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Common variable immunodeficiency (CVID) represents the largest group of

primary immunodeficiencies that may manifest with infections, inflammation,

autoimmunity, and cancer, mainly B-cell non-Hodgkin’s lymphoma (NHL).

Indeed, NHL may result from chronic or recurrent infections and has,

therefore, been recognized as a clinical phenotype of CVID, although rare.

The more one delves into the mechanisms involved in CVID and cancer, the

stronger the idea that both pathologies can be a reflection of the same primer

events observed from different angles. The potential effects of germline

variants on specific somatic modifications in malignancies suggest that it

might be possible to anticipate critical events during tumor development. In

the same way, a somatic alteration in NHL could be conditioning a similar

response at the transcriptional level in the shared signaling pathways with

genetic germline alterations in CVID. We aimed to explore the genomic

substrate shared between these entities to better characterize the CVID

phenotype immunodeficiency in NHL. By means of an in-silico approach, we

interrogated the large, publicly available datasets contained in cBioPortal for

the presence of genes associated with genetic pathogenic variants in a panel of

50 genes recurrently altered in CVID and previously described as causative or

disease-modifying. We found that 323 (25%) of the 1,309 NHL samples available

for analysis harbored variants of the CVID spectrum, with the most recurrent

alteration presented in NHL occurring in PIK3CD (6%) and STAT3 (4%). Pathway

analysis of common gene alterations showed enrichment in inflammatory,

immune surveillance, and defective DNA repair mechanisms similar to those
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affected in CVID, with PIK3R1 appearing as a central node in the protein

interaction network. The co-occurrence of gene alterations was a frequent

phenomenon. This study represents an attempt to identify common genomic

grounds between CVID and NHL. Further prospective studies are required to

better know the role of genetic variants associated with CVID and their

reflection on the somatic pathogenic variants responsible for cancer, as well

as to characterize the CVID-like phenotype in NHL, with the potential to

influence early CVID detection and therapeutic management.
KEYWORDS

CVID, non-Hodgkin’s lymphoma, genomic, in silico, malignancy
1 Introduction

Common variable immunodeficiency (CVID) is the most

prevalent symptomatic primary immunodeficiency (PID) and is

characterized by an increased predisposition to recurrent

infections resulting from the low production of antibodies

against pathogens (1). CVID also entails an increased risk of

autoimmune, inflammatory, and malignant diseases (2).

Malignant neoplasms are a leading cause of death in CVID

patients and may be the first clinical manifestation of the disease

(3–5). Hematologic and gastric cancers are the most frequent,

with an estimated increased risk of 10- to 47-fold with respect to

the general population (6–8). The incidence of cancer diagnoses

does not seem to be age-dependent, and the identification of

robust clinical predictors and diagnostic biomarkers represents

an unmet need for CVID patients (9).

Multiple carcinogenetic mechanisms have been proposed to

operate in CVID. They can be classified as cell-intrinsic

mechanisms, encompassing defects of DNA repair, T–B co-

stimulation, immunoglobulin gene recombination (VDJ), class-

switch recombination, and somatic hypermutation (SHM); and

cell-extrinsic mechanisms, including inadequate immune

responses that facilitate chronic infections, typically caused by

EBV, HPV, andHelicobacter pylori (1, 10–13), defective immune

surveillance against tumors, and dysbiosis and chronic

inflammation, among others (13–16). To date, only a high

level of clinical suspicion enables the early diagnosis of cancer

in CVID patients (4, 9, 17–20). Conversely, patients with a new

diagnosis of malignancy are not routinely screened for a

potential underlying CVID (17, 21). Although fortunately low,

the overall incidence of malignancies in CVID patients has

increased in the last decades (9, 17, 22).

We have explored in this work the genetic crossovers

between CVID and NHL at the somatic level, notwithstanding

that a proportion of somatic variants may underlie at the

germline level and may condition the accumulation of
02
mutagenic variants in NHL. The two conditions are

epidemiologically related in the direction of CVID toward

NHL. Indeed, an extensive meta-analysis by Kiaee et al.,

deciphering the landscape of malignancy within CVID,

encompassed 48 studies worldwide with a total cohort of 8,123

CIVD patients, of which 790 cases were associated with

malignancy. NHL stood out with the highest prevalence (41%)

in patients with CVID with associated malignancy (4). It should

be noted that despite knowing this high predominance, the

mechanisms that inter non-synonymous mutations in

PIK3CD, twine these two pathologies remain an enigma (23–

25). The association the other way around (NHL towards CVID)

remains unknown. In NHL, B cells are the subject and the target

o f the d isease , and indeed , a var iab le degree of

immunodeficiency both in clonal and non-clonal cells is

observed. We sought to determine as a working hypothesis

that there must be gene networks associating CVID

and lymphoma.

NHL entails a heterogeneous group of lymphocytic disorders

ranging in aggressiveness from very indolent cellular

proliferation to highly aggressive and rapidly proliferative

processes (26). Even though it is true that several genes and

pathways are involved in the development of lymphoma, not all

of them are necessari ly involved in the associated

immunodeficiency. Indeed, there is a diverse clinical and

immunological profile in NHL patients, which will determine

different predispositions to recurrent infections and the need of

starting replacement therapy with immunoglobulins to manage

infectious diseases (26–28).

A single and specific defect is not known to cause CVID. To

date, the multiple clinical and immunological features derived

from the disease are not attributed, as in other PIDs, to the

alteration of a single gene expression. CVID appears to be the

result of several factors contributing to a defect in antibody

production, where genetic, epigenetic, and environmental

factors are involved (1, 21, 23, 29, 30). It has been described
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that around 20% of CVIDs are associated with a monogenic

defect, so approximately the remaining 80% might account for a

not yet identified gene or to the combined effects of digenic or

oligogenic lesions (probably common and rare prevalence ones)

and triggered by external factors (23, 31–33).

