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Abstract

Hepatitis B virus (HBV) infection is a common problem in the world, especially in China.

More than 60–80% of hepatocellular carcinoma (HCC) cases can be attributed to HBV infec-

tion in high HBV prevalent regions. Although traditional Sanger sequencing has been exten-

sively used to investigate HBV sequences, NGS is becoming more commonly used.

Further, it is unknown whether word pattern frequencies of HBV reads by Next Generation

Sequencing (NGS) can be used to investigate HBV genotypes and predict HCC status. In

this study, we used NGS to sequence the pre-S region of the HBV sequence of 94 HCC

patients and 45 chronic HBV (CHB) infected individuals. Word pattern frequencies among

the sequence data of all individuals were calculated and compared using the Manhattan dis-

tance. The individuals were grouped using principal coordinate analysis (PCoA) and hierar-

chical clustering. Word pattern frequencies were also used to build prediction models for

HCC status using both K-nearest neighbors (KNN) and support vector machine (SVM). We

showed the extremely high power of analyzing HBV sequences using word patterns. Our

key findings include that the first principal coordinate of the PCoA analysis was highly asso-

ciated with the fraction of genotype B (or C) sequences and the second principal coordinate

was significantly associated with the probability of having HCC. Hierarchical clustering first

groups the individuals according to their major genotypes followed by their HCC status.

Using cross-validation, high area under the receiver operational characteristic curve (AUC)

of around 0.88 for KNN and 0.92 for SVM were obtained. In the independent data set of 46

HCC patients and 31 CHB individuals, a good AUC score of 0.77 was obtained using SVM.

It was further shown that 3000 reads for each individual can yield stable prediction results
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for SVM. Thus, another key finding is that word patterns can be used to predict HCC status

with high accuracy. Therefore, our study shows clearly that word pattern frequencies of

HBV sequences contain much information about the composition of different HBV geno-

types and the HCC status of an individual.

Author summary

HBV infection can lead to many liver complications including hepatocellular carcinoma

(HCC), one of the most common liver cancers in China. High-throughput sequencing

technologies have recently been used to study the genotype sequence compositions of

HBV infected individuals and to distinguish chronic HBV (CHB) infection from HCC.

We used NGS to sequence the pre-S region of a large number of CHB and HCC individu-

als and designed novel word pattern based approaches to analyze the data. We have sev-

eral surprising key findings. First, most HBV infected individuals contained mixtures of

genotypes B and C sequences. Second, multi-dimensional scaling (MDS) analysis of the

data showed that the first principal coordinate was closely associated with the fraction of

genotype B (or C) sequences and the second principal coordinate was highly associated

with the probability of HCC. Third, we also designed K-nearest neighbors (KNN) and

support vector machine (SVM) based classifiers for CHB and HCC with high prediction

accuracy. The results were validated in an independent data set.

Introduction

The hepatitis B virus (HBV) is a DNA virus infecting around 257 million people worldwide

(http://www.who.int/mediacentre/factsheets/fs204/en/) and can cause liver diseases and hepa-

tocellular carcinoma (HCC), one of the most common types of liver cancer [1, 2]. About

500,000 HBV patients die each year worldwide from HBV related complications and about

10% of the HBV infected individuals will have HCC during their life time [3]. However, the

understanding of the differences of HBV compositions based on next generation sequencing

(NGS) technologies between chronic hepatitis B (CHB) and HBV related HCC is limited.

The HBV sequences are currently divided into 10 HBV genotypes, A to J, with genome

wide differences of 8%, and 35 subgenotypes using genome wide differences of 4% [3–5]. HBV

genotypes have been shown to be associated with geographical locations [6, 7]. In China, the

most common genotypes are B and C [8, 9]. Besides, some individuals can be infected by

viruses of multiple genotypes and there can be some recombinations among the different

genotypes. Different genotypes have varied effects on disease severity, course and likelihood of

complications, response to treatment and possibly vaccination [10, 11]. It has been shown that

genotype C is associated with more disease complications and higher chance of HCC transi-

tion than genotype B [12].

