
ORIGINAL RESEARCH
published: 11 June 2020

doi: 10.3389/fimmu.2020.01168

Frontiers in Immunology | www.frontiersin.org 1 June 2020 | Volume 11 | Article 1168

Edited by:

Mats Bemark,

University of Gothenburg, Sweden

Reviewed by:

Paul King,

Monash University, Australia

Paola Marchisio,

University of Milan, Italy

*Correspondence:

Michael E. Pichichero

michael.pichichero@

rochesterregional.org

Gordon Broderick

gordon.broderick@

rochesterregional.org

Specialty section:

This article was submitted to

Mucosal Immunity,

a section of the journal

Frontiers in Immunology

Received: 04 November 2019

Accepted: 12 May 2020

Published: 11 June 2020

Citation:

Morris MC, Chapman TJ,

Pichichero ME and Broderick G (2020)

Immune Network Modeling Predicts

Specific Nasopharyngeal and

Peripheral Immune Dysregulation in

Otitis-Prone Children.

Front. Immunol. 11:1168.

doi: 10.3389/fimmu.2020.01168

Immune Network Modeling Predicts
Specific Nasopharyngeal and
Peripheral Immune Dysregulation in
Otitis-Prone Children
Matthew C. Morris 1, Timothy J. Chapman 2, Michael E. Pichichero 2* and

Gordon Broderick 1,3*

1Center for Clinical Systems Biology, Research Institute, Rochester General Hospital, Rochester, NY, United States, 2Center

for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, United States,
3Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States

Acute otitis media (AOM) pathogenesis involves nasopharyngeal colonization by potential

otopathogens and a viral co-infection. Stringently-defined otitis prone (sOP) children

show characteristic patterns of immune dysfunction. We hypothesized that otitis

proneness is largely a result of altered signaling between immune components that

are otherwise competent, resulting in increased susceptibility to infection by bacterial

otopathogens. To test this, we constructed a regulatory immune network model linking

immune cells and signaling elements known to be involved in AOM and/or dysregulated

in sOP children. The alignment of immune response mechanisms with data from in vivo

and in vitro experimental observations produced 82 putative immune network models,

each describing variants of immune regulatory networks consistent with available

observations. Analysis of these models suggested that new measurements of serum

levels of IL-4 and CXCL8 could refine competing models and resulted in the elimination

of 38 of the models. Further analysis of the remaining 44 models suggested specific

deviations in the predicted regulation of nasopharyngeal and peripheral immunity during

response to AOM. Specifically, immune responses active in sOP children during AOM

were characterized by early and constitutive activation of pro-inflammatory signaling in

the nasopharynx and a Th2- and Treg-dominated profile in the periphery. We conclude

that sOP children have altered regulation of key immune mediators during both health

and pathogenesis. This altered regulation may be amenable to therapeutic intervention.

Keywords: pediatric population, systems biology, otitis, immune signaling, numerical models, regulatory logic,

immune homeostasis

INTRODUCTION

Otitis media (OM), frequently referred to as an ear infection, is among themost common childhood
illnesses, with some 5 million cases annually in the US (1). OM is a leading cause of acquired
deafness (2, 3), and 21,000 children are estimated to die from complications of OM annually
worldwide (4). The nasopharyngeal (NP) mucosal compartment is the site of bacterial otopathogen
colonization. Therefore, the local NP innate and adaptive immune response is critical for limiting
invasive bacterial dissemination to other anatomical sites. Progression from asymptomatic NP
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carriage to acute disease is almost always associated with a viral
upper respiratory infection (URI) (5). Systemically, circulating
concentrations of the immune mediators S100A12 and IL-10
change in the context of ICAM-1 during an infection, and these
changes are specific to the causative otopathogen (6). From
analyses of nasal lavage samples during both health and illness,
defective inflammatory cytokine production has been recognized
as a characteristic of otitis-prone children (7). In the particular
case of infection by Streptococcus pneumoniae (Spn), neutrophil
infiltration and inflammatory cytokine production in the NP
increase proportionally to bacterial burden (8). Heightened
inflammatory responses during a precipitating viral URI have
been shown to influence the likelihood of progression to AOM,
with both cytokine production (9) and tissue injury (10) showing
significant predictive associations.

