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Abstract

The immune system is central to our interactions with the world in which we
live and importantly dictates our response to potential allergens, toxins, and
pathogens to which we are constantly exposed. Understanding the
mechanisms that underlie protective host immune responses against
microbial pathogens is vital for the development of improved treatment and
vaccination strategies against infections. To that end, inherited
immunodeficiencies that manifest with susceptibility to bacterial, viral,
and/or fungal infections have provided fundamental insights into the
indispensable contribution of key immune pathways in host defense against
various pathogens. In this mini-review, we summarize the findings from a
series of recent publications in which inherited immunodeficiencies have
helped illuminate the interplay of human immunity and resistance to
infection.
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Introduction

Insights through the observation and study of primary immu-
nodeficiency disorders (PIDs) provide a unique in vivo lens
through which our understanding of human immunology can
be advanced. Herein, we discuss recent discoveries that have
furthered our collective understanding of the host immune
response in protection from the constant environmental threats
posed by bacteria, viruses, and fungi. We focus on inter-
leukin (IL)-6 receptor-alpha (IL-6Rq) deficiency and dominant
activating Rac family small GTPase 2(RAC2) mutations
leading to bacterial infection susceptibility, EROS deficiency
and its impact on innate immunity, interferon (IFN) regulatory
factor 4 (IRF4) haploinsufficiency causing susceptibility
to Whipple’s disease (WD), defects in IL-12 receptor subu-
nit beta 2 (IL-12RB2), IL-23 receptor (IL-23R), RAR-related
orphan receptor C (RORC), Janus kinase 1 (JAK1), and
tyrosine kinase 2 (TYK2) contributing to mycobacterial dis-
ease, deficiency in IFNo receptor-1 (IFNARI), melanoma
differentiation associated protein-5 (MDAS), IRF9, or IL-18
binding protein (IL18-BP) and gain-of-function (GOF) muta-
tions in NLR family pyrin domain containing 1 (NLRPI)
leading to viral infection susceptibility, and fungal infection
susceptibility in the setting of caspase recruitment domain-
containing protein 9 (CARDY) deficiency, zinc finger protein
341 (ZNF341) deficiency, and c-Jun N-terminal kinase 1 (JNK1)
haploinsufficiency.

Recent insights gained from primary
immunodeficiency disorders manifesting with
bacterial infection susceptibility

IL-6 signaling: a critical role in control of bacteria

Prompt recognition of bacterial pathogens is paramount in
the defense against infection, and, among the mechanisms
that initiate the immune cascade, IL-6 plays a central role. As
a pleiotropic pro-inflammatory cytokine, IL-6 leads to the ini-
tiation of the acute-phase response by driving the recruitment
of innate immune cells and pathogen phagocytosis while also
promoting adaptive immune responses through mediating B
cell survival and maturation, T cell proliferation, and the line-
age commitment of T follicular, T 17, and T, 22 helper cells'~.
Classical cell-membrane signaling of IL-6 is mediated through
a hexameric complex composed of two IL-6 molecules,
two IL-6Ro receptors, and two transmembrane glycopro-
tein 130 (gp130) proteins through which signal transduction is
propagated via JAK and signal transducer and activator of
transcription  (STAT) interactions™®. Tatrogenic, acquired,
and inherited defects have provided evidence of the conse-
quences of impaired IL-6 signaling through their impact on
infection  susceptibility. Severe staphylococcal infections
have been described in patients treated with the anti-IL-6R
monoclonal antibody tocilizumab and in spontaneously
acquired autoantibodies against circulating IL-6". Further-
more, inherited homozygous mutations in /L6S7, encoding the
gpl30 co-receptor, predispose to recurrent severe staphy-
lococcal and streptococcal infections'” as well as elevated
serum IgE and dental and cranio-skeletal manifestations remi-
niscent of hyper-IgE syndrome (HIES) caused by dominant-
negative mutations in STAT3'"'”. It was not until recently
that inherited deficiency in IL-6Ro was identified. Specifi-
cally, Spencer et al. reported two patients with severe recurrent
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infections with defective acute-phase response, elevated
IgE, atopic dermatitis, and peripheral eosinophilia caused by
pathogenic variants in IL6R". An additional four patients
from two unrelated families with /L6R mutations were also
reported sharing a similar clinical phenotype with severe
bacterial infectious complications caused by Streptococcus
pneumoniae, Staphylococcus —aureus, Haemophilus influen-
zae, and Neisseria meningiditis'* (Table 1). Mechanistically,
shared among all of these IL-6 pathway functional defects is
absent or delayed production of acute-phase reactants includ-
ing C-reactive protein, which plays a crucial role in the
protection against bacterial pathogens including Strepto-
cocci, Klebsiella pneumoniae, and Neisseria meningitidis
through opsonization and phagocytosis by macrophages and
neutrophils'-'>"7.

