logistic nonnegative lasso model on this
matrix (line 7). The model training is now complete, and the
final stacked classifier can be used by applying the classifiers

f̂1, . . . , f̂40 to the 40 MRI measures, aggregating their predictions

for each scan type using the intermediate classifiers f̂
(1)
inter, f̂

(2)
inter,

f̂
(3)
inter, and then combining the output of each scan type using the

meta-classifier f̂meta (line 8).
The model is again evaluated using double (nested) 10-fold

cross-validation: In the outer validation loop, the entirety of
Algorithm 1 is applied to 90% of the data, and the remaining
10% is used only for the calculation of classification accuracy
and AUC. This procedure was repeated 10 times. StaPLR was
performed in R using the package multiview 0.3.1 (van Loon,
2021), using the default optimization settings. The scripts used
for model fitting and evaluation are available in a public code
repository (van Loon, 2022). For a more general discussion of the
original StaPLR algorithm with only 2 levels we refer to van Loon
et al. (2020a).

2.4.1. Quantifying Feature Set Relevance Across

Scan Types
One of the advantages of StaPLR is that at each level the method
fits a logistic regression model. Thus, at each level, the classifiers
can be interpreted as regular logistic regression models. This way
one can easily determine the relative importance of the different
scan types, or the different MRI measures within a scan type.
However, if one wishes to compare feature sets corresponding to
different scan types, for example anMRImeasure from structural
and one from functional MRI, an issue arises. Because the
models used at each level are logistic regression models, and the
logistic function is nonlinear, the final stacked classifier cannot
be obtained by simply multiplying the regression weights of the
different levels. If one wishes to compare the relative importance
of feature sets across the different scan types, a different approach
is needed.

In hierarchical StaPLR, at the base level a separate classifier
is trained on each MRI measure separately. Consider as an
analogy a human committee: each base-level classifier can be
considered a member of a committee providing a prediction of
the outcome. The intermediate classifiers andmeta-classifier then
assign weights to the predictions of the committee members and
combine them into a single predicted outcome. Now consider
the possibility that one committee member makes a different
prediction than all the others. In human committees such a

dissenting opinion is sometimes called a minority report (Dick,
2002). We can measure the impact of such a minority report
by quantifying how the final predicted outcome changes as
a single member changes its prediction, while the predictions
of all the other members are kept constant. We will call
this quantification the minority report measure (MRM). Since
in our case, each committee member is a classifier trained
on a specific MRI measure, the MRM can be considered a
measure of importance of this MRI measure in determining the
final prediction.

The MRMmeasures the change in the outcome of the stacked
classifier when the prediction corresponding to the ith MRI
measure derived from scan type s changes from value a to value b,
while all other predictions are kept constant at value c. Different
choices for a, b and c are possible. In our analysis, we choose a =

0 and b = 1, which are the theoretical minimum and maximum,
and c = ȳ, which is the proportion of observations corresponding
to class 1. In this case, the MRMmeasures the maximum possible
change in final prediction attributable to the view X[s,i], while the
predictions corresponding to all other MRI measures are set to
the sample mean of y. Other possible choices for a and b include
the empirical minimum and maximum, respectively.

In the context of StaPLR applied to the current data set, the
MRM can be formalized as follows: Denote by X[s,i], i = 1 . . .ms,
s = 1 . . . S, the ith MRI measure of scan type s, with ms the
total number of measures corresponding to scan type s. Denote

by β̂
[s]
0 , s = 1 . . . S the intercept of the intermediate classifier

corresponding to scan type s. Denote by β̂
[s]
i , i = 1 . . .ms, s =

1 . . . S the coefficient of the ith MRI measure of scan type s.
Denote by ω̂0 the intercept of the meta-classifier, and by ω̂[s], s =
1 . . . S the weight of scan type s. Then for the ith MRI measure
corresponding to scan type s, we define the MRM as:

MRM(X[s,i], a, b, c) = g(X[s,i], b, c)− g(X[s,i], a, c), (1)

with a, b, c ∈ [0, 1], b > a, and

g(X[s,i], b, c) = ψ



ω̂0 + ω̂sψ



β̂
[s]
0 + β̂

[s]
i b+

∑

j 6=i

β̂
[s]
j c





+
∑

k 6=s

ω̂kψ



β̂
[k]
0 +

mk
∑

j=1

β̂
[k]
j c







 ,

(2)

where ψ denotes the logistic function, i.e.,

ψ(x) =
exp (x)

1+ exp (x)
. (3)

Note that, given a, b, and c, the value of the MRM depends only
on the estimated parameters of the stacked model. The MRM
can thus be readily calculated without any need for resampling
or refitting of the model, unlike many model-agnostic measures
of feature importance such as permutation feature importance
(Breiman, 2001; Fisher et al., 2019) or SHAP values (Lundberg
and Lee, 2017).
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FIGURE 1 | Boxplots of the number of selected features for each MRI measure resulting from the elastic net regression, colored by scan type (red = structural MRI,

green = diffusion MRI, blue = resting state fMRI). The numbers at the top of the graph denote the median proportion of nonzero coefficients.

3. RESULTS

3.1. Logistic Elastic Net Regression
The mean AUC of the model was 0.922 (SD = 0.008). The
mean test accuracy of the model was 0.848 (SD = 0.012). The
selected value of the tuning parameter α varied from 0.2 to
1, with an average of 0.788. On average, the model contained
168.17 (SD = 113.72) features. On average, the selected features
were spread out over 24.07 (SD = 3.15) different views. Thus,
elastic net regression provides classifiers which are fairly sparse
at the feature level, but not at the MRI measure level. Consider
Figure 1, which shows the distribution of the number of selected
features for each MRI measure across the 10 × 10 fitted models.
It can be observed that among the MRI measures with the largest
median number of selected features are those which correspond
to the voxel-wise functional connectivity with various RSNs
(measures (v) 26 through 37). For all of these measures, the
median number of selected features is greater than zero. It should
be noted that these measures, along with ALFF and fALFF, are
also those which contain by far the largest number of features.
Each of these measures contains over 190,000 features, but the
median number of selected features from each of them is typically
around 5 to 15 (see also Figure 1).

These results highlight several drawbacks of elastic net
regression for multi-view data: elastic net regression tends to
select a small number of features among a large number of
MRI measures. This is not very useful from a data collection
point of view, since one would typically collect or calculate an
entire MRI measure. For example, one would have to perform
the process of calculating the RSNs through ICA regardless of
how many features were selected among measures 26 through
37. It is also not very useful from the viewpoint of model
interpretation, since the functional connectivity of a resting state
network with a handful of voxels scattered throughout the brain
is unlikely to be very informative to a clinician. Additionally,
comparing Figure 1 with Table 1 shows that the MRI measures
with the largest number of selected features are also the measures
which contain the largest number of features to begin with.
However, these are not necessarily the most important measures
for predicting the outcome. Thus, given two views which are
similarly predictive of the outcome, a view with a much larger
number of features will likely have a much larger number of
selected features.

Elastic net regression does not provide a direct measure of the
importance of an MRI measure, since it operates at the feature
rather than the view level. However, we can obtain a measure
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FIGURE 2 | Boxplots of the L2-norm of the regression coefficient vector for each MRI measure resulting from the elastic net regression, colored by scan type (red =

structural MRI, green = diffusion MRI, blue = resting state fMRI).

of the importance of an MRI measure by calculating the L2-
norm (i.e., the square root of the sum of squared values) of
the corresponding regression coefficient vector. The results are
shown in Figure 2, where it can be observed that it is actually
the structural MRI measures of gray matter density and cortical
thickness which have the largest L2-norm. Although Figures 1, 2
allow us to summarize the outcome at the MRI measure level, it
is difficult to use the results of the elastic net regression to draw
conclusions about which MRI measure is the most important
for classification, or which MRI measures do not need to be
measured in the future, since at least some features were selected
from a large number of measures. Furthermore, in order to draw
conclusions about the different scan types, one would have to
re-aggregate the results at that level.