Since 2006, our group has conducted a prospective,
longitudinal study of AOM seeking to understand immune
mechanisms responsible for infection proneness. In our studies,
children were defined as stringently otitis prone (sOP) if they
experienced 3 separate AOM infections within 6 months or 4
within a 12-month time frame. Children experiencing fewer
AOM infections were defined as non-otitis prone (NOP)
(1). All AOM events were confirmed by tympanocentesis
and microbiological identification of the instigating bacterial
otopathogen [most commonly Streptococcus pneumoniae,
Haemophilus influenzae, or Moraxella catarrhalis (1)]. Other
groups studying OP children have identified candidate genes
in various immunological pathways (11), but those studies did
not restrict the definition of OP to cases where microbiologic
confirmation occurred. It is probable that a requirement for
microbiologic proof of AOM refines the study population to
allow clearer outcome differences during immunologic studies.
Indeed, with this strict definition, we have identified immune
dysfunctions in both nasal lavage and peripheral blood. During
an AOM episode, sOP children produce reduced quantities of
innate pro-inflammatory cytokines and epithelial cell repair
enzymes in nasal lavage (12). In the peripheral blood, sOP
children display poor otopathogen-specific antibody responses
(13–15) and memory B cell generation (16), and defects in
memory CD4T cells (17). In particular, the importance of Th17
function in protection against pneumococcal infection is well-
documented in both mice and humans (18–21). In our studies,
Th17 cells from sOP children were observed to have deficient
responses to pneumococcal components in vitro, but these
deficiencies could be rescued by exogenous Th17-promoting
cytokines (22). This suggests a failure of regulatory immune
signaling without underlying cellular defects. We have also found
that repercussions from immune dysregulation in sOP children
were not limited to causing increased susceptibility to AOM:

Abbreviations: AOM, acute otitis media; cDC, classical dendritic cells; CXCL, C-

X-C Motif Chemokine Ligand; IL, interleukin; Mcat, Moraxella catarrhalis; NLP,

natural language processing; NOP, non-otitis prone; NP, nasopharyngeal; NTHi,

non-typeable Haemophilus influenzae; Ig, immunoglobulin; OP, otitis prone;

PBMC, peripheral blood mononuclear cells; pDC, plasmacytoid dendritic cells;

sOP, stringently defined otitis prone; Spn, Streptococcus pneumoniae; STG, state

transition graph; TGF, transforming growth factor; Th, T helper cell; TNF, tumor

necrosis factor; Treg, T regulatory cells; URI, upper respiratory infection.

these children more often failed to generate protective antibody
responses to routine pediatric vaccines (23, 24), broadening the
significance of their immune deficits.

The interplay between these factors—the normal course of
response to an infection, environmental, and genetic factors, as
well as infection history—present challenges to the development
of a mechanistic understanding of recurrent AOM. Unlike
traditional statistical methods, systems biology techniques allow
the integration of observations from different sources and
experimental contexts, and are robust to missing data. We
hypothesized that otitis proneness is largely a result of altered
signaling between immune components that are otherwise
competent, resulting in a state of increased susceptibility to
NP colonization and infection by otopathogens. To test this,
a step-wise discovery approach was used: (1) a review of
published literature concerning pediatric immune responses to
bacterial AOM for identification of immune system components
involved in AOM pathogenesis and resolution; (2) construction
of regulatory network models linking immune cell signaling
elements known to be involved in response to otitis media
and/or dysregulated in sOP children; (3) alignment of regulatory
parameters for the network models with available data from in
vivo AOM episodes and in vitro peripheral blood mononuclear
cell (PBMC) experiments during health, at onset of AOM and
after recovery in sOP and NOP children; and (4) analysis
of the predicted dynamic behavior of the immune system
during AOM pathogenesis and recovery to discover points of
divergence between the immune response to AOM infection
in sOP and NOP children. In addition to recapitulating Th1
and B cell dysfunction we had previously described (22, 25),
these simulations additionally predicted a general Th2- and
Treg-dominated immune profile in the systemic compartment
in sOP children. In the nasopharynx, model predictions of
response to bacterial infection suggested early and constitutive
activation of pro-inflammatory signaling in sOP children.
Modeling also highlighted TGFβ and viral infection history as
potential contributors to the establishment and maintenance of
the sOP phenotype.

MATERIALS AND METHODS

Source of Clinical Samples
Our longitudinal, prospective study design to collect clinical
samples has been previously described (26, 27). Children were
from mostly middle-class suburban homes in Rochester, NY.
Enrolled subjects attended healthy visits at 6, 9, 12, 15, 18, 24,
and 36 months of age, as well as illness visits. Blood and nasal
lavage samples were routinely provided at these visits as part
of the study protocol. sOP children were defined as those who
experienced at least 3 distinct episodes of AOM within a 6-
month time span or at least 4 episodes of AOM within a 1-
year time span. All AOM episodes were clinically diagnosed and
confirmed by tympanocentesis sampling of middle ear fluid to
identify causative otopathogens. Tympanocentesis eliminated the
potential for contamination of the infection prone cohort by
children who were inaccurately diagnosed, as is frequently the
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FIGURE 1 | Workflow overview. An initial immune cell and molecular entities list is used to mine published scientific literature for mechanistic statements, yielding an

immune network architecture. Discretized, qualitative descriptions of experimental data are then used to discover parameters for candidate models. Analysis of these

candidate models points to informative experiments to refine the model pool through generation of new data.

case (28, 29). NOP children were defined as those with absent or
one to two AOM episodes in time frame of 6–36 months of age.