As the IL-6 signaling pathway has been implicated in autoim-
mune and inflammatory diseases such as rheumatoid arthri-
tis, giant cell arteritis, Castleman’s disease, and cytokine
release syndrome in the setting of CAR T cell therapy for
malignancies, anti-IL-6R therapies have become increasingly
more common'®. As such, surveillance for bacterial infectious
complications is warranted in the setting of anti-IL-6
biological therapies.

Whipple’s disease: 111 years later

Described initially by George Hoyt Whipple”, WD is a
chronic infection manifested by malabsorptive diarrhea,
weight loss, and arthritis caused by the Gram-positive bacil-
lus Tropheryma whipplei®. Despite T. whipplei being ubig-
uitous in the soil and water, WD is rare, with an estimated
incidence of 1-3 cases per 1 million people’. Interestingly,
asymptomatic carriage is relatively frequent, ranging from
~4-31% depending on the geographical area”*. The vast major-
ity of infected individuals suffer from self-limited illness,
suggesting that an impaired immunological response may play
arole in those with chronic or invasive forms of the disease”*~*’.

Through the investigation of four related patients with WD,
Guérin et al. reported a rare loss-of-function (LOF) muta-
tion in /RF4 causing haploinsufficiency”. It is important to note
that a total of 12 individuals were found to be hetero-
zygous for the p.R98W variant in IRF4 (Table 1), including
the four WD patients, five chronic 7. whipplei carriers, two
non-carriers, and one relative who was not tested for 7. whip-
plei, thereby indicating incomplete penetrance. IRF4 is an
important transcription factor for the development of immune
cells as well as T, 2, T,9, and T, 17 responses (Figure 1); how-
ever, its role in the control of bacterial infection has been
less clear™ . In vitro studies of patient cells demonstrated
that the mutant IRF4 allele failed to bind DNA or induce
transcription. Additional transcriptional analysis of T. whipplei-
infected peripheral blood mononuclear cells (PBMCs) did
not detect specific pathway enrichment; however, Mycobacte-
rium bovis—Bacillus Calmette-Guérin (BCG)-infected PBMCs
demonstrated down regulation of STAT1 and IFN-y-associated
pathways. These results suggest that IRF4 haploinsufficiency
may predispose to 1. whipplei via impaired T, 1 helper cell
mechanisms. Despite the potential impact on the IFN-y axis,
patients with IRF4 haploinsufficiency appear to be selectively
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Table 1. Recently described primary immunodeficiencies associated with increased risk of infection.

Gene/ Variant(s) Inheritance Clinical manifestations Laboratory findings Associated pathogens
protein model
Host response to bacteria
IL6R/IL- G183Efs*7;1279N AR, LOF Atopic dermatitis, Variably low IgG, IgA Streptococcus
6RA respiratory infections, skin TIgE pneumoniae,
abscesses, recurrent skin 1l CRP Staphylococcus aureus,
infections Haemophilus influenzae,
Neisseria meningitidis
IRF4/IRF4 R98W AD, Whipple’s disease, chronic NR T. whipplei
haploinsufficiency Tropheryma whipplei
carriage
RAC2/ E62K; P34H AD, GOF Recurrent sinopulmonary Neutropenia, N. meningitidis, varicella
RAC2 infections, bronchiectasis, lymphopenia, variable zoster, HPV, herpes
cellulitis, lymphadenitis, B hypogammaglobulinemia, simplex
cell lymphoma, littoral cell increased DHR
angioma
CYBC1/ c.127G>A; AR, LOF Short stature, skin/soft tissue Impaired DHR, BCG, Burkholderia
EROS YaXx infections, lymphadenitis, lymphopenia cepacia, Legionella,
recurrent sinopulmonary Candida albicans,
infections, granulomatous Clostridium difficile,
inflammation, AIHA, HLH, Mycobacterium
CGD, IBD tuberculosis
Host response to mycobacteria
IL12RB2/ Q138X AR, LOF Lymphadenitis, pulmonary Increased naive CD4* BCG, M. tuberculosis
IL-12RB1 tuberculosis and CD8* T cells
IL23R/IL- C115Y AR, LOF Lymphadenitis, Increased naive CD4+* BCG
23R disseminated BCG infection and CD8* T cells
TYKZ/ P1104A AR, LOF Primary tuberculosis Increased naive CD4* M. tuberculosis, NTM
TYK2 and CD8* T cells,
reduced effector memory
T cells
RORC/ Q308X; Q420X AR, LOF Thymic hypoplasia, CMC, CD4* and CD8"T cell BCG, M. tuberculosis,
RORy/ disseminated BCG infection, lymphopenia C. albicans
RORyt tubercu_lpsis, eczematous LIFN-y production
dermatitis, recurrent skin LIL-17AJE IL-21, IL-22
infections production
JAKT/ P733L; P832S AR, LOF Recurrent sinopulmonary Reduced naive CD4* and NTM, Sarcoptes scabiei,
JAK1 infections, osteomyelitis, CD8* T cells, Impaired HPV
developmental delay, PHA response
urothelial carcinoma, Impaired IFN-y, IFN-a, IL-
skin |nfect|on§, flat warts, 2, IL-4, IL-10, and IL-27
crusted scabies responses
LIFN-y production
T IL-6 production
Host response to viruses
IFNAR1/ \VV225fs; AR, LOF Disseminated vaccine- Impaired type | IFN Vaccine-strain measles,
IFNAR1 W261X, strain measles, yellow responses vaccine-strain yellow
V225_P23 fever vaccine-associated fever
2del viscerotropic disease
IFIH1/ K365E AR, LOF Recurrent viral respiratory Reduced IFN-B, IFN-A HRYV, influenza B,
MDA5 infections transcription influenza A, coronavirus,
RSV, parainfluenza
IRFY/IRF9 E166Lfs*80, AR, LOF Recurrent viral infections, Variable mild Influenza A
D331N severe influenza infection lymphopenia, variable