Due to the high mutation rate of the HBV and the possibility of multiple HBV infections,

there are high inter- and intra- patient HBV geneticdiversities. Previous studies revealed that

basal core promoter (BCP) A1762T/G1764A mutations were strongly associated with the

occurrence of HCC [13–16]. Truncated large surface proteins due to deletions in the pre-S

gene were observed to accumulate in the endoplasmic reticulum (ER), resulting in ER stress

and hepatocarcinogenesis [17, 18]. It was also shown that some pre-S deletions or mutations

were risk factors for the development of liver cirrhosis and HCC [19–22]. Meta-analysis

HBV pre-S region and HCC
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studies indicated that pre-S deletion mutations and BCP double mutations were associated

with HCC risk [13, 23–25]. Several studies have found that combination of mutations in

the HBV genome could predict HCC occurrence more accurately than individual mutations

[26–28].

Traditionally, only the dominant genotypes and haplotypes within the patients were investi-

gated due to the technological limitations of Sanger sequencing that are usually time consum-

ing and economically expensive to sequence a large number of sequences within individuals.

With the development of high-throughput NGS technologies, it is now possible to investigate

the HBV genetic diversity within individuals carefully and to develop more sophisticated and

robust prediction models for predicting HCC.

In this study, we aim to explore the diversity of HBV pre-S sequences within HCC and

CHB patients, to identify their differences, and to establish prediction models for HCC with

machine learning methods based on word pattern frequencies. In detail, we first carried out a

large scale HBV pre-S region study of 94 HCC patients and 45 chronic HBV infected individu-

als. The heterogeneity of HBV composition and the HBV genotype fraction in individuals

were investigated. We used a novel alignment-free method based on word pattern frequencies

to cluster the individuals and investigated the cluster distributions of HCC patients and CHB

individuals. We further applied K-nearest neighbors (KNN) and support vector machine

(SVM) approaches to predict HCC status based on word counts and the predictive model was

validated using an independent data set consisting of 46 HCC patients and 31 CHB indivi-

duals. The key novelties of this study are the use of word patterns for the analysis of HBV

sequences to cluster HBV infected individuals and to predict HCC status. Our study clearly

showed the surprising high power of word patterns for clustering HBV genotypes and predict-

ing HCC status.

Results

Most individuals have mixtures of genotypes B and C HBV sequences

We genotyped each sequence in the NGS data using STAR [49] and calculated the fraction of

genotypes B and C sequences for every individual as described in the “Materials and methods”

section. The fraction of recombinants in 95% of the individuals (132/139) was less than 5%

and most of the reads were of genotype B or C (S1 Supplementary material S1 Fig). Therefore,

we ignored the recombinant reads and the reads of other genotypes and concentrated on the

reads of genotype B or C in all the individuals. The histograms of the fractions of genotype B

sequences among the 94 HCC patients and 45 CHB individuals are given in Fig 1(A). It can be

seen from the figure that most individuals have both genotypes B and C sequences for both

HCC and CHB individuals. The fraction of genotype B sequences among HCC patients has a

tendency to be lower than that for the CHB individuals, consistent with previous observations

that genotype C individuals are more likely to have HCC than genotype B individuals [29].

About 70% of the HCC patients have genotype B fraction less than 30% and only about 50% of

the CHB patients have genotype B fraction less than 30%. While about 37% of the CHB indi-

viduals have genotype B fraction at least 70%, only about 5% of the HCC patients have geno-

type B fraction at least 70%.

Based on our data, we further investigated the relationship between having HCC and the

fraction of genotype B in an individual. It can be shown that the probability of having HCC for

given genotype B fraction increases with the ratio of fraction of individuals having the given

genotype B fraction among HCC patients over that of CHB patients. Therefore, we binned

both the HCC and CHB individuals according to the genotype B fraction. For each bin, we cal-

culated the fractions HCC and CHB individuals and then calculated their ratio as shown in Fig

HBV pre-S region and HCC
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1(B). When the number of occurrences in a bin was small, the estimated fraction was not reli-

able. Thus, we required that the fractions for both HCC and CHB in each bin to be at least 5%.

If either the HCC fraction or the CHB fraction in an interval was smaller than 5%, we merged

it with the later intervals until both fractions were above 5%. Therefore, we merged the bins

0.3~0.4, 0.4~0.5, and 0.5~0.6 into one bin when we calculated the ratio of the fractions. Simi-

larly, we merged the bins 0.7~0.8, 0.8~0.9 and 0.9~1.0 to form another bin. As we can see from

Fig 1B that this fraction is higher than 1.0 when the fraction of genotype B sequences is less

than 0.6, while it is much less than 1 when the fraction of genotype B sequences is above 0.6.