Immune Network Model Assembly
The immune signaling network model was assembled after
reviewing published literature concerning AOM and otitis
proneness to identify important components of the immune
system, namely cell populations and signaling molecules,
involved in susceptibility to recurrent otitis media. The Pathway
Studio database (Copyright © 2020 Elsevier Limited except
certain content provided by third parties. Pathway Studio is a
trademark of Elsevier Limited, Amsterdam) was then queried
to identify mechanistic interactions linking these immune
components using the natural language processing (NLP) engine
MedScan (30) to mine the full text of 3.5 million peer-
reviewed publications and an additional 24 million PubMed
abstracts. The authors verified MedScan interpretation of the
reported immune regulatory mechanisms. The full workflow of
network generation, parameterization, and model refinement is
summarized in Figure 1.

Immune Model Parameterization
Immune network response was represented using a discrete
logical formalism (e.g., if expression of protein A is High,
then expression of protein B should become Low) designed
to qualitatively recapitulate the dynamic behaviors of immune
regulation typically described using more complex continuous
kinetic models [(31–35); i.e., expressed in units of change in
concentration or abundance per unit time]. Each entity in the
network is represented as a switch which assumes a particular
level of activation depending on the signals it receives. Parameters
describing each immune component in the model included an
activation threshold above which signals would be perceived,
mimicking the actions of high and low affinity receptors. In
addition, decisional input weights were used to capture the
dynamic response of a given immune component under all
possible combinations of input signals. To accommodate often
sparse and partially observed experimental data we redefined
the conventional goal-directed search for parameter values to
one where resting state and time course data were applied as
constraints; combinations of parameter values were retained if

they supported model predictions that complied with observed
experimental data (35, 36). Regulatory parameters for the
immune network model were selected based on adherence to
a qualitative summary of results previously reported by our
group (Supplementary Table 1). All reference data was projected
onto a discrete qualitative scale of relative immune activation
(e.g., Low, Nominal, and High). The activation level of each
immune component at the NOP resting state was presumed
to represent the normal homeostatic range of activation during
health as captured by samples acquired during asymptomatic
measurement time points and was hence used as a baseline.
The dynamic range of each immune component was considered
independent from that of all others, such that activation levels
were expressed in relative terms and can only be directly
compared to a baseline value for that entity alone. Therefore,
as an example, an increase in the level of TNF from a
relative expression of 1 at rest to a value of 2 during AOM
(50% of its dynamic range) should not be taken to signify
that its change in absolute concentration in pg/ml would
necessarily be equal to that of another cytokine given the same
relative increase.

The identification of appropriate values for the model
parameters dictating the dynamic behavior of the network was
performed using a constraint satisfaction approach refined by
our group and implemented as a software tool for the analysis
of biological networks (BioMC) (34). This search for optimal
parameter values enforced strict compliance to stable immune
resting states and maximized adherence to transient response
data while also minimizing model complexity. The degree of
adherence to reference data was expressed as an error score,
where the predicted response at each timepoint was subtracted
from the input constraint at the corresponding timepoint. Note
that greater departure is possible for immune entities with
multiple activation levels. Maximum departure from a binary
network entity (with possible values of 0 and 1) is 1, while
maximum departure from a ternary node (with possible values
of 0, 1, and 2) is 2. Overall error for each candidate model was
the sum of the deviation over all predicted immune responses
expressed as a fraction of the maximum possible error, where
0% error signified perfect adherence and 100% error signified
complete failure to adhere.
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Experimental Validation Data
To test the validity of initial candidate immune network models
we used cryopreserved serum samples from 142 children (94
NOP, 48 sOP) aged 6–30 months (median 14.3 months, IQR
12.1–15.5) previously collected under a protocol approved by
the Institutional Review Boards of Rochester General Hospital
and the University of Rochester. Samples within this age range
were specifically chosen to study the immune system when sOP
children are at their highest risk of experiencing infection (1).
Serum levels of IL-4 andCXCL8weremeasured on a Bio-Plex 200
machine (Bio-Rad) using a multiplex ELISA kit (EMDMillipore)
according to the manufacturer’s instructions. Care was taken to
account for the frequency with which these children experienced
viral upper respiratory infections (URI) which did not progress
to AOM.

Assessment of Immune Network Model
Structure
In situations where predictions from even the best candidate
immune network model continued to deviate from observed
experimental data, the basic structure of the network was
assessed for deficiencies. We applied a method proposed by
Guimerà and Sales-Pardo wherein the connectivity of the
putative network was evaluated for compliance with known
properties of immune networks and tested for possible absence
of necessary regulatory actions (false negatives) as well as the
inclusion of spurious regulatory actions (false positives) (37). We
applied this algorithm to estimate the likelihood that additional
regulatory actions were required for the entities with the greatest
departure from input data. The newly suggested actions, initially
absent from the immune network, were included and the logical
parameters re-estimated for the revised network.

Statistics
Statistical analyses of predicted immune network trajectories and
cytokine measurements were performed in R version 3.4.2 (38).
Steady state predictions were compared across sOP and NOP
phenotypic groups using the Wilcoxon rank-sum test. Predicted
response trajectories were compared using two-way ANOVA
for an otitis proneness group effect and progression across
time. Where appropriate, p-values were adjusted for multiple
comparisons using the Benjamini-Hochberg correction for a 5%
false discovery rate. Serum cytokine levels were analyzed using
linear models accounting for otitis proneness, frequency of viral
URIs not progressing to AOM, and interactions between these
terms. Figures were prepared using ggplot2 in R (39).