hypogammaglobulinemia,

impaired type | IFN
responses
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Gene/ Variant(s) Inheritance Clinical manifestations

protein model

IL18BF/IL-  ¢.508-19_528del AR, LOF HAV-induced acute liver

18 BP failure

NLRP1/ T755N AR, GOF Recurrent respiratory

NLRP1 papillomatosis, palmar and
plantar warts

TLR3/TLR3 P554S; P680L AD, LOF Acute respiratory distress
syndrome

Host response to fungi

CARDY/ NA AR, LOF Mucocutaneous and CNS

CARD9 fungal infections

ZNF341/ R302X; AR, LOF CMC, staphylococcal skin

ZNF341 K355fs; Y542X; infections, respiratory

Q195X infections, bronchiectasis,

severe atopic dermatitis,
food and environmental
allergy, connective tissue
abnormalities

MAPKS8/ c.311+1G>A AD, Systemic connective tissue

JNK1 haploinsufficiency disorder, CMC, recurrent

bacterial skin infections,
urinary tract infections

Laboratory findings
TIL-18

TIL-18
TTNF-o

LIFN-B and IFN-A from
fibroblasts

1 CNS neutrophil
recruitment due to
impaired IL-1B/CXCL1
microglial production
 neutrophil killing
against unopsonized
Candida yeasts

Impaired IL-17 responses

Low NK Cells

Low memory B cells
Low central memory
CD4* and CD8* T cells
Low IgM, IgA

T IgE

Impaired IL-17A/F
responses

Associated pathogens
HAV

HPV

Influenza A, RSV

C. albicans, Aspergillus
species, agents of
dermatophytosis and
phaeohyphomycosis

S. aureus, C. albicans,
Candida glabrata

C. albicans,
Staphylococcal species

AD, autosomal dominant; AIHA, autoimmune hemolytic anemia; AR, autosomal recessive; BCG, Bacillus Calmette-Guérin; CARD9, caspase recruitment
domain-containing protein 9; CGD, chronic granulomatous disease; CMC, chronic mucocutaneus candidiasis; CNS, central nervous system; CRP, C-reactive
protein; DHR, dihydrorhodamine test; GOF, gain-of-function; HAV, Hepatitis A virus; HLH, hemophagocytic lymphohistiocytosis; HPV, human papilloma virus;
HRV, human rhinovirus; IBD, inflammatory bowel disease; IFN, interferon; IFNART, interferon alpha receptor-1; Ig, immunoglobulin; IL, interleukin; IL-6RA,
interleukin-6 receptor-alpha; IL-12RB1, interleukin-12 receptor subunit beta 1; IL-18 BP, interleukin-18 binding protein; IL-23R, interleukin-23 receptor; IRF,
interferon regulatory factor; JAK1, Janus kinase 1; JNK1, c-Jun N-terminal kinase 1; LOF, loss-of-function; MDA5, melanoma differentiation associated
protein-5; NA, not applicable; NK, natural killer; NLRP1, NLR family pyrin domain containing 1; NR, not reported; NTM, non-tuberculous mycobacteria; PHA,
phytohemagglutinin; RAC2, Rac family small GTPase 2; ROR, RAR-related orphan receptor; RSV, respiratory syncytial virus; TNF, tumor necrosis factor; TLRS,
Toll-like receptor-3; ZNF341, zinc finger protein 341.