To see how genotyping method would affect the results, we also used another genotyping

program, jpHMM [30], to genotype the reads. The histogram of the fraction of recombinant

reads for the 139 individuals is shown in FigS2a in the S1 Supplementary material. The fraction

of genotype B using jpHMM is highly associated with that based on STAR (Pearson correlation

coefficient = 0.9968 and p-value = 1.0e-151) as shown in FigS2b) in the S1 Supplementary

material. FigS3 in S1 Supplementary material shows a similar figure as Fig 1 when jpHMM

was used for genotyping. Again we see that the probability of having HCC increases with the

fraction of genotype C sequences based on jpHMM.

Individuals mainly cluster by their HBV genotypes followed by the HCC

status

Based on the word pattern frequencies of the NGS reads from the HBV pre-S region for the

individuals, we used Manhattan distance to calculate the dissimilarity between any pair of indi-

viduals. We then used principal coordinate analysis (PCoA) to project the individuals onto

two-dimensional Euclidean space. Fig 2A and 2B show the PCoA results for the 94 HCC

patients and 45 CHB individuals using word length k = 6 and k = 8, respectively.

To see the relationship between the PCoA results and the fraction of genotype B or C in the

NGS data of the HBV pre-S sequences, we colored the points corresponding to the individuals

according to the fractions of B and C genotypes with red indicating 100% genotype B and blue

indicating 100% genotype C with intermediate color in between based on the STAR genotyp-

ing results. We also downloaded the HBV genotypes B and C reference sequences from NCBI

(accession number of genotype B: D00329, AB073846, AB602818; genotype C: X04615,

AY123041, AB014381) and used the pre-S region to serve as references. We counted the occur-

rences of word patterns of these sequences, calculated their dissimilarity with the 139 samples,

Fig 1. Fraction of genotype B among the 94 HCC patients and 45 CHB patients. (a) Histograms of the fraction of

genotype B based on STAR. (b) The relationship between the ratio of the fraction of HCC individuals in the bin over

that of the CHB individuals and the fraction of genotype B sequences based on STAR.

https://doi.org/10.1371/journal.pgen.1007206.g001

HBV pre-S region and HCC
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Fig 2. PCoA plot based on the 94 HCC patients and 45 CHB individuals. The distance matrix is based on the Manhattan

distance between the frequency vectors of word patterns of length (a) k = 6 and (b) k = 8, respectively. Color shows the fractions

HBV pre-S region and HCC
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and plotted the 141 samples in the PCoA figure. We have several observations from Fig 2.

First, the fraction of genotype B sequences in each individual is highly associated with the val-

ues of the first principal coordinate. From left to right of the figures, the fraction of genotype B

sequences increases with the first coordinate. To see this pattern more clearly, we plotted Fig

2C and 2D that show the relationship between the first principal coordinate and the fraction of

genotype B using k = 6 and k = 8, respectively. The Pearson correlation coefficient (PCC)

between the fraction of genotype B sequences and the first principal coordinate is as high as

0.97 when k = 6 and k = 8. Second, the HCC tumor samples are distributed more broadly on

the PCoA plots and are more diverse than the CHB individuals. The second principal coordi-

nate seems to be associated with the HCC status with high second PCoA coordinate indicating

high probability of HCC. Although the second principal coordinates for most of the CHB

individuals are at similar levels as for the reference genotypes B and C sequences, many HCC

samples have much higher second principal coordinate. To see the pattern more clearly, we

divided the second coordinate into 5 bins: < −0.15; −0.15~−0.1; −0.1~−0.05; −0.05~0;> 0. In

each bin, we calculated the fractions of CHB and HCC individuals in the bin. We also calcu-

lated their ratio and plot the relationship between the ratio and the second coordinate in Fig

2E and 2F. It can be seen that when the second coordinate is smaller than -0.1, the fraction of

CHB individuals dominates and with the increase of second coordinate, the fraction of HCC

individuals increases. When the second coordinate is bigger than 0, there are no CHB individ-

uals. On the other hand, some of the HCC patients and CHB individuals mix together in the

principal coordinate plots and there is no clear separation for HCC patients and CHB individ-

uals. The above conclusions are consistent for both k = 6 and k = 8.