RESULTS

Network Construction
Our network construction method is a sub-discipline of
systems biology. It uses concepts of electrical circuitry with
on and off “switches” (nodes) connected by positive and
negative “wires” (interaction edges). Immune cells and functional
mediators are represented nodes whose behavior is governed
by the known mechanistic interactions between them, resulting
in activation or suppression. The network construction is

based on documented regulatory interactions from published
scientific literature. Based on known information about the
network structure (nodes and edges) and its behavior observed
in a particular biological context, the regulatory parameters
governing the network can be deduced. Using this approach
we sought to understand differences in immune response
between sOP and NOP children in early childhood. Our goal
was to use this approach to identify the most likely central
immune mechanisms responsible for otitis proneness vs. otitis
resistance. The approach succeeded in this regard, pointing to a
specific limited experiment involving measuring two cytokines
in a single body compartment that would further reduce
the likely responsible immune mechanistic differences between
the populations. Thus, we describe a novel, network biology-
driven modeling method that is responsive to an iterative
process to assist in guiding experiment planning with a goal of
identifying the most central immune mechanisms responsible
for clinical differences in otitis infection susceptibility. We
anticipate this process will identify the best options for
therapeutic intervention. As shown in Figure 1 we reviewed
published literature concerning pediatric immune responses to
bacterial AOM and identified components of the immune system
involved in AOM pathogenesis and resolution. Regulatory
interactions between these components were identified in the
Pathway Studio database, a compendium assembled through
automated text mining (30) (see Materials and Methods).
To account for the anatomical separation between the NP
mucosal and peripheral blood compartments, the overarching
network structure was segregated into mucosal “nasopharynx”
and systemic “periphery” subnetworks (Figure 2), applying
principles developed for analysis of discrete logical networks
with spatially-distinct components (40, 41). Interactions between
immune cell populations were limited to the peripheral
subnetwork (with the exception of neutrophils, which were
modeled in both compartments). Cytokines documented as being
directly affected by bacterial infection were included in the model
of immune response in the NP, and could influence systemic
immune signaling. Peripheral cytokines could likewise influence
the NP immune response the resulting immune network
comprised 51 immune cell and cytokine/protein entities with 320
regulatory connections (edges). The NP compartment contained
22 entities and 138 edges, and the periphery compartment
contained 29 entities and 161 edges. The remaining 21 edges were
dedicated to communication between these compartments. The
network edges were supported by 20,844 published references
(median 14 references per edge).

Defining Model Constraints From
Experimentally Observed Behaviors
We collated 12 years of experimental observations from our
studies of sOP and NOP children into a set of reference
immune response trajectories defining the course of an AOM
episode from health to acute disease. Results of experiments
where PBMCs from these same children were subjected to
experimental stimulation in vitro were also included in the set
of experimentally observed results. Relative activation of each
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FIGURE 2 | Network assembly. Network structure shows segregation into nasopharyngeal and peripheral compartments with interactions between cell populations,

immune mediators, and bacterial infection. The network possesses 51 entities and 320 edges: green edges activate and red inhibit their targets.

entity (e.g., cytokines, cell populations, and bacterial infection)
was represented qualitatively as a discrete value such that
higher values indicated increased activation.Where experimental
observations did not support a significant difference in
expression across groups or with time for an individual marker
taken in isolation, that marker was not used to constrain the
immune network-predicted behavior. Instead, activation levels

for these “unobserved” entities were predicted as dictated by
the logical parameters of the regulatory network model. For
example, while circulating ICAM1 was identified as part of a
diagnostic biomarker for AOM in our prior studies by providing
context to S100A12 and IL10 expression (6), it did not itself vary
significantly across groups when considered in isolation. Hence,
peripheral ICAM1 expression was not used to constrain network
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models to consider; rather its activation was predicted in the
context of the other immune cells and cytokines/proteins.

Our literature search yielded published references with
observations for 46 of the 51 network nodes (immune cells and
cytokines/proteins), with no well-defined observations available
for ICAM1, IgA, IL7, IL21, and IL23 in the periphery subnetwork.
These were nevertheless retained in the network model to enable
better representation of peripheral immune function. Of the
51 network nodes, 29 were represented as binary variables
and 22 were represented as ternary variables as supported by
the experimental data (nodes without experimental data to
support them as binary or ternary were represented as binary).
The experimental observations for these 51 network nodes are
depicted in Supplementary Figure 1 and full description with
reference support in Supplementary Table 1.