susceptible to WD without susceptibility to other intracellular
pathogens that rely on intact IFN-y/STAT1 signaling (e.g. myco-
bacteria, Salmonella, etc.), implying that other parallel and/or
compensatory immune mechanisms may play a role. Addi-
tional work is needed to further delineate the -cell-specific
mechanistic role of IRF4 in host defense against WD.

EROS, NADPH oxidase, and innate immunity

The generation of reactive oxygen species (ROS) via the
nicotinamide adenine dinucleotide (NADPH) complex is
an essential component of innate host defense. Mutations
in four of the genes encoding the protein components of the
NADPH complex (gp91phox, p22phox pa7phox - and pd7Phox) cause
chronic granulomatous disease (CGD) manifested by an
impaired phagocyte respiratory burst resulting in infec-
tious susceptibility to bacteria and fungi’'”. Instead, inherited
defects affecting the fifth protein, p40r™*, result in severe inflam-
matory complications with modest infection susceptibility*.

A newly described transmembrane protein, EROS, has also
been identified to play a key role in ROS production through
stabilization of the gp91P™* and p22P* heterodimer, cyto-
chrome 588b* (Figure 1). A cohort of eight individuals with a
homozygous null mutation in CYBCI encoding EROS dem-
onstrated a CGD-like disease with severe infections and
associated colitis”. Patients demonstrated absent cytochrome
588b surface expression and severely reduced neutrophil
oxidative burst. Interestingly, Thomas et al.** reported a Saudi
Arabian boy with biallelic mutations affecting CYBCI who,
unlike the previously reported patients, suffered from recurrent
sinopulmonary infections, autoimmune hemolytic anemia,
and hemophagocytic lymphohistiocytosis (HLH) (Table 1).
Evaluation of the patient’s PBMCs showed absent EROS pro-
tein, while neutrophils demonstrated defective respiratory
burst following stimulation with either phorbol 12-myristate
13-acetate (PMA) or zymosan. These cases provide addi-
tional evidence for EROS deficiency manifesting as a CGD-like
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Figure 1. The IFN-y/IL-12, IL-23, IL-17 axis and NADPH complex in host defense against pathogens. Mycobacteria are recognized
and phagocytosed, leading to IL-12 (p40/p35) secretion by macrophages. Binding of IL-12 to its receptor on the surface of T,1 (or
NK) cells activates the downstream JAK2 and TYK2 signaling cascade, resulting in STAT4 phosphorylation and dimerization. STAT4
homodimers translocate to the nucleus and induce the transcription of IFN-y. Phosphorylated STAT1 homodimers translocate to the
nucleus, resulting in the transcription of host defense genes. Similarly, IL-23 comprising the p40 and p19 subunits binds to the IL-23
receptor, leading to JAK2/TYK2 activation and STAT3 phosphorylation, dimerization, and nuclear translocation, where it associates with
IRF4 and RORyt in the transcription of IL17-, IL21-, and [L22-related genes. The membrane-bound gp91P"* and p22r" heterodimer
(cytochrome b558) is stabilized by the transmembrane chaperone protein EROS. The remaining cytosolic components, p67°"%, p47°ehox,
and p40°x, along with RAC2-GTP, associate to form the activated NADPH complex. Secondary signal from CD40/CD40L signaling
activates the NF-kB pathway. GATA2, GATA binding factor 2; gp, glycoprotein; IFN, interferon; IFNG, interferon gamma; IFNGR, interferon
gamma receptor; IL, interleukin; IL-12RB, IL-12 receptor subunit beta; IRF4, interferon regulatory factor 4; JAK2, Janus kinase 2; NAPDH,
nicotinamide adenine dinucleotide; NEMO, nuclear factor-kB essential modulator; NF-kB, nuclear factor-kB; NK, natural killer; RAC2,
Rac family small GTPase 2;RORyt, RAR-related orphan receptor yt; STAT, signal transducer and activator of transcription; T,1,
T helper type 1; TYK2, tyrosine kinase 2. This figure is adapted and amended with permissions, from Figure 3 in Abers, A, Lionakis, M.
Chronic mucocutaneous candidiasis and invasive fungal infection susceptibility. In: Sullivan, K.E, Stiehm, E.R Stiehm’'s Immune
Deficiencies-Inborn Errors of Immunit. p1-44. 2nd ed. Copyright Elsevier Science & Technology. 2020%.

disease but, given the heterogeneous clinical phenotype, also
raise questions for additional roles that EROS may play in
infection susceptibility and inflammation.