On the other hand, it should not be forgotten that there is a

major pool of patients initially diagnosed with “CVID” who,

after performing the genetic study, present a pathogenic variant

of the established monogenic IEI (34–41), such as the case of

NFKB1 haploinsufficiency or activated PI3K delta syndrome

(described below). These patients are classified as “CVID

phenotype” by the IUIS (40, 42), although they really could

encompass a more complex genetic scenario (2, 43, 44). In the

face of these findings, the differential diagnosis of both

pathologies should always be examined.

The current challenge encompasses identifying the bases of

the germline predisposition variants present in CVID and their

role in cancer development. There is increasing evidence of how

germline pathogenic variants can act as an oncogenic modifier,

thus determining complimentary somatic variants necessary for

the development of malignancy, as well as how these variants

can behave as co-oncogenes through interactions with existing

somatic pathogenic variants, conditioning tumorigenesis (45–

49). The identification of molecular predictors of malignancy in

CVID could enable the implementation of precision medicine in

this population and substantially impact follow-up strategies and

treatment decisions (21, 50). However, the design of adequately

powered genome-wide studies in CVID is hindered by the

limited casuistry and high costs of untargeted sequencing.

The combination of publicly available genomic repositories

and web tools for enrichment analyses may facilitate

hypothesis generation.

We have undertaken an approximation between possible

genetic interactions that justify a greater predisposition of this

population to the development of malignancy. For this purpose,

we performed an in-silico analysis to identify potential common

genomic substrates of CVID and NHL that can favor the design

of prospective studies with clinically and immunologically

annotated cohorts.
2 Methods

2.1 Overall study design

This is a non-interventional study based on the analysis of

real-world data contained in cBioPortal and using web-based

analytical tools. The study was carried out in the Cancer

Immunomonitoring and Immuno-Mediated Pathologies

Support Unit of the Clinical Immunology Department, in

close collaboration with the Oncology Department, San Carlos

Clinical Hospital (HCSC), in Madrid, Spain.
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2.2 Data collection and processing

2.2.1 Gene alterations associated with CVID
A systematic search of electronic databases was conducted to

identify gene alterations recurrently associated with CVID

following the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) guide l ines

(Supplementary Figure 1). English-language articles published

in peer-reviewed journals and conference abstracts from 1979 to

30 August 2021 were identified in Medline, EMBASE, Cochrane

Central Register of Controlled Trials (CENTRAL), and

Cochrane Database of Systematic Reviews, using the terms

“Common Variable” and “Gene” and excluding preclinical

studies. Two investigators (KG-H, JF-A) extracted data from

the included studies and a third investigator (SS-R) decided on

unclear or conflicting data. The titles and abstracts were

evaluated, and potentially relevant publications were retrieved

in full. Overall, 3,420 articles were obtained from the database

and manual searches, of which 311 articles were reviewed in full.

A total of 50 of the most frequent genes associated with CVID

with the main described pathogenic variants were selected for

analysis (Supplementary Table 1).

2.2.2 Datasets, gene ontology, and
functional analysis

We used data contained at cBioPortal (https://www.

cbioportal.org, accessed in September 2021) from six studies in

NHL (n = 1,309) to explore the distribution of genes with

somatic variants occurring in the main CVID-associated

germline genes associated with the pathogenic variant set. The

pathogenic variants related to CVID and CVID phenotype

found in the altered genes in NHL were verified through

bibliographic sources as well as consulted in the ClinVar-

NCBI tool (https : / /www.ncbi .nlm.nih.gov/c l invar/ )

(Supplementary Table 2). Genes such as KMT2C or the MSH

family, despite not presenting clear CVID-associated

pathological variables described in the literature, have been

depicted as possibly harmful with a high frequency of

heterozygotes compared with controls. These genes play an

essential role in the associated CVID pathophysiology, such as

somatic hypermutation or germline variation in cancer-

susceptibility genes (51–54), for which they were considered in

the analysis. Data from the VAF of the somatic pathogenic

variants analyzed could not be fully retrieved. The biological

functions of each gene were obtained using the 2018

Molecular_function Gene Ontology Terms through the

publicly available EnrichR online platform (https://maayanlab.

cloud/Enrichr/, accessed on 8 September 2021).

We used the online tool STRING (http://www.string-db.org)

to construct interactome maps of genes of interest. The closer

the local clustering coefficient is to 1, the more likely it is for the

network to form clusters. The PPI enrichment p-value indicates
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statistical significance. Proteins are considered hubs when they

have more interactions than the average. Co-occurrence analysis

for gene alterations was evaluated using the cBioPortal online

platform (http://www.cbioportal.org, accessed on 8 September

2021) (Supplementary Table 3).

This tool calculates the odds ratio (OR) for each pair of

query genes, indicating the likelihood that the alterations for the

two genes are co-occurrent in the selected cases, by the

application of a Fisher’s exact test (statistical significance p <

0.05). Data analysis was performed using R (version 1.3.1093).

The interaction network was mapped as default by the STRING

database analysis.
3 Results

3.1 Study population

The six NHL datasets (Table 1) (45, 56–60) combined

accounted for a total of 1,309 samples. The distribution

according to sex was 50.8% men and 40.4% women (8.8% not

specified). The mean age ranged from 65 to 70 years old,

distributed from a minimum of 3 to a maximum of 93 years

of age. The age of diagnosis was not available for analysis.
3.2 CVID-associated gene set in NHL

The prevalence of alterations in the main 50 CVID-

associated genes and their genetic variants was investigated in

the NHL mutation datasets. A total of 323 from 1,309 samples

(25%) harbored at least one alteration, ranging from 21.38% to

62.50% according to the series. The main genetic alterations

associated with CVID found in the different studies and the

proportions and numbers of altered samples are shown

in Table 2.