To better represent the homeostatic regulation of the immune
system, we made the following assumptions. Resting states
for sOP and NOP (defined by samples collected during
regularly-scheduled healthy visits of children where no AOM
symptoms were present) were defined as dynamically stable
states, such that the system would remain in either of those
states unless disturbed; and that following resolution of infection
the immune system would return as closely as possible to its
prior homeostatic resting state. Since in vitro PBMC cultures do
not possess similar homeostatic mechanisms, this constraint was
not applied to the trajectories derived from PBMC experiments
(Supplementary Figure 1B). Exact compliance with the NOP
and sOP phenotypic resting states was strictly enforced, while
predictions of transient response during AOM pathogenesis,
recovery, and in vitro stimulation were constrained to match
the published reference data along these trajectories as closely
as possible. During healthy rest, there were 28 observed
immune cell and/or cytokine/protein variables for NOP and
19 for sOP that served as hard constraints to be matched
exactly. During AOM, there were 32 observed immune cell
and/or cytokine/protein variables for NOP and 24 for sOP.
In vitro experiments with various TLR ligands and heat-killed
bacteria were modeled with B cells, T cells, and antigen-
presenting cells activated to their maximum extent. Separate
trajectories represented NOP and sOP PBMC responses. Since
these experiments were performed with PBMCs in the absence
of any interaction with the NP compartment, the immune
responses during those experiments were modeled as inactive in
the NP compartment. In vitro stimulation provided data on 44
immune cell and/or cytokine/protein variables for NOP and 38
immune cell and/or cytokine/protein variables for sOP responses.
Following stimulation, there were changes in 40 immune cell
and/or cytokine/protein variables for NOP and 34 immune cell
and/or cytokine/protein variables for sOP immune responses.

Enforcing Adherence of Predicted Immune
Response to Observed Experiments
Adherence to prior experimental reference data in the NP and
systemic compartments served to reduce the number of feasible
models. Recall that each candidate immune network model
consisted of two basic components: a circuit map of the network

connectivity and a set of parameter values describing the flow
of information through the network, or its kinetics. As such,
any given model constitutes a fully deterministic ensemble of
transition rules dictating the dynamic response of the immune
network under a given set of conditions. Model parameters
including activation thresholds and weights dictating the logical
rules for the resolution of competing input signals were derived
using a constraint-satisfaction formalism as previously described
(35). Model parameterization was conducted with the aim of
enforcing strict compliance with known stable states while
also minimizing divergence from transient states observed
experimentally during response to AOM infection in vivo and in
vitro polyclonal stimulation of PBMCs.We favoredmodels where
the parameter sets defined an immune network that supported
the transition from one experimental observation to the next
with the smallest number of intermediate steps. In other words,
we searched for the most efficient immune signaling kinetics,
which give rise to the shortest possible response trajectories
(34, 36). With the available prior experimental reference data
(Supplementary Figure 1) and given these model identification
criteria we obtained 82 candidate immune networkmodels which
adhered to previously observed immune response behavior with
<5% overall error across all observations. The main sources of
error were the response at onset of AOM for sOP and NOP
populations, with the error for individual observations under
these conditions ranging from 1 to 3% (Figure 3). Since the
predicted responses at onset of AOM constituted the major
source of remaining error, we examined these predictions in
detail to identify the specific entities most poorly matching
the reference data. In particular, activation levels of TNF and
monocytes in the NOP peripheral compartment were poorly
reproduced by all models, with some departing from the
reference data to the full available range. Similarly, predictions
of peripheral S100A12 activation at onset of AOM among sOP
children deviated from the expected values by as much as the
full range of measured values (Figure 3A). These deviations in
expected behavior in TNF, monocyte and S100A12 activation
suggested that the basic immune network model circuit might be
missing additional regulatory actions involving these biological
entities, since the predicted activation of all other entities
matched the reference data in at least one model.

Verification of Model Structure
To address the possibility of inadequacies in the immune
network model structure, the overall connectivity of the signaling
network was evaluated further for potentially missing (false
negatives) or spurious (false positive) regulatory actions based
on generalized characteristics of network structure (37). Since
the two network entities with the greatest departure from
reference data were peripheral TNF and monocyte activation, we
focused on potential missing regulatory connections to these in
particular. This analysis of network structure did not suggest that
any additional regulatory connections to peripheral monocytes
were required, as the predicted confidence score associated with
the inclusion of any such connections was 56% or lower. An
additional edge connecting Th17 cells to TNF was suggested with
a reliability score of 71%, but in this case the predicted TNF
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FIGURE 3 | Identifying sources of error. Deviation from observed behavior for (A) the 82 candidate models with <5% overall error was decomposed into deviation

across markers at each of the 10 experimental conditions used to constrain model identification (left panel) and into deviation across all conditions for constrained

markers during acute AOM (right panel). A similar decomposition of error was presented for (B) the 44 candidate models remaining after validation against new

experimental measurements. Departure indicates the magnitude and direction (positive or negative) of the error contributed by each network entity. Error is computed

as the ratio of discrete deviations across all markers to the overall maximum possible deviation.

expression was higher than expected, indicating a potential need
for a negative regulator. Since Th17 cells are known producers of
TNF (42, 43), the biological plausibility of this suggestion in this
context was questionable.