Dominant activating RAC2 mutations and bacterial lung
disease

RAC2 is a guanine nucleotide-binding protein belonging
to the rho guanosine triphosphatase (GTPase) family. It is
expressed in the hematopoietic compartment, where it promotes
cell migration, adhesion, and oxygen radical production®**
(Figure 1). Human RAC2 LOF mutations have been described
to result in neutrophil defects”, severe combined immu-
nodeficiency”’, and a common variable immunodeficiency
(CVID) clinical phenotype®. Recently, RAC2 dominant acti-
vating mutations were discovered in which patients suffered
from recurrent bacterial sinopulmonary infections and
bronchiectasis**.  Patients  exhibited  lymphopenia  pos-
sibly as a result of increased apoptosis* while neutrophils

demonstrated excessive superoxide production (Table 1), aberrant
n-formyl  methionyl-leucyl-phenylalanine ~ (fMLF)-mediated
chemotaxis, impaired macropinocytosis, and compromised actin
remodeling in vitro*. This combined immunodeficiency under-
scores the importance of both neutrophil and lymphocyte
function in the protection against bacterial lung disease.

Teasing apart cellular signaling in the host response to
mycobacteria

IFN-y is critical for the control of intracellular patho-
gens including mycobacteria, Salmonella, Listeria, endemic
fungi, and others*“°. Disorders of mendelian susceptibility to
mycobacterial disease (MSMD) comprise 11 different genes to
date, resulting in 21 different genetic diseases’’. Of these rare
inherited disorders, autosomal-recessive (AR) IL-12 receptor
B1 (IL-12RB1) deficiency accounts for the majority of cases®.
The ILI2RBI gene encodes for IL-12RB1, which mediates
IL-12 and IL-23 signaling via dimerization with IL-12R[2
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and IL-23R components to form IL-12 and IL-23 receptors,
respectively*~" (Figure 1). Similarly, mutations in ILI2B
encoding the IL-12 p40 subunit common to both IL-12 and
IL-23 exhibit a clinical phenocopy of IL-12RB1 deficiency’'.
Unlike most other MSMDs, a subset of patients with
either of these two PIDs also carry susceptibility to chronic
mucocutaneous candidiasis (CMC), thought to originate
from compromised signaling via the IL-23/IL-17 pathway
that is important for T 17 cell development and mucosal
immunity’”>. As both IL-12 and IL-23 signaling are impaired
by these disorders, the individual contribution of each of these
cytokines in the immune response to mycobacteria and mucosal
candidiasis had remained unclear.

Through the identification of AR LOF mutations in either
ILI2RB2 or IL23R affecting separate kindreds with MSMD
without CMC, Martinez-Barricarte et al. underscored the
importance of both IL-12 and IL-23 signaling pathways and
their effects on IFN-y mediated immunity™ (Table ). Com-
pared to healthy controls, patients deficient in IL-12R[2
demonstrated fewer memory T,l cells and impaired T,1
differentiation in  vitro, while IL-23R-deficient patient
T cells showed impaired T 17 differentiation in vitro. The
authors further investigated the impact of IL-12 and IL-23 on
IFN-y cellular responses by isolating several lymphoid cell types
(ie. B, CD4* T, CD8" T, yd* T, and natural killer [NK]
cells, type-1 innate lymphocyte cells [ILCls], type-2 ILCs
[ILC2s], type-3 ILCs [ILC3s], NKT cells, and mucosal-
associated invariant T [MAIT] cells) from healthy donors. In
response to IL-12 stimulation, B, T, y&*, and NK cells and
ILCls and ILC2s produced IFN-y, whereas only NKT and
MAIT cells preferentially produced IFN-y in response to
IL-23. Interestingly, ILC3s produced IFN-y upon either IL-12
or IL-23 stimulation. Taken together, these recent findings
demonstrate the cooperative effect of these cytokines among
a panoply of cell types to promote IFN-y-mediated protection
from mycobacterial infection.