3.2. Original StaPLR Algorithm
The original StaPLR algorithm only allows for a two-level
structure, with features nested within views. Thus, one has to
choose between using the MRI measures as views, or the scan
types. Here, we show the results of both choices.

3.2.1. MRI Measures Only
The mean AUC of the model using the MRI measures as views
was 0.942 (SD = 0.006). The mean accuracy was 0.888 (SD =

0.007). The median regression coefficient for each MRI measure,
as well as their distribution across the 10 × 10 fitted stacked
classifiers can be observed in Figure 3. The resulting classifier is
considerably sparser than the one obtained through elastic net
regression (Figure 2). Note that this analysis only gives a measure
of importance for each MRI measure, not for the scan types.

3.2.2. Scan Types Only
The mean AUC of the model using the scan types as views was
0.942 (SD = 0.008). The mean accuracy was 0.897 (SD = 0.006).
The median regression coefficient for each scan type, as well as
their distribution across the 10 × 10 fitted stacked classifiers
can be observed in Figure 4. Structural MRI obtains the highest
coefficient, followed by diffusionMRI. Resting state fMRI is never
selected. Note that this analysis does not perform selection of
MRImeasures, only of scan types. Thus, it is not possible to select
a subset of relevantMRImeasures for any scan type; the complete
scan type has to be included or excluded from the model.

3.3. Hierarchical StaPLR
The mean AUC of the hierarchical 3-level StaPLR was 0.942 (SD
= 0.006), which was higher than that of the elastic net (0.922, SD
= 0.008), and identical to that of the original StaPLR algorithm
applied to either the MRI measures or the scan types. The mean
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FIGURE 3 | Boxplots of the regression coefficients of StaPLR applied with only 2 levels, using the MRI measures as views, colored by scan type (red = structural MRI,

green = diffusion MRI, blue = resting state fMRI).

accuracy was 0.893 (SD = 0.008), which was also higher than that
of the elastic net (0.848, SD = 0.012), and comparable to that of
the original StaPLR algorithm. Across the 10 × 10 fitted stacked
classifiers, the structural scan was selected 100% of the time, the
diffusion weighted scan 83% of the time, and the RS-fMRI scan
90% of the time. The median regression coefficient for each scan
type, as well as their distribution across the 10× 10 fitted stacked
classifiers can be observed in Figure 5. These are simply the
regression coefficients in a logistic regression classifier. The input
to this classifier is the output of the classifiers corresponding
to each scan type, which are all predicted probabilities between
zero and one. Taking the median values shown in Figure 5,
the final predicted probability of Alzheimer’s disease is given
by an intercept plus 5.12 times the prediction from structural
MRI, plus 1.02 times the prediction from diffusion-weighted
MRI, plus 1.25 times the prediction from resting state fMRI.
The final classification is thus largely determined by the classifier
corresponding to the structural scan, with smaller contributions
from the diffusion-weighted and resting state fMRI scans. The
contribution of each MRI measure within a given scan type
can be compared in the same way. Figure 6 shows that within
the structural MRI scan type, the measures of cortical thickness
and gray matter density contributed the most to the prediction.

Subcortical volumes provided a much smaller contribution, and
was not always selected. Cortical curvature was generally not
selected and only provided a small contribution in 5% of the
fitted classifiers, while cortical area was never selected. Figures 7,
8 show the contributions of the measures within the diffusion-
weighted and resting state fMRI scan types, respectively.

One important thing to consider when interpreting a StaPLR
model with more than two levels, is that the coefficients shown
in Figures 6–8, are coefficients of three different intermediate
classifiers. Thus, we cannot simply compare coefficients across
these figures. Doing so would lead us to conclude that ALFF
(median coefficient of 4.05) is more important than gray
matter density (median coefficient of 3.48). However, this would
be an erroneous conclusion, since the structural scan type
has a much larger weight than the resting state functional
scan type (see Figure 5). To compare MRI measures across
the different scan types we can use the minority report
measure (MRM) introduced in section 2.4.1. Because the
MRM measures the effect of the MRI measure-specific models
on the final predicted outcome, it is suitable for comparing
the importance of MRI measures even if they correspond
to different scan types. We calculated the MRM for each
measure, for each of the repetitions. As shown in Figure 9, the
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FIGURE 4 | Box-and-violin plots of the regression coefficients of StaPLR applied with only 2 levels, using the scan types as views.