In the absence of obvious deficiencies in immune network
model structure, the next important source of potential error
consisted of inappropriate encoding of the data. It is important
to recall that these deviations were greatest in the case of
observed episodes of AOM. This should not be entirely
unexpected. Samples used in the assembly of experimental
reference constraints were collected at varying points in time
during the course of an AOM episode (onset was defined by
the child being brought to a health care provider and that
might well vary by several days depending on the parent of the
child), introducing additional variability. Interestingly, despite
this inherent variability in the data, model predictions remained
consistent with the vast majority of available immune data

across all other experimental conditions. The challenge therefore
consisted not so much in reducing prediction error further
as distinguishing which of the 82 candidate immune network
models were the most biologically plausible.

A First Validation and Model Subset
Reduction
In order to better understand the mechanistic underpinnings
of sOP, it was important to reduce the number of competing
immune network models that adhered to the existing data.
This could only be achieved by adding new data through
the assessment of unobserved immune measurements, whether
from existing cryopreserved samples or newly acquired samples.
Since a sizable biorepository existed, we chose to measure
unobserved immune markers in existing samples. In a partial
validation of these models, we focused on two basic situations:
one where consensus existed across all models regarding a
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FIGURE 4 | Predicted rest states from all candidate models. Predicted activation at rest for network entities unconstrained during AOM in the nasopharynx and

periphery compartments. Each point represents the predicted activation from one candidate parameter set; points were jittered to reduce overlap (*p < 0.05 by

BH-corrected Wilcoxon test; stars denote the group with the higher median).

marker’s predicted expression levels and one where predictions
clearly delineated between large subsets of competing models
(Figure 4). IL4 was selected as a marker where all 82 candidate
models unanimously predicted elevated expression in the sOP
phenotype. We reasoned that agreement with this prediction
would serve as a first partial validation of the general viability of
the overall immune network model set. CXCL8 was selected as
an unmeasured marker where subsets of models disagreed and
where the outcome of experimental verification could serve to
refine the available solutions by eliminating a significant fraction
of the 82 competing models.

In sOP subjects, a significant dependency of IL-4 expression
on the frequency with which these children experienced viral
URI was observed, such that sOP samples were likely to have
higher IL4 levels at low frequencies of viral URI infection
(Figure 5, discussed further below). No significant effects of
clinical phenotype or URI frequency on circulating CXCL8
levels were identified. Predictions for serum IL4 measurement
were consistent with newly acquired data. Measurements of
CXCL8 in sOP and NOP subjects (either unanimously active
or unanimously inactive) did not find significant differences;
this result was consistent with only 44 of the 82 models. Thus,
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FIGURE 5 | New serum cytokine measurements. Serum levels of cytokines

predicted to differ by the top models, plotted against the frequency with which

subjects experienced viral URI that did not progress to otitis media. The sOP

condition was associated with a significant positive effect on serum IL4 at low

viral URI frequencies, while the interaction with viral URI frequency was

associated with a significant decrease (*p < 0.05). Neither sOP condition nor

viral URI frequency was significantly associated with changes in CXCL8.

new experimental measurement of only 2 previously unobserved
markers reduced the pool of candidate models by approximately
half, to 44 competing immune network models.

Incremental Refinement in Model
Predictions
Predicted activation of unconstrained immune network
nodes during healthy rest in the reduced subset of 44
competing immune network models is shown in Figure 6.
These are consistent with predictions from the full pool of
82 candidate models (Figure 4). The models in the reduced
pool fit new experimental data in addition to the original
reference constraints (Supplementary Figure 1), yielding a
more rigorously constrained set of remaining candidate models.
Predictions over the entire period of the simulated trajectory
show a high degree of consensus that AOM pathogenesis and
resolution proceeds differently over time in the sOP compared
to the NOP phenotype (Figure 7). In particular, the predicted
response for almost every cell type represented in the peripheral
subnetwork of the model (B cells, monocytes, neutrophils, pDC,
and T cells, with the sole exception of cDC) showed significant
variability with respect to the interaction between the otitis-
prone condition and the stage of the response. This includes
all four of the modeled T cell subpopulations. In general, the
peripheral compartment displayed impaired adaptive immunity
in sOP children that is sustained through AOM pathogenesis,
suggesting mobilization of memory to AOM-causing bacteria
may be deficient in these children. In contrast, Th2 cells were
higher and sustained in the periphery of sOP children during
AOM, suggesting immune deviation to a non-protective Th2
response may be a factor in the susceptibility of sOP children to
repeat viral-bacterial co-infections. Deficient adaptive immunity
in the periphery is likely influencing the NP response to infection,
as several inflammatory cytokines and chemokines were higher
at onset and/or sustained longer in sOP children during AOM
pathogenesis, including CCL2, IL-12, IL-17A, and TNF-a.