Like IL-12RB1 deficiency, AR TYK2 deficiency demon-
strates impaired IFN-y-mediated immunity through defective
IL-12 and IL-23 signaling, resulting in intracellular bacterial
(and/or viral) infections™ (Figure 1). Recently, a com-
mon TYK2 mutation, P1104A, with a homozygous allele fre-
quency of ~1/600 Europeans, has been identified® (Table 1).
Unlike complete TYK2 deficiency, TYK2 P1104A exclusively
impairs IL-23 responses due to compromised catalytic activity,
thereby disrupting IFN-y production and conferring risk of
mycobacterial infection®. In individuals of European ancestry,
TYK2 P1104A may underlie a genetic basis for ~1% of
tuberculosis cases; these findings indicate that inherited
risk alleles may underpin infection susceptibility at the population
level”’.

RORC in the control of mycobacteria and Candida

RORC encodes the transcription factors RORy and RORyt.
RORY is ubiquitously expressed, whereas the RORyt isoform
is restricted to lymphocytes where it regulates IL-17-related
gene transcription (Figure 1) and T, 17 T cell development™.
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Recently, biallelic mutations in RORC affecting seven indi-
viduals from three unrelated kindreds with CMC and a typi-
cal mycobacterial infections have been described”. Patient
cells demonstrated impaired IL-17A, IL-17F, and IL-22
responses, likely accounting for mucosal susceptibility to
Candida albicans. In the evaluation of the etiology of mycobac-
terial vulnerability, PBMCs exposed to BCG and IL-12 dem-
onstrated reduced IFN-y secretion as a result of selectively
impaired ¥ and CCR6*CXCR3*CD4+ off T cell subsets. These
findings show that RORC plays an integral role in both IL-17
and type II IFN pathways.

JAK1: a complex immunodeficiency

The JAK-STAT pathway is central to many signaling cas-
cades. Of the four JAKs, JAKI is involved in multiple
signaling pathways including IL-2, IL-4, IL-7, IL-9, IL-15,
IL-21, and IL-27 as well as the IL-6 and IL-10 families of
cytokines®'. As a result of JAK1’s widespread function, its dele-
tion has been shown to be lethal in mice®. To date, only a sin-
gle patient with partial JAK1 deficiency has been reported
(Table 1), resulting in a combined immunodeficiency com-
plicated by atypical mycobacterial osteomyelitis, sinopul-
monary and skin infections, flat warts, and severe -crusted
scabies®. Beyond infectious complications, the patient dem-
onstrated developmental delay and an early death as a
result of metastatic urothelial cancer at age 23. Functional
studies demonstrated impaired JAK-STAT phosphorylation lead-
ing to compromised responses to multiple cytokines including
IL-2 and type I and type II IFNs. These broad signaling
defects are likely responsible for the T cell lymphopenia and
viral and mycobacterial susceptibility, respectively.

Recent insights gained from primary
immunodeficiency disorders manifesting with viral
infection susceptibility

Novel primary immunodeficiency disorders of defective
type | and Il interferon signaling

Patients with germline defects in antiviral immunity have been
shown to suffer from disseminated infection when exposed to
live viral vaccine strains®. Deficiencies in STAT1%, STAT2%%,
or IFNAR2% have been reported to predispose to severe infec-
tion from the live-attenuated measles, mumps, and rubella
(MMR) vaccination strain. Shared among these disorders are
important elements in the host antiviral response as medi-
ated through type I (and type III) IFNs. Type I IFN signaling
occurs via binding of the IFNAR, composed of two subunits,
IFNARI and IFNAR2. IFNAR then activates JAK1 and
TYK2, which phosphorylate STAT1 and STAT2. The result-
ing STATI1/STAT2 heterodimers translocate to the nucleus,
where they assemble with IRF9 to form the IFN-stimulated
gene factor 3 (ISGF3) complex, leading to the downstream
transcription of IFN-stimulated genes (ISGs) responsible for

antiviral host defense®.

In a recent report, Hernandez er al. describe two patients
with AR splice defects in IFNARI who experienced severe
infectious complications following vaccination with MMR
and yellow fever vaccine strains, respectively’”. Patient cells
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demonstrated lack of IFNARI expression, unresponsiveness
to type I IFN stimulation (Table 1), and inability to control
viral replication of measles and yellow fever viruses in vitro.

Novel advances in the understanding of IFN signaling have
also been illuminated by the study of three patients with
AR LOF [RF9 mutations. A 5-year-old girl manifested severe
influenza A virus (IAV) pneumonitis’’, and a 10-year-old boy
suffered from recurrent viral infections resulting in neuro-
logical impairment and bronchiectasis. A third patient, the
6-month-old sister of the 10-year-old boy, was healthy at the time
of the report, potentially suggestive of incomplete penetrance’
(Table 1). Patient cells demonstrated normal STATI and
STAT2 phosphorylation but were unable to form the necessary
ISGF3 complex, resulting in impaired induction of ISGs and
failure to control viral replication in vitro.