The prevalence of gene alterations in NHL was compared

with that reported as genetic alterations in CVID (50, 61).

Approximately up to 25% of patients with CVID carry a

germline alteration in non-consanguineous populations (31).

However, the prevalence of specific gene alterations remains

largely unknown, particularly those categorized as rare
Frontiers in Immunology 04
functional variants and those which independently do not

exhibit a causal relationship (Table 3) (21, 61, 62). The most

prevalent gene alterations in CVID were PIK3CD (2.6%), LRBA

(2.6%), andNFKB2 (0.5%), while the most frequent in NHL were

PIK3CD (6%), KMT2C (5%), and STAT3 (4%). Supplementary

Table 2 shows the genes with pathogenic variables associated

with the CVID-like phenotype and their frequency found in

NHL samples.
3.3 Characterization of the functional
networks, gene ontology, and biological
processes of the genes altered in both
NHL and CVID

In order to unveil the putative functional connection

between the most prevalent gene alterations in both NHL

and CVID, we interrogated the STRING database and

generated protein–protein interaction maps adjusted by the

type and strength of the interaction (Figure 1). A confidence

threshold of 0.7 was set between the nodes (PPI enrichment p-

value: <1.0e−16), with 14 nodes lacking predicted interactions.

Notably, PIK3R1 appeared as a central node connecting the

PI3K pathway and downstream mediators with different

immune mediators such as STAT3, NFKB2, CTLA4, or CD19.

To further investigate the functional characterization of the

set of CVID-associated genes, we interrogated the EnrichR

database and found that inflammation, immune surveillance,

and defective DNA repair appeared as significantly enriched

biological processes (Table 4), with recurrent functions in

cytokine and TNF signaling.
3.4 Co-occurrence of alterations in
CVID-associated genes in NHL

We next analyzed the co-occurrence of genetic alterations in

the CVID-associated gene set. Sixteen pairs presented statistical

significance co-occurrence (Table 5). Regarding the

relationships organized in biological pathways and processes

related to CVID-associated genes expressed in NHL, the

proteins encoded by 6 of the 16 significant pairs were found to
TABLE 1 NHL datasets available in cBioPortal (www.cbioportal.org; accessed in September 2021).

NHL-associated studies Reference CVID genes altered per study

Diffuse large B-cell lymphoma DFCI, Nat Med 2018 (55) 32.85% (44/135 cases)

Diffuse large B-cell lymphoma Broad, PNAS 2012 (56) 29.31% (17/58 cases)

Diffuse large B-cell lymphoma Duke, Cell 2017 (45) 21.38% (214/1001 cases)

Diffuse large B-cell lymphoma TCGA, PanCancer Atlas 2018 (57) 62.5% (30/48 cases)

Diffuse large B-cell lymphoma BCGSC, Blood 2013 (58) 26.42% (14/53 cases)

Non-Hodgkin’s lymphoma BCGSC, Nature 2011 (59) 28.57% (4/14 cases)
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contribute jointly to a shared function. In contrast, 10 of the 16

pairs that represented independent processes did not associate

with common pathways. No mutual exclusivity was found in

the analysis.
4 Discussion

Unraveling the molecular interplay underlying CVID is a

difficult task due to the lack of consistent diagnostic protocols and

the need of high clinical suspicion. Patients are often studied late

after recurrent infectious episodes or associated complications

including malignancy. In particular, NHL is the most prevalent

malignancy in CVID patients, and its concurrence may lead to

worse outcomes through either poor treatment responses and

recurrent infectious complications (3, 19, 22, 24, 63). Therefore,

understanding how CVID and NHL are interrelated is an unmet

need that requires preliminary data to substantiate future

prospective endeavors.

Similar to other malignancies, NHL B cells coordinate

signaling pathways in the tumor microenvironment,

promoting tumorigenesis and generating a state of

immunosuppression that favors the tumor growth and

progression (26, 64). B cells are the main players in both NHL

and CVID, and unlike solid tumors, an alteration in both

somatic and germline might condition a similar response at

the transcriptional level in the shared signaling pathways,

genera t ing , in th i s s e t t ing , a somat i c p rofi l e o f

immunodeficiency in NHL similar to that derived from the

germline of CVID (65–67). This phenomenon may be a

reflection of specific somatic pathogenic variants in the

aberrant clonal B cells responsible for orchestrating key

processes shared between both pathologies, such as defects in

maturation and differentiation of the B lymphocyte, T–B co-

stimulation, immunoglobulin gene recombination (VDJ), class-

switch recombination, and somatic hypermutation (45, 52, 58,

68–71).

Pathway enrichment studies have determined that the

molecular mechanisms involved in both Hodgkin’s and non-

Hodgkin’s lymphoma were more enriched in those pathways

associated with immune response. The vital role of pathogenesis

and immune escape mechanisms and the development of an

immunosuppressive tumor microenvironment have been

highlighted by these analyses (64, 68, 72, 73). By way of

illustration, the paths associated with the members of the Bcl-

2 family, which are proteins that play an essential role in

regulating cell apoptosis, survival, and proliferation, are highly

expressed in most NHL (74). BCL2 is an antiapoptotic factor,

and its deregulation in NHL is associated with the constitutive

activation of NF-kB, which in turn influences the therapeutic

response and prognosis of these patients (75, 76). On the other

hand, overexpression of BCL-xL has been reported in 80% of all
TABLE 2 Main CVID-associated genes and their alteration in the NHL
datasets.