Phenotype-Specific Early Activation of
Immune Response Subsets in sOP
In addition to the predicted immune status for resting states
in sOP and NOP, we further analyzed the expected responses
triggered by bacterial infection during the early stages of AOM
pathogenesis. We expect these events to be limited to the
nasopharynx (Figure 8A). By comparing the change in activation
predicted by each of the remaining 44 candidate immune
network models, we could identify mechanistic differences in the
response to bacterial infection. We found significant differences
in predicted changes in the activation of NP CCL5, IL10,
IL17A, and IL6 (Figure 8B). Specifically, most models predicted
increased CCL5 early in the NOP but not sOP response, bringing
NOPCCL5 to the constitutive high level predicted for sOPCCL5.
Conversely, IL10, IL17A, and IL6 were predicted to increase early
only in the sOP response. In the case of IL10, the NOP phenotype
was predicted to show constitutive high activation which was
only transiently equaled by the sOP response to infection. IL17A
was predicted to be generally elevated in the sOP NP, undergoing
an especially early activation upon bacterial infection. Finally, NP
IL6 was eventually activated in both sOP and NOP phenotypes,
but this occurred earlier in sOP. The general sOP profile in
this NP immune network model could be characterized as pro-
inflammatory, in that inflammatory markers were predicted to
be overexpressed early in infection while IL10 was consistently
reduced. Importantly, these model outcomes point to specific
future experiments to identify key immune mediators that have
differentiate NP immune function in sOP and NOP children.

DISCUSSION

While mathematical models have been used to study immune
response, their use in otitis media has been limited to engineering
models of biofilm formation (44) and the use of conventional
pharmaco-dynamic modeling of response to antibiotic agents
(45) or vaccine efficacy (46). Here we construct a mechanistically-
informed model of immune response from prior knowledge and
test alignment of these known immune dynamic responses with
experimental observation. Drawing on a broad base of published
knowledge, we constructed a novel immune network model
involving immune cells and cytokines/proteins that mediate
immune signaling involved in the pathogenesis of AOM in young
children who are especially prone to such infections.We show the
value of model predictions to guide targeted experimentation to
refine understanding of differing immune mechanisms engaged
in disease pathogenesis in more susceptible individuals and
to generate additional high-level hypotheses for future study.
Specifically, we derived a reduced set of immune network models
that predict an immune profile in the peripheral compartment
of sOP children consistent with a Treg-dominated phenotype,
as well as indications of a chronic inflammatory profile in the
sOP nasopharynx.

A basic and central finding of this work is that both sOP
and NOP immune profiles can be accommodated by a single
common assembly of immune cells and protein mediators, some
of which diverge in mechanistic activation. This suggests that
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FIGURE 6 | Refined steady state predictions. Activation of unconstrained entities in the nasopharynx and periphery predicted by the subset of 44 validated models (*p

< 0.05, BH-corrected Wilcoxon test; stars denote the group with the higher median).

susceptibility to AOM may in part result from a combination
of environmental factors, such as infection history and/or
interactions within the nasopharyngeal microbiota (47), that
induce a self-sustaining immune dysfunction in an initially
healthy respiratory immune system. In other words, there is no
essential “damage” to the regulatory circuitry governing immune
responsiveness, as the sOP phenotype can be represented as
an alternative immune regulatory program available to the
same mechanisms that support the NOP phenotype, without
altering the underlying immune circuitry. The ready availability
of candidate models that adhere to available experimental
reference data and support both sOP and NOP as stable

persistent phenotypes lends credence to this notion, and raises
the possibility that the sOP phenotype may be amenable to
immunomodulatory therapeutic intervention.

The iterative process we used to construct and revise plausible
immune networks active in sOP and NOP child responses
to AOM infection (Figure 1) has broad potential applications.
Based on a common network of immune signaling mechanisms,
we initially found 82 candidate immune network parameter sets,
each of which adhered equally well to available published data
in a subset of immune markers measured during health and
AOM in sOP and NOP child populations as well as in vitro
experiments. Predictions from these models for immune cell and
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FIGURE 7 | Predicted response trajectories during an episode of AOM. Output trajectories aim to fit the available data on activation levels at rest, AOM, and recovery

states as well as predicting the course of events during the processes of pathogenesis and recovery. Responses adhered closely to available reference constraints

and additionally predicted behavior of unmeasured entities. Lines show medians of the 44 refined models for each entity in (A) nasopharynx and (B) periphery

compartments, interpolating the predicted response dynamics during the course of AOM pathogenesis and recovery (*p < 0.05 for interaction between otitis-prone

condition and infection stage by BH-corrected ANOVA during dynamic response). Dots show reference data where available. Blue, NOP; red, sOP.

molecular readouts identified specific experiments that had the
potential to invalidate competing models and refine the model
pool. When we measured circulating levels of two molecules (IL4
and CXCL8), where model predictions were in broad agreement
or disagreement, respectively, the pool of models was reduced
by approximately half. This simple experiment demonstrates
the significant potential of using coarse-grained computational

models to design focused and insightful experiments in a way
that rapidly reduces a pool of competing mechanistic hypotheses
to the most biologically plausible candidates. In addition, the
experiment helped identify an unexpected association of serum
IL4 levels with viral URI history independent of bacterial AOM,
in that increased viral URI frequency was negatively associated
with IL4 level in sOP children. This was an intriguing result,
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FIGURE 8 | Early response motifs. (A) Network entities initially engaged by bacterial infection during AOM pathogenesis in the nasopharynx. (B) Absolute activation of

these early response elements immediately following bacterial infection: lines show medians for the 44 refined models. (C) Relative change in activation compared to

resting levels early after bacterial infection in NOP and sOP settings, normalized to maximum activation for each entity (*p < 0.05, BH-corrected Wilcoxon test; stars

denote the group with the higher median).