Additional genetic evidence of influenza virus susceptibil-
ity comes from the recent description of three children with
autosomal-dominant (AD) Toll-like receptor-3 (TLR3) defi-
ciency complicated by IAV-induced acute respiratory distress
syndrome’”. TLR3 acts as an intracellular sensor of double-
stranded DNA (dsDNA), and its activation stimulates type I
and III IFN production™ (Table 1). Dominant-negative TLR3
mutations were initially recognized to cause defective intrinsic
immunity of the central nervous system (CNS), impairing
host IFN response to herpes simplex virus-1 (HSV-1) and
underlying HSV encephalitis (HSE) in otherwise healthy
children””. As previously described for dominant-negative TLR3
deficiency”, leukocytes from the patients with AD TLR3 defi-
ciency demonstrated normal type I/III IFN activation. However,
like patients with IRF9”" or IRF7 deficiency”, fibroblasts
and induced pluripotent stem cell-derived pulmonary epithelial
cells (iPSC-PECs) failed to control IAV replication.
Importantly, the phenotype could be rescued in iPSC-PECs when
treated with IFN-o or IFN-AI, highlighting the importance of
intrinsic type I and III IFN immunity for viral control in the
lung”.

In addition to influenza, enteroviruses such as human rhinovirus
(HRV) are major causes of respiratory viral infections, par-
ticularly in young children and immunocompromised adults’.
In the induction of protection against these viruses, MDAS senses
long fragments of cytosolic dsSDNA, leading to the production of
type I IFNs and pro-inflammatory IL-1 family of cytokines™®”.
Several LOF mutations in /FHI, encoding MDAS, have been
reported in patients suffering from severe respiratory viral
infections®** (Table 1). These mutations impaired downstream
IFN signaling and led to defective control of HRV replication
in vitro**'.

Taken together, these data underscore the complex inter-
play found in host defense against a variety of viral pathogens
and the crucial role that type I and III IFN signaling plays in
the antiviral response.

Novel defects of hyperactive immunity leading to viral
infection-related morbidity

Recurrent respiratory papillomatosis (RRP) is a rare disease
resulting in recurrent benign papillomas of the respiratory
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mucosa in otherwise healthy children and is typically caused by
chronic infection with human papilloma virus (HPV) sero-
types 6 or 11¥. Thus far, an immunologic etiology for this
disease has remained unknown. Drutman et al. reported two
brothers with juvenile-onset RRP who harbor a private homozygous
NLRP] mutation resulting in a GOF as demonstrated by increased
IL-1B secretion and spontaneous inflammasome activation®'
(Table 1). Interestingly, HPV6 or HPV11 was not detected in
either patient, presumably because of an exaggerated antivi-
ral response from inflammasome activation and inflammatory
cytokine secretion. The cause of papilloma formation remains
to be elucidated but may be secondary to the overproduction
of inflammatory IL-1 family cytokines resulting in increased
keratinocyte growth factor expression-mediated proliferation and
papilloma formation®*°.,

Less than one percent of children with hepatitis A viral (HAV)
infection develop acute liver failure (ALF), and although liver
transplantation has significantly improved outcomes, mortality
remains greater than 10%*-%. HAV replication alone
does not result in hepatocellular injury; instead, non-HAV-specific
“bystander-activated” CD8" T cells have been implicated in
hepatocyte cytotoxicity”. The mechanisms remain unclear, but
evidence suggests that co-stimulation by type I IFNs and IL-18
results in potent T cell activation and IFN-y secretion’*”. IL-18BP
is important in the negative regulation of IFN-y-mediated
immune responses by binding IL-18 and preventing interac-
tion with the IL-18 receptor. Belkaya er al. reported a child who
succumbed to HAV-induced ALF as a result of AR IL-18BP
deficiency, demonstrating that the mutant IL-18BP failed to
block IL-18 activity” (Table 1). Additionally, they provided
important in vitro evidence that IL-18 mediates hepatotoxic
effects via NK cell activation and cytotoxicity and that treatment
with IL-18BP rescues the phenotype, indicating that recombinant
IL-18BP may have therapeutic value in patients with ALF*.

These reports emphasize the concept that unrestrained immune
activation following viral infection may lead to serious clini-
cal ramifications in patients with defects in immunoregulation
or persistent inflammatory mediator production.