Gene Prevalence (%)
of samples

studied (somatic
mutation)

No. of
samples
altered

No. of
patients

w/
exclusive
mutation

No. of
patients
w/ ≥ 2

associated
mutations

PIK3CD 6 72 49 23

KMT2C 5 64 45 19

STAT3 4 57 32 25

MSH2 3 40 31 9

NFKB2 2.4 31 18 13

PTEN 1.8 24 22 2

PIK3R1 1.3 17 10 7

LRBA 0.9 12 6 6

MSH5 0.8 10 7 3

CLEC16A 0.5 7 2 5

PLCG2 0.5 6 1 5

IRF2BP2 0.5 6 0 6

RAC2 0.5 6 0 6

ATP6AP1 0.5 6 1 5

CR2 0.4 5 2 3

TNFRSF4 0.4 5 0 5

DOCK8 0.3 4 1 3

PRKCD 0.3 4 2 2

TNFRSF1A 0.3 4 3 1

CD19 0.2 3 1 2

IKZF1 0.2 3 1 2

VAV1 0.2 3 3 0

NOD2 0.2 3 2 1

PMS2 0.2 3 0 3

TNFRSF13C 0.2 3 2 1

SH3KBP1 0.2 3 2 1

ARHGEF1 0.2 3 0 3

CD84 0.2 2 0 2

IL10RA 0.2 2 1 1

MS4A1 0.2 2 0 2

NFKB1 0.2 2 1 1

TNFRSF11A 0.2 2 1 1

TNFSF11 0.2 2 1 1

MOGS 0.2 2 0 2

ACOT4 0.1 1 0 1

CTLA4 0.1 1 1 0

FCGR2A 0.1 1 0 1

OR10X1 0.1 1 0 1

SLC25A5 0.1 1 0 1

STXBP2 0.1 1 1 0

TRNT1 0.1 1 0 1

TNFRSF13B 0.1 1 0 1

TNFSF13 0.1 1 0 1

TNFSF12 0.1 1 0 1
The percentage, number of altered samples (≥1), and number of patients/mutations are
shown.
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NHL, relating it to inhibition of cell death and, therefore, the

development of malignancy (74).

Bcl‐2 and Bcl‐xl share functional homology, and their

transcription is intimately regulated by NF‐kB activity (35, 77,

78). NF-kB1 loss-of-function (LoF) has been associated with an

impaired function of the Bcl-2 protein in memory B cells of

CVID patients, which would predispose to apoptosis and to

defective differentiation and maturation of immunoglobulin-

producing B lymphocytes (a typical feature of CVID) (36, 77).

The latter mechanism would be contrary to what occurs in NHL,

where apoptosis would be suppressed contributing to cell

proliferation and malignancy (74, 75). Some series describe

NF-kB as the most common monogenic cause of CVID in

Europeans (34, 36). However, studies such as those by Li et al.

denote that NFKB1 variants are common in healthy individuals

and cannot necessarily be considered causal CVID (35).

Several signals that lead to activation of the NF-kB pathway

to regulate B-cell survival in mature B cells highlighted the

ligands BAFF (B-cell-activating factor of the tumor necrosis

factor family) and APRIL (a proliferating inducing ligand), both

joining to TACI (transmembrane activator and CAML

interaction) (79). The overexpression of BAFF, APRIL, or their

receptor TACI is noted in hematological malignancies such as B-

cell NHL (80, 81). This would contribute to the survival and

prognosis of tumor cells (37, 81, 82). TACI/APRIL function is

a lso related to the class switch recombinat ion of
Frontiers in Immunology 06
immunoglobulins (38, 39). Several variants have been

considered CVID causative or modifier (83, 84), depending on

the occurrence of similar variants with uncertain significance in

the general population (84–87).

Since the pathways associated with tumorigenesis (such as

cell death, cell proliferation, and response to stress) are shared by

a large number of genes with very different or even opposite roles

(69, 88), it is complicated, if not impossible, to draw a perfect line

that separates the immunological pathways involved in the

development of lymphoma from those of underlying

immunodeficiency. The ways involved could be similar but

up- or downregulated by the penetrance and expressivity

of the differential genes (89–94). Our study provides first

evidence of the common genomic landscape of CVID and

NHL. By means of an extensive systematic search followed by

an in-silico analysis of publicly available genomic repositories,

we have identified a set of genes recurrently altered in both

diseases and therefore suggestive of common functional features

of immunodeficiency. Among the CVID-associated genetic

variants, non-synonymous mutations in PIK3CD, KMT2C, and

STAT3 were the most prevalent in NHL. Functional enrichment

analysis revealed a robust centralizing role for PIK3R1 and

downstream effectors of the PI3K pathway.

PIK3CD exerts a key role in the activation of signaling

cascades involved in cell proliferation and survival (95).

Likewise, it mediates immune responses associated with the
TABLE 3 Frequencies of the main CVID-associated gene alterations in the NHL and CVID populations.

Gene
symbol

Prevalence of the samples
studied (somatic mutation)

CVID prevalence
(germline mutation)

Gene
symbol

Prevalence of the samples
studied (somatic mutation)

CVID prevalence
(germline mutation)