MRM properly reflects the high importance of the structural
scan type compared with the diffusion and functional scan
types.

If we compare the results of hierarchical StaPLR with
the results of elastic net regression (Figures 1, 2), we can
observe both similarities and differences. In terms of the overall
importance of the different scan types, the results are similar,
with the structural MRI providing the MRI measures with
the largest contribution, both in StaPLR (in terms of MRM
and meta-level regression coefficient) and in the elastic net
(in terms of the L2 norm of the regression coefficients). In
terms of the MRI measures within the structural scan type,
the results are also similar, with cortical thickness being the
most important measure, followed by gray matter density, and
subcortical volumes. The fact that both methods agree on
the same MRI measures being the most important for the
classification of Alzheimer’s disease provides somewhat of a
“sanity check.” Within the scan types which have a smaller
contribution, i.e., diffusion-weightedMRI and resting state fMRI,
we can see differences between the methods. For example, in
StaPLR mean diffusivity is not considered important, while it
is of some importance in the elastic net model. The largest
differences, however, are seen within the functional scan type.
StaPLR generally included only 4 resting state fMRI measures,
whereas elastic net generally included features from 17 fMRI
measures. Features from ALFF are included by both methods.
Although the StaPLR model is much sparser in terms of the MRI
measures which are included, this did not lead to a reduction in
accuracy. In fact, the accuracy of the StaPLR model compares
favorably to that of the elastic net.

4. DISCUSSION

We have extended the StaPLR algorithm to adapt to a
hierarchical multi-view data structure. That is, the extended
StaPLR algorithm allows for the analysis of datasets containing
large numbers of features which are nested within lower-level
views, which are in turn nested within higher-level views. We
applied this extension to a multi-view MRI data set in the
context of Alzheimer’s disease classification, where features are
nested within MRI measures, which are in turn nested within
scan types. The presented application can serve as an example
of a more general class of applications within neuroimaging
and the biomedical sciences. In our specific application to
AD classification, the classifier produced by StaPLR was more
accurate than the one produced by elastic net regression.We have
shown how in StaPLR the relative importance of MRI measures
derived from the same scan type can easily be compared using
their regression coefficient. Additionally, we have introduced
the minority report measure, which allows for comparing the
importance of MRI measures derived from different scan types.

If we compare the results of the hierarchical extension of
StaPLR with the original algorithm applied to either MRI
measures or scan types, we see three different resulting classifiers
which have nearly identical classification performance. Naturally,
the results of the StaPLR algorithm depend on the specified
multi-view structure, and specifying a different structure will
lead to a different model. Since MRI data generally contain
high amounts of collinearity it is not all that surprising that
different models may have similar classification performance.
However, it is still natural to ask which of these three models
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FIGURE 5 | Box-and-violin plots of the hierarchical StaPLR meta-level regression coefficients for each scan type. The numbers at the top of the graph denote the

proportion of times the coefficient was nonzero.

FIGURE 6 | Box-and-violin plots of the hierarchical StaPLR intermediate-level regression coefficients for the structural scan type. The numbers at the top of the graph

denote the proportion of times the coefficient was nonzero.
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FIGURE 7 | Box-and-violin plots of the hierarchical StaPLR intermediate-level regression coefficients for the diffusion scan type. The numbers at the top of the graph

denote the proportion of times the coefficient was nonzero.