since bacterial AOM can be understood as a complication
of concurrent viral URI (48). With regard to the pathology
itself, these results highlight the importance of viral infection
history, and point to the possibility of broader immunological
consequences of sOP status in addition to frequent ear infections.
Moreover, in light of the influence of the precipitating viral
infection on the course of an AOM episode (9, 10), the differences
in early activation of immune responses predicted by our
candidate models (Figure 8) may be capturing residual effects of
viral URI. Accordingly, in future work, we will direct our efforts
toward modeling viral URI explicitly.

The approach to model construction presented here utilizes a
large number of published observations (using Elsevier Pathway
Studio) in concert with primary data observations from our
laboratory. Therefore, model predictions are robust and based
on a large number of interacting factors in each case. For
instance, the new prediction that Th2 responses are higher and
sustained in sOP children during AOM is derived from analyses
of multiple input (CCL2, CCL5, IFNG, IL1B, IL23, IL4, IL6,
IL7, and TNF) and output (IL4, IL6, and IL10) signals over
the course of an AOM event. Therefore, this robust prediction
provides a strong premise for follow-up studies on the impact
of Th2 immune responses in children prone to repeat AOM.
Using an overlapping but distinct algorithm, Treg responses
were also predicted to be higher in the periphery of sOP
children. Although accumulation of Tregs is often associated
with chronic inflammation in extralymphoid tissues, our prior
data also suggested increased foxp3 mRNA in sOP children.
AOM is an acute infection event that typically resolves in a few
days. However, it is possible that in sOP children, repeat AOM
infections by related pathogens may induce similar changes in
immunity to those in chronic inflammatory conditions, i.e.,
chronic innate inflammation and increased Tregs. More work
is needed to better understand how these conditions relate
in children.

New insights and hypotheses emerge from this work.
The modeling and validation studies suggest a number of
possible immune-related mechanisms supporting recurrent
AOM susceptibility. Given the high complexity of the expression
patterns and dynamic regulation of cytokines and their receptors,
we group these potential mechanisms together for the sake
of discussion here concerning future directions. First, the
predicted differences in IL7 levels between sOP and NOP
(Figure 6) may point to differential maintenance of B and T
cell memory in these populations. Our prior published data
showed diminished circulating T and B cell memory in sOP
compared to NOP children (16, 22, 25, 49). IL7 modulation is
one mechanism that could be explored to further understanding
of our prior observations regarding poor maintenance of B and
T cell memory in sOP children. Second, analysis of the data
strongly suggests that cytokine-driven differences in T and B
cell differentiation play a pivotal role in AOM susceptibility. IL4
is a key driver of Th2 immune responses, and regulates B cell
survival, Ig secretion and MHC Class II expression (50, 51).
This may account for the observed Th2-dominant phenotype in
sOP children. IL12 orchestrates Th1 immune responses and can
also act as a regulator of T follicular helper (Tfh) development
(52, 53). Since it was observed to be increased in sOP children in
the NP only, it is possible that NP macrophages and dendritic
cells are producing high levels of IL-12 compared to NOP
children. IL21 is secreted by Th17 and Tfh cells and also
functions in their development (54, 55). Low peripheral IL21
may be connected to the lower antibody levels observed in
sOP child serum. Regulation of Th17 and Treg populations was
identified in prior experiments as a potential mechanism at play
in distinguishing sOP and NOP immune responses (22). Results
in the modeling were consistent with altered Th17 immune
responses. Th17 responses are critical for protection from both
Spn and non-typeable Haemophilus influenza infections, the
two major causative agents of AOM (18, 56, 57). Reciprocal
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regulation of Th17 and Treg cells is well-documented (58–
60). Pneumococci impact host immunity by promoting Treg
dominance to support prolonged NP carriage (20, 61), which
further suggests TGFβ as a candidate for inclusion in future
iterations of the model because TGFβ could be implicated in
altered Th17/Treg balance. Interestingly, dysregulation of the
TGFβ pathway at the genomic level has been implicated in
susceptibility to otitis media in children in both Australia (62)
and Greece (63).

In conclusion, we have demonstrated that a clinical phenotype
among young children—otitis proneness—can be explained in
terms of well-documented mechanisms as a self-sustaining
regulatory regime characterized by reduced homeostatic
production of pro-inflammatory and anti-inflammatory
cytokines, consistent with a pattern of Th2 and Treg skewing.
Our immune network models and simulations suggest that
sOP and NOP children experience AOM differently because
they are executing alternative immune regulatory programs
governing both stable homeostasis and immune response, while
the fundamental mechanisms and network remain unaltered.
This further raises the possibility that sOP children may be
treated by immunomodulatory intervention to reverse or rescue
from the sOP state.
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