PIK3CD 6 2.674 NOD2 0.2 Unknown prevalence

KMT2C 5 Unknown prevalence PMS2 0.2 Unknown prevalence

STAT3 4 Unknown prevalence TNFRSF13C 0.2 0.10

MSH2 3 Unknown prevalence SH3KBP1 0.2 Unknown prevalence

NFKB2 2.4 0.535 ARHGEF1 0.2 Unknown prevalence

PTEN 1.8 Unknown prevalence CD84 0.2 Unknown prevalence

PIK3R1 1.3 0.481 IL10RA 0.2 Unknown prevalence

LRBA 0.9 2.674 MS4A1 0.2 0.053

MSH5 0.8 0.4 NFKB1 0.2 0.16

CLEC16A 0.5 Unknown prevalence TNFRSF11A 0.2 Unknown prevalence

PLCG2 0.5 0.214 TNFSF11 0.2 Unknown prevalence

IRF2BP2 0.5 0.053 MOGS 0.2 Unknown prevalence

RAC2 0.5 0.053 ACOT4 0.1 Unknown prevalence

ATP6AP1 0.5 Unknown prevalence CTLA4 0.1 0.642

CR2 0.4 0.107 FCGR2A 0.1 Unknown prevalence

TNFRSF4 0.4 Unknown prevalence OR10X1 0.1 Unknown prevalence

DOCK8 0.3 Unknown prevalence SLC25A5 0.1 Unknown prevalence

PRKCD 0.3 0.214 STXBP2 0.1 Unknown prevalence

TNFRSF1A 0.3 Unknown prevalence TRNT1 0.1 Unknown prevalence

CD19 0.2 0.374 TNFRSF13B 0.1 0.07

IKZF1 0.2 0.321 TNFSF13 0.1 Unknown prevalence

VAV1 0.2 0.053 TNFSF12 0.1 0.053
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development, migration, and function of B lymphocytes and

TCR signaling at the immune synapse and participates in the

activation of the NK cell and in neutrophil chemotaxis, as well as

in the production of cytokines in response to TLR4 and TLR9,

necessary for antigenic presentation (96).

The second candidate KMT2C represents a catalytic subunit

of the MLL2/3 coactivator complex, specific nuclear receptors

for epigenetic transcriptional activation (54, 97). Pathogenic

variants in KMT2C have been linked to leukemogenesis and

disorders of cell development (98). So far, KMT2C does not

present clear CVID-associated pathological variables described

in the literature; nevertheless, this gene has been expressed as

possibly harmful with a high frequency of heterozygotes

compared with controls, where their function plays an

essential role in the associated CVID pathophysiology such as

germline variation in cancer susceptibility (49, 99).

Thirdly, an interesting finding was the prevalence of the

STAT-3 gene at 4% in NHL, but unknown for CVID (63, 100).

STAT-3 is a signal transducer and activator of transcription that

mediates cellular responses associated with interleukins and

growth factors (101). Among its multiple functions, STAT-3

intervenes in the cell cycle by inducing the expression of critical

genes for the progression from G1 to S phase, is involved in the

response to activated FGFR1-4 and anti-inflammatory response,

and modulates differentiation toward Th17 or regulatory (TReg)

cells through IL-6 signaling cascade and on the promoters of

several acute-phase protein genes. In a general framework,

hematological malignancies associated with STAT-3 alteration
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are linked to gain of function (GOF) (102). STAT genes are

relevant for lymphocyte survival and tumorigenesis (100–104).

STAT-3 mutations are rare in B-cell NHL. However, STAT-3

GOF mutations have been associated with increased STAT-3

phosphorylation and transcriptional activity, which may foster

malignant cell survival and proliferation (101). Our study

detected nine pathogenic variants associated with the GOF of

STAT-3 that have been described to be associated with an

immunodeficiency phenotype (105, 106). In the same way,

other authors have related GOF mutations in STAT-3 with

several immunodeficiency phenotypes, considering it as a

candidate causative gene of the CVID phenotype (63, 100).

Of note, the loss-of-function mutations in PIK3R1 and PTEN

lead to a similar clinical phenotype to that of GOF mutations in

the PIK3CD gene, characterized by decreased B lymphocytes and

naïve T lymphocytes, lymphoproliferation, and autoimmunity

(107, 108). These genes are within our top 7 CVID-expressed

genetic variants in NHL mutations and have been previously

associated with lymphoma predisposition (40, 109). Pathogenic

variants in the PTEN gene are a known substrate of the Cowden

syndrome. Although atypical, its presentation as a CVID

phenotype has been reported (110, 111). On the other hand,

patients with pathogenic variants that activate PI3KR1 signaling

have been associated with antibody deficiency partly due to the

altered function of p85a (112). Low B-lymphocyte counts can also

result from severely impaired B-cell development and

differentiation (107). The degree of involvement is associated

with the type of inheritance, the more profound being in
FIGURE 1

Protein–protein interaction map displaying the significant functional network integrated by the selected genes involved in NHL and CVID.
Known interactions are displayed in blue and pink lines. Predictive interactions include the following: green line, gene neighborhood; red line,
gene fusions; blue line, gene co-occurrence; yellow line, text mining; black line, co-expression; and gray line, protein homology. Connections
are filtered by the highest confidence (0.7). PPI enrichment p-value: < 1.0e−16.
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homozygous patients (agammaglobulinemia) and variable

behavior (hypogammaglobulinemia) in patients with

heterozygous mutations at the PIK3R1 splice site (107). One

patient with heterozygous PIK3R1 mutation presented the

CVID phenotype, and this gene is considered causative of

CVID phenotype immunodeficiency (63, 113, 114).

Patients with activated PI3Kdelta syndrome (APDS) have an

increased risk of both HL and NHL. The incidence of lymphoma

is as high as 13%–30% (115, 116), and a vast majority is related

to EBV infection (117, 118). Although the immune escape

strategies in lymphoma may vary between individuals (119),

the most significant known stimuli so far related to the

pathogenesis of B-cell lymphoma in APDS are related to

the upregulation of the mTOR signaling pathway with the

downstream effector of PI3K/AKT, increased production of

transcription factors involved in the process of apoptosis,

affecting the regulation of the cell cycle conducting to

uncontrolled cell survival and malignant transformation (120,

121). For many years, APDS was defined as a CVID-like

syndrome, especially due to its clinical similarity to that of

monogenic CVID forms (107, 115, 120). However, APDS

patients are more predisposed to viral infections than CVID,

highlighting EBV infection (117, 122). The clinical features of

cellular immunodeficiency play an essential role in APDS, such

as the increased senescent T lymphocytes with shortened

telomeres, especially of APDS type I (APDS1) (96, 123). The

differentiation of PI3K signaling defect between both pathologies

is crucial.