is the “best.” Since all three models have nearly identical
classification performance, and statistical models are generally
“wrong” in the sense that they can only provide a simplification
or approximation of reality, the most important question is
probably: which approach is the most useful? We argue that
the hierarchical StaPLR model is more useful for several
reasons. First, hierarchical StaPLR is the only approach that
accurately matches the study design because it most closely
follows how the data are collected and processed: data are
collected through differentMRI scans, and then researches derive
different MRI measures from these scan types. Second, unlike
the original StaPLR algorithm, hierarchical StaPLR allows easy
computation of measures of importance for both MRI measures
and scan types. If applying the original StaPLR algorithm, two
separate analyses are required, which considerably increases
computational cost. In addition, the two different analyses may
lead to different conclusions, as was the case in our data set
(compare Figure 3with 4). If theMRImeasures are used as views,
some resting state fMRI measures are generally included, but if
the scan types are used instead, the fMRI scan type is always
discarded. This discrepancy is probably caused by the fact that
when the scan types are used as views, the algorithm is forced
to select or discard all features within this scan type. Since the
fMRI scan type has a very high number of features and likely
a low signal-to-noise ratio, the addition of a large amount of
noise to the model is not worth the inclusion of the scan type by
the two-level StaPLR algorithm. However, if a selection of MRI

measures is made first, such as in the hierarchical StaPLR model,
then signal present in the fMRI scan type can still be picked up by
the algorithm.

Given the results of the hierarchical StaPLR algorithm, we
can compare the relative importance of the different MRI
measures using the regression coefficients or theMRM. However,
we may additionally want to make a binary decision: is this
measure required for prediction of the outcome or not? This
is of course more difficult, since although some measures
were selected 100 or 0% of the time, for many measures
the situation is not so clear-cut. One approach would be
to say that for an MRI measure to be important, it should
have been selected at least 50% of the time (i.e., its median
coefficient should be nonzero). In this case, we would select
three structural measures (cortical thickness, gray matter density
and subcortical volumes), two diffusion measures (fractional
anisotropy and radial diffusivity), and four functional measures
(ALFF, the graph metrics as computed from the full 20x20 FC
matrix, the sparse 70 x 70 FC matrix, and the SDs associated
with the latter), for a total of nine selected MRI measures.
Note that this is considerably sparser than the elastic net,
for which the selected features were on average spread out
over 24 MRI measures. It is also interesting to see that the
observed selection probabilities for the different MRI measures
are not generally in the neighborhood of 50%. Instead, all
measures were included either at least 67% of the time, or
less than 38% of the time, providing a clear separation into
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FIGURE 8 | Box plots of the hierarchical StaPLR intermediate-level regression coefficients for the functional scan type. The numbers at the top of the graph denote

the proportion of times the coefficient was nonzero.

a “frequently selected” and “infrequently selected” group of
MRI measures.

Of course, binary decisions regarding which MRI measures or
scan types are required for prediction are further complicated
by the fact that we have shown different two-level StaPLR
models with comparable classification performance. However, it
is important to note that these models correspond to different
research questions. For example, when using only the scan types
as views, the research question pertains to the relevance of
complete scan types (i.e., including any noise), rather than to the
most informative subset of MRI measures derived from those
scan types, as in the hierarchical StaPLR model. Naturally, a
different research question may lead to a different answer.

The results of hierarchical StaPLR model are in line with
earlier research. Hierarchical StaPLR, the original StaPLR
algorithm using MRI measures as views, and the elastic net
all appeared to agree on the structural MRI measures of gray
matter density and cortical thickness being the most important
for classification, which is in line with earlier research identifying
measures of gray matter atrophy as important bio-markers for
Alzheimer’s disease (Lerch et al., 2005; Frisoni et al., 2010). The
largest difference between the methods was seen in terms of
fMRI measures, of which hierarchical StaPLR selected 4, StaPLR

using only the MRI measures selected 2, StaPLR using only
the scan types selected none, and the elastic net selected 17.
In particular, the elastic net appeared to include more features
from the larger feature sets (Figure 1), such as the feature sets
containing the voxel-wise functional connectivity with individual
RSNs. In contrast, hierarchical StaPLR includes MRI measures
which contain summarizing information about RSNs (i.e., graph
metrics, the sparse 70x70 FC matrix, and the dynamics of
the sparse 70x70 FC matrix). The importance of the 70x70
FC matrix and its dynamics are in line with the results of a
previous study which used only the resting state fMRI scans
for AD classification (de Vos et al., 2017). The results of the
hierarchical StaPLR analysis suggest that although the structural
scan type is dominant in the classification of Alzheimer’s disease,
diffusion MRI and resting-state fMRI can both provide useful
contributions to the classification. These results are broadly in
line with a previous study investigating the relevance of a smaller
subset of structural, diffusion and resting-state functional MRI
measures (Schouten et al., 2016).