Recent insights gained from PIDs manifesting with
fungal infection susceptibility

The mechanism of CARD9-dependent protection against
central nervous system fungal invasion

CARDO deficiency has been known to result in fungal-specific
infection susceptibility with a predilection for mucocutane-
ous tissues and the CNS*”. The CNS-targeted susceptibility
to Candida infection was recently elucidated. Specifically,
CARD9 deficiency results in impaired recruitment of neu-
trophils into the Candida-infected CNS in mice and humans.
The resultant CNS neutropenia, which is detrimental for con-
trol of fungal CNS invasion, is not due to peripheral neutrope-
nia or impaired neutrophil-intrinsic chemotaxis but instead is
caused by defective induction of critical pro-inflammatory mol-
ecules in the fungal-infected CNS that abrogate neutrophil traf-
ficking from the blood into the CNS”. A recent follow-up study
by Drummond et al. shed further light onto the cellular and
molecular basis of the CNS neutrophil trafficking defect of
CARD?9 deficiency”’. Specifically, it was shown that, in response
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to the fungal peptide toxin Candidalysin, CARD?9 is critical in
CNS-resident microglia for the production of IL-18 via both
transcriptional regulation and inflammasome activation, which
in turn activates the production of neutrophil-recruiting CXCL1
by CNS-resident microglia and astrocytes to promote fungal
control in the CNS. Taken together, two-step tissue-specific “hits”
are operational in CARDY deficiency; impaired IL-17 responses
at the mucosal level allow for Candida translocation into the
blood and from there to the CNS, where impaired IL-13/CXCLI1-
dependent crosstalk between resident microglia and recruited
neutrophils results in CNS fungal persistence.

Fungal mucosal immunity and connective tissue disorders
CMC is manifested by superficial infections of the skin, nails, and
mucous membranes caused by Candida species. As IL-17 is essen-
tial for antifungal mucosal immunity, in herited disorders under-
lying vulnerability to CMC are associated with impaired IL-17
signaling. Indeed, mutations in genes of the IL-17 signaling path-
way, namely IL-17RA%, IL-17RC”, IL-17F”*, and TRAF3IP2'",
have been described in humans. Patients with AR AIRE deficiency
resulting in  autoimmune  polyendocrinopathy-candidiasis-
ectodermaldystrophy (APECED)'’"'"> carry neutralizing autoan-
tibodies against IL-17F and IL-22'%'"". Other genetic disorders
that lead to impaired T,17 development include dominant-
negative STAT3 mutations underlying Job’s syndrome'”,
DOCKS8 deficiency'®, the recently described deficiency in
ZNF341 (Table 1), a transcription factor that binds to the STAT3
promoter and results in defective STAT3 transcription and
activity'""'" RORC deficiency®’, and STATI GOF'**!'"".

In a recent report, Li er al. described a three-generational fam-
ily with AD CMC and an atypical connective tissue disorder
(CTD) due to mitogen-activated protein kinase-8 (MAPKS)
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haploinsufficiency'''. MAPKS8 encodes JNKI, a central compo-
nent in the MAPK signaling pathway important in the transduc-
tion of cellular responses within many contexts'”?, including
transforming growth factor beta (TGF-B) signaling''® and the
IL-17A response pathway downstream of ACT1'". Evaluation of
patient cells demonstrated reduced activation following IL-17A/F
cytokine stimulation, impaired T 17 differentiation, and
reduced proportion of T,17 cells in vitro'''. Moreover, patient
fibroblasts showed impaired JNKI1-mediated phosphoryla-
tion of activator protein-1 (AP-1) following TGF-J stimulation.
These findings suggest that JNKI1 haploinsufficiency results in
combined impairment of IL-17 and TGF-J cellular responses,
resulting in CMC and CTD.

Conclusion

Research of PIDs provides an exciting opportunity to advance
our understanding of human health. As technology continues
to rapidly advance, so too does our sophistication in detecting
subtle and once-unrecognized defects in the human immune
response. As illustrated in the reviewed works above, certain
defects may lend to a narrow range of infectious suscepti-
bly often as a result of redundant host defense mechanisms
selected throughout our evolution. Furthermore, with the increased
access and availability to molecular sequencing platforms,
the number of novel and interesting variants is expected to
increase at an exponential rate. Evaluating these coding,
non-coding, and epigenetic variants will further our under-
standing of the function and regulation of the human immune
system. Deciphering the intricate interplay of hematopoietic
and non-hematopoietic cells, organ-specific immunity, and
environmental factors that influence infection susceptibility
should help inform improved therapeutic and vaccination
strategies in vulnerable patients.
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