Our aim was to investigate the plausible common genomic

grounds between CVID phenotype immunodeficiency in NHL.

Therefore, an exploratory analysis of germline CVID-related

gene alterations was performed in NHL tumor samples. A key
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immune system feature is the recombination of the (VDJ) gene

segment in the generation of T- and B-cell antigen receptor

(TCR and BCR) repertoire, as well as SHM of B cells in the

generation of immunoglobulin isotypes (124). These processes

are orchestrated and tightly regulated by the expression of

specific genes, as well as their resulting proteins, which also

share a function within the DNA and transcription repair

mechanisms (70, 125), the alteration of the latter being widely

known as cancer-predisposing factors (10, 71, 126–128).

As the availability of next-generation sequencing data

increases, there is more evidence of the interrelationship of

somatic and germline genetic conditions associated with

immunodeficiency and cancer (46). Somatic pathogenic

variants can reflect or be a consequence of alterations in

germinal variants (45, 47, 65). Several studies have recently

explored how germline variants can act as an oncogenic

modifier, thus determining complementary somatic pathogenic

variants necessary for the development of malignancy. Similarly,

germline variants not directly associated with oncogenesis can

behave as co-oncogenes through interactions with existing

somatic pathogenic variants, thus enhancing tumorigenesis

(47, 65). This phenomenon suggests that the inherited

germline variants would govern where and how malignancy

will develop. Germline variants of somatic alteration genes in

NHL may themselves predispose to NHL in patients with CVID

(3, 45, 113, 129). Since the clinical phenotype caused by germline

variants can vary depending on the genetic alterations and the

patient, the combination of variants could be pathogenic and

lead to an increased susceptibility to developing NHL (11, 19, 58,

65, 69, 129).

The pioneer PanCanAtlas Germline Working Group has

investigated the pathogenic germline variants in more than
TABLE 4 Relationships organized in biological pathways and processes mainly related to CVID-associated genes expressed in NHL (sorted by
p-value; p < 0.05).

Associated pathways of CVID genes Related genes

Antigen activates B-cell receptor (BCR) leading to the generation of second messengers CD19, PLCG2, PIK3CD, PIK3R1

Role of phospholipids in phagocytosis PLCG2, PIK3R1, PRKCD, FCGR2A

PKMTs methylate histone lysine NFKB1, NFKB2, KMT2C

Dex/H-box helicases activate type I IFN and inflammatory cytokine production NFKB1, NFKB2

RIP-mediated NF-kB activation via ZBP1 NFKB1, NFKB2

TAK1 activates NF-kB by phosphorylation and activation of the IKK complex NOD2, NFKB1, NFKB2

TRAF6 mediated NF-kB activation NFKB1, NFKB2

Mismatch repair (MMR) directed by MSH2:MSH3 (Mutsbeta) PMS2, MSH2

Interleukin receptor SHC signaling PIK3CD, PIK3R1

TP53 regulates the transcription of DNA repair genes PMS2, MSH2

Interleukin-1 processing NFKB1, NFKB2

Interleukin-10 signaling IL10RA, STAT3, TNFRSF1A

IkBA variant leads to EDA-ID NFKB1, NFKB2

TNF receptor superfamily (TNFSF) members mediating the non-canonical NF-kB pathway TNFSF11, TNFRSF11A, TNFRSF13C

TNFs bind their physiological receptors TNFSF11, TNFSF13, TNFRSF13B, TNFRSF4, TNFRSF1A

TNFR2 non-canonical NF-kB pathway TNFSF11, TNFSF13, TNFRSF13B, TNFRSF11A, TNFRSF13C, TNFRSF4
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10,000 adults within 33 types of cancer, including diffuse large B-

cell lymphoma. Although the results are preliminary and the

data are not yet public, the results are promising to enlighten the

basis of germline predisposition variants and their role in cancer

(130). Seidel et al. performed the analysis of germline variants in

childhood cancers, suggesting that the development of most

cancers seemed to be more related to a cell-intrinsic defect of the

immune system in the detection, control, and elimination of

cancer cells, rather than being directly caused by extrinsic

associated factors (131). In a recent study, Hauck et al.

explained how the germline genetic variants associated with

IEI behave as oncogenes when they arise as somatic pathogenic

variants and cause specific cancerous entities, mainly CARD11,

IKZF1, GATA2, PMS2, MSH6, etc. alterations (46).

In the work of Lincoln et al., 34% of the patients (207/608)

presented GPV and second neoplasms and 15% (32/207) of

them carried GPV associated with specific recommendations for

detection or risk reduction for their subsequent cancers (132).

Given that CVID patients are at theoretical high risk for

developing second neoplasms (4, 6, 10), screening of CVID-

associated genes at malignancy diagnosis might modify current

protocols in order to improve follow-up and prognosis.

An interesting study by Liu et al. proposed 172 possible

CVID candidate genes functionally similar to known CVID

genes based on their interactions and biological distance. Liu

et al. studied their differential expression finding upregulation

and downregulation in patients compared to controls (133). This

suggests that CVID could behave as a mixed model with the

presence of punctual alterations due to cumulative effects of

polygenic determinants, gene–gene interactions, and/or

regulatory variation in non-coding regions detrimental to a

particular immune pathway rather than as an effect derived
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from a specific point of mutation. This overexpression could be

fundamental as a complementary co-oncogene factor in the

development of malignancy in CVID patients (134, 135).

Our data show that up to one-fifth of NHL patients had

similar CVID-related genetic pathogenic variants in the somatic

line, some with a frequency up to 6%, as is the case of PIK3CD.