Although hierarchical StaPLR selected all MRI scan types,
it did make a smaller selection of required MRI measures.
In practice, such a selection may translate to less time spend
on the computation of different feature sets from MRI scans.
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FIGURE 9 | Influence of each of the MRI measures on the predictions of the hierarchical stacked classifier, as quantified by the minority report measure. MRM values

range from 0 to 1, with 0 indicating no influence and 1 indicating maximum possible influence. The colors of the bars refer to the different scan types (red = structural

MRI, green = diffusion MRI, blue = resting state fMRI).

Furthermore, our results indicate that StaPLR can adequately
deal with imbalanced numbers of features within each view.
Whereas standard elastic net tends to select many features
from very large views (e.g., the functional connectivity views;
Figure 1), StaPLR does not show this preference for large
views (most functional connectivity views obtained a weight
of 0 as shown in Figure 8). A drawback of StaPLR, which it
shares with all penalized regression methods, is that for any
single run of the algorithm the selection is binary: a view
is either selected or not. As discussed above, the actual set
of selected views may vary from run to run. In this article,
we have quantified this variability by showing the distribution
of results over all repeated cross-validation folds. Other re-
sampling methods, such as the bootstrap, could also be used
to gain more insight in the stability of the results. However,
compared with subsampling, bootstrapping may increase the
likelihood of noise variables being selected (De Bin et al., 2016).
In addition, re-sampling methods are typically computationally
expensive. In the future, we therefore aim to introduce a form of
uncertainty quantification, such as confidence intervals, that can
be computed from only a single run of the StaPLR algorithm.

As mentioned before, the results of the StaPLR algorithm
depend on the specified multi-view structure. In our analysis,
features were nested inMRI measures, which were in turn nested
in scan types. The multi-view structure was specified this way
because it matches the study design. However, one could specify
a different multi-view structure to match a different research
question. In fact, we have done so when applying StaPLR with
only two levels. Another example of a different research question
would occur if the primary interest is in identifying which brain
areas are the most important for AD classification. In this case,
one could treat each brain area as a separate view. This may, of
course, again lead to different results. For example, the feature
set that consists of the volumes of the subcortical structures
was found to play only a minor role in AD classification in the
hierarchical StaPLR model, whereas this feature set also contains
the volumes of the left and right hippocampus that are considered
to be AD hallmarks. Decoupling the volumes of the different
subcortical structures and treating each brain area as a separate
view would allow each structure to obtain its own weight. In
such an analysis, one might see an increased importance of
certain structures traditionally associated with AD, such as the
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hippocampus. However, such an analysis is outside the scope of
this article.

The application shown in this article serves as an example
of how StaPLR can be applied to hierarchical multi-view data.
It should be noted that the method can be further extended to
a more complex structure, such as a hierarchical structure with
more levels, or a structure with a mixed number of levels. The
latter may be of particular importance when the data is collected
from entirely different domains. For example, the hierarchical
multi-view structure for MRI data may be quite different from
that of genetic data, other biomarkers, or clinical variables. Such a
difference can easily be handled by the StaPLR algorithm, paving
the way for applications to larger multi-source data sets such as
those obtained through the UK Biobank initiative.

5. CONCLUSION

We have extended the StaPLR algorithm to hierarchical
multi-view MRI data, and applied it to Alzheimer’s disease
classification. We have shown that StaPLR produces a stacked
classifier that allows researchers to see which scan types, and
which MRI measures derived from those scan types, play the
most important role in classification. In addition, the stacked
classifier showed an increase in classification accuracy when
compared with logistic elastic net regression.
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