Several of these genes were significantly associated with different

important pathways of the immune response, inflammation, and

cell repair (45, 50, 56, 98, 136). CVID-associated genes expressed

in NHL patients are also involved in DNA repair, genome

integrity, immunosurveillance, and predisposition to cancer (7,

18, 113, 137). Consequently, these genes could also be described

as NHL-associated GPV, as well as with other malignancies (136,

138). Interestingly, our data help to identify and prioritize those

pleiotropic genes that could simultaneously affect several

relevant immunological pathways. Two of the clearest

examples in our study were the NFKB1 and NFKB2 genes that

were found to be involved in pathways such as PKMT

methylation of histone lysines, DEx/H-box helicase activation

of type I IFN and inflammatory cytokine production, RIP-

mediated NF-kB activation via ZBP1, and interleukin-1

processing, among others. Other examples are MLH1, MSH2,

MSH6, and PMS2, genes involved in DNA damage/repair that

are highly involved in immunodeficiency, NHL, constitutional

mismatch repair deficiency (CMMRD), and Lynch syndrome

and also associated with colorectal and endometrial cancer (129,

139, 140).

Another intriguing result of our study is the relationships

among organized biological pathways and CVID-associated

genetic variant processes expressed as somatic pathogenic

variants in NHL, mainly the core role that PIK3R1 seems to

have as an interconnector of altered signaling pathways
TABLE 5 Co-occurrence of mutations in the analyzed population calculated by the odds ratio method in cBioPortal.

Gene A Gene B Neither A not B B not A Both Log2 odds ratio p-value q-value Tendency Associations with
proteins encoded

DOCK8 PMS2 1,297 2 1 2 >3 <0.001 0.013 Co-occurrence Independent roles

CR2 PMS2 1,296 3 1 2 >3 <0.001 0.013 Co-occurrence Independent roles

CR2 PTEN 1,278 2 19 3 >3 <0.001 0.013 Co-occurrence Independent roles

PMS2 PLCG2 1,295 1 4 2 >3 <0.001 0.013 Co-occurrence Independent roles

CLEC16A SH3KBP1 1,295 4 1 2 >3 <0.001 0.013 Co-occurrence Independent roles

CR2 DOCK8 1,295 3 2 2 >3 <0.001 0.014 Co-occurrence Independent roles

DOCK8 PLCG2 1,294 2 4 2 >3 <0.001 0.017 Co-occurrence Shared roles

MSH5 PMS2 1,291 8 1 2 >3 <0.001 0.020 Co-occurrence Shared roles

CR2 PLCG2 1,293 3 4 2 >3 <0.001 0.020 Co-occurrence Shared roles

LRBA SH3KBP1 1,289 10 1 2 >3 <0.001 0.028 Co-occurrence Independent roles

DOCK8 MSH5 1,290 2 8 2 >3 <0.001 0.031 Co-occurrence Independent roles

CR2 MSH5 1,289 3 8 2 >3 <0.001 0.044 Co-occurrence Independent roles

FCGR2A OR10X1 1,301 0 0 1 >3 <0.001 0.044 Co-occurrence Independent roles

TNFRSF13B TNFSF13 1,301 0 0 1 >3 <0.001 0.044 Co-occurrence Shared roles

TNFRSF13B TNFSF12 1,301 0 0 1 >3 <0.001 0.044 Co-occurrence Shared roles

TNFSF13 TNFSF12 1,301 0 0 1 >3 <0.001 0.044 Co-occurrence Shared roles
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(Supplementary Figure 2). PIK3R1 is the seventh in the gene

ranking for NHL and CVID, with a prevalence of 1.3% in NHL

and 0.48% in CVID (61). However, according to the predicted

protein–protein interaction network, it may centralize relevant

immune signaling pathways associated with immunodeficiency

and malignancy (107, 112, 141). These influential hub genes

interact with other nodes and thus exert a role of checkpoint

alterations at the heart of both disorders (107, 112, 141).

Patients with APDS have a greater predisposition to B-cell

lymphoma, for which the PIK3R1 involvement may be

considered a risk factor for carcinogenesis (107). Moreover,

the spectrum of malignancy could be broader, since the

involvement of p85a can also affect the function of p110a,
p110b, and PTEN (141, 142), leading to hyperactivation of PI3K

signaling in other cell types with a greater predisposition to

malignancy (107, 141, 142).

In CVID published cohorts, the estimated prevalence of the

direct mutation in PIK3R1 is 0.481%, with its associated

phenotype being PIK3CD which is the most frequent

pathogenic variant in both CVID and NHL with the

prevalence of 2.674% and 6.0%, respectively (61). In the same

way, as previously mentioned, PIK3R1 seems to be the common

link among CVID-related genes in NHL, further representing a

frequently associated gene alteration in many tumors (141).

PIK3R1 is altered in 3.62% of solid cancer patients and 1.52%

of lymphoma patients (112, 143). In our match with NHL, the

prevalence of PIK3R1 was 1.3%, slightly lower than that

described in previous studies (112, 143). Our results point to

PIK3R1 as a hotspot in the relationship between CVID and

NHL, not just directly associated with its mutation, but rather

with a defect in the common signaling pathways for which it is

crucial (63, 96, 107, 113, 114, 141). This hotspot would not only

condition the development of malignancy but also influence the

immunodeficiency phenotype linked with CVID. These findings

encourage further investigation on the pathogenic status and

role of PIK3R1 in CVID patients.

Our study is based on an approach to better understand the

genetic link associated with signaling pathways shared between

both pathologies (NHL and CVID) in a population where

malignancy is a leading cause of mortality. Our preliminary

data shown here align with the hypothesis that both conditions

are indeed genetically bidirectionally related, and even if all the

variants found were exclusively somatic variants within NHL

cells, they could induce the associated immunodeficiency. It is a

shame not to be able to retrieve the VAF from the somatic

pathogenic variants analyzed. These data would have

implications and relevance in understanding the behavior of

somatic variants in malignancy as a reflect ion of

immunodeficiency and vice versa.

We look forward to validating our results in independent

large cohorts of immunodeficiency and cancer, as well as the

detailed description of pathogenic germline variants in tumors.

More evidence is required such as studies of long cohorts of
Frontiers in Immunology 10
immunodeficiency and cancer, as well as the detailed description

of pathogenic germline variants in tumors.

Nevertheless, the continuous progress in genetic sequencing

and in the availability of cancer genomic datasets opens new

avenues to deepen our understanding of the human immune

system and its association with cancer. Our results suggest the

putative gene alterations potentially connecting CVID and NHL.

Whether these represent a common substrate of CVID

phenotype immunodeficiency or rather a risk predisposition

for NHL of CVID patients remains unknown and requires

prospective studies. These studies, however, may not need to

rely on extensive whole-exome sequencing but on customized

targeted panels or dPCR approaches leveraging our data, thus

facilitating the generation of new evidence in cohorts with a

limited number of patients. Beyond conventional cohort studies,

the creation of large-scale repositories with comprehensive

clinical and immunological annotation (i.e., flow cytometry,

immunohistochemistry, RNA-seq immunological signatures)

would be a critical step in bridging the elusive gap between

immunodeficiency and cancer.
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Ibanez de Caceres I, López Granados E. Defective bcl-2 expression in memory b
cells from common variable immunodeficiency patients. Clin Exp Immunol (2021)
203:341–50. doi: 10.1111/cei.13522

78. Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G. NF-kappaB-Mediated up-
regulation of bcl-X and bfl-1/A1 is required for CD40 survival signaling in b
lymphocytes. Proc Natl Acad Sci U.S.A. (1999) 96:9136–41. doi: 10.1073/
pnas.96.16.9136

79. Chiu A, Xu W, He B, Dillon SR, Gross JA, Sievers E, et al. Hodgkin
Lymphoma cells express TACI and BCMA receptors and generate survival and
proliferation signals in response to BAFF and APRIL. Blood (2007) 109:729–39.
doi: 10.1182/blood-2006-04-015958

80. Briones J, Timmerman JM, Hilbert DM, Levy R. BLyS and BLyS receptor
expression in non-hodgkin’s lymphoma. Exp Hematol (2002) 30:135–41.
doi: 10.1016/s0301-472x(01)00774-3

81. Schwaller J, Schneider P, Mhawech-Fauceglia P, McKee T, Myit S, Matthes
T, et al. Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans
correlates with human b-cell lymphoma aggressiveness. Blood (2007) 109:331–8.
doi: 10.1182/blood-2006-02-001800

82. Moreaux J, Veyrune J-L, De Vos J, Klein B. APRIL is overexpressed in
cancer: Link with tumor progression. BMC Cancer (2009) 9:83. doi: 10.1186/1471-
2407-9-83

83. Salzer U, Bacchelli C, Buckridge S, Pan-Hammarström Q, Jennings S,
Lougaris V, et al. Relevance of biallelic versus monoallelic TNFRSF13B
mutations in distinguishing disease-causing from risk-increasing TNFRSF13B
variants in antibody deficiency syndromes. Blood (2009) 113:1967–76.
doi: 10.1182/blood-2008-02-141937

84. Pan-Hammarström Q, Salzer U, Du L, Björkander J, Cunningham-Rundles
C, Nelson DL, et al. Reexamining the role of TACI coding variants in common
variable immunodeficiency and selective IgA deficiency. Nat Genet (2007) 39:429–
30. doi: 10.1038/ng0407-429

85. Poodt AEJ, Driessen GJA, de Klein A, van Dongen JJM, van der Burg M, de
Vries E. TACI mutations and disease susceptibility in patients with common
variable immunodeficiency. Clin Exp Immunol (2009) 156:35–9. doi: 10.1111/
j.1365-2249.2008.03863.x
Frontiers in Immunology 13
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GLOSSARY

APDS activated PI3Kdelta syndrome
Frontiers in Immunol
APRIL a proliferating inducing ligand
ATP6AP1 ATPase H+ Transporting
Accessory Protein 1
BAFF B-cell-activating factor of the tumor necrosis
factor family
CD19 cluster of differentiation 19
CD20 cluster of differentiation 20
CD21 cluster of differentiation 21
CD81 cluster of differentiation 81
CENTRAL Cochrane Central Register of
Controlled Trials
CMMRD constitutional mismatch repair deficiency
CVID common variable immunodeficiency
DOCK8 dedicator of cytokinesis 8
DLBCL diffuse large B-cell lymphoma
EBV Epstein–Barr virus
GSEA gene set enrichment analysis
GPV germline pathogenic variants
HPV human papillomavirus
ICOS inducible T-cell costimulatory
IEI inborn errors of immunity
IKZF1 IKAROS family zinc finger 1
IRF2BP2 interferon regulatory factor 2-binding
protein 2
ogy 15
LRBA lipopolysaccharide (LPS)-responsive and
beige-like anchor protein
MOGS mannosyl-oligosaccharide glucosidase
NFKB1 nuclear factor kappa B subunit 1
NFKB2 nuclear factor kappa B subunit 2
NGS next-generation sequencing
NHL non-Hodgkin’s lymphoma
OR odds ratio
PID primary immunodeficiency
PIK3CD phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit delta
PIK3R1 phosphoinositide-3-kinase
regulatory subunit 1
PRISMA Preferred Reporting Items for Systematic
Reviews and Meta-Analyses
PRKCD protein kinase C delta
PTEN phosphatase and tensin homolog
SHM somatic hypermutation
STAT3 signal transducer and activator
of transcription 3
STXBP2 syntaxin-binding protein 2
TACI transmembrane activator and
CAML interaction
TCGA The Cancer Genome Atlas
TRNT1 TRNA nucleotidyl transferase 1
TNFSF12 TNF-related weak inducer of apoptosis
(TWEAK), TNF superfamily member 12
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