Fig 2 shows that the first principal coordinate is highly associated with the fractions of geno-

type B(C) when intuitively choosing k = 6 and k = 8. Therefore, we chose the word length k to

maximize the correlation. Table 1 shows the Pearson and Spearman correlations between the

first principal coordinate and the fraction of genotype B sequences for word length k ranging

from k = 2 to k = 8.

Both the Spearman and the Pearson correlation coefficients increase with word length k.

When k� 6, the PCC becomes stable. Note that for k = 6 the correlation is already very high

and considering computational efficiency, we use k = 6 to show our results on the training

data in the rest of the paper.

In addition to the PCoA plots, we also grouped the individuals using hierarchical clustering

with UPGMA (Un-weighted Pair Group Method with Arithmetic Mean) to calculate the dis-

tance between two clusters. We used the distance matrix calculated from Manhattan distance

with k = 6 and input it into the software Mega (http://www.megasoftware.net/). Fig 3 shows the

clustering results and the genotypes are analyzed using STAR. The corresponding results using

jpHMM are given in S1 Supplementary material Fig S5. The individuals are generally divided

of genotype B and C based on the STAR genotyping results. Red represents 100% genotype B and blue represents 100%

genotype C. Reference B and C sequences are also added on the figures as references. The relationship between the first

principal coordinate and the fraction of genotype B, (c): k = 6, (d): k = 8. The relationship between the ratio of the fraction of

CHB individuals in the bin over that of the HCC individuals and the second coordinate, (e): k = 6, (f): k = 8.

https://doi.org/10.1371/journal.pgen.1007206.g002

Table 1. Spearman and Pearson correlations coefficients between the first principal coordinate and the fraction of genotype B for the 94 HCC patients and 45 CHB

individuals. Different word lengths are used for computing the Manhattan distance.

Correlation k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Spearman -0.39 0.20 0.38 0.80 0.89 0.94 0.94

Pearson -0.37 0.19 0.42 0.92 0.97 0.97 0.97

https://doi.org/10.1371/journal.pgen.1007206.t001

HBV pre-S region and HCC
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into two main clusters. Cluster I contains 44 individuals, 38 of them with dominant genotype B

and cluster II contains 95 individuals, 94 of them with dominant genotype C. The overlaps

between the two clusters and groups of individuals with genotypes B or C are given in Table 2.

Fig 3. Hierarchical clustering results of samples HCC and CHB from the first data set. There are four different colors of branches: red means

HCC samples genotype C dominant, yellow means HCC samples genotype B dominant, green means CHB samples genotype C dominant, blue

means CHB samples genotype B dominant. One genotype dominant means the fraction of this genotype is the highest among all genotypes.

https://doi.org/10.1371/journal.pgen.1007206.g003

Table 2. Distribution of patients according to genotype fraction and clusters. Number of overlaps between the

clusters (I and II) and groups of individuals with dominant genotypes B and C, respectively.

cluster I cluster II

Genotype B dominant 38 1

Genotype C dominant 6 94

https://doi.org/10.1371/journal.pgen.1007206.t002

HBV pre-S region and HCC
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The clusters are significantly associated with the dominant individual genotypes (p-value =

2.2e-16, χ2-test). Six individuals (HCC1, HCC13, HCC83, HCC84, HCC88, and HCC102) out

of 101 (76HCC+25CHB) with dominant genotype C belong to cluster I. Their corresponding

fractions of genotype B are 0.49, 0.49, 0.18, 0.27, 0.14, 0.29, respectively. On the other hand,

only one individual (CHB60) out of 38 (18HCC+20CHB) with dominant genotype B belong to

the second cluster and its fraction of genotype B is 0.59. We can see that the mis-clustered indi-

viduals are highly mixed, and their secondary genotypes also have relatively high fraction. The

normalized fractions of genotypes B and C sequences of all individuals using STAR and

jpHMM are given in the S1 Table.

Within cluster I, there is a small sub-cluster Ia that is dominated by CHB individuals. On

the other hand, the HCC patients and CHB individuals are not clearly separated in cluster I.

Within cluster II, a small cluster IIa is dominated by CHB individuals and the HCC patients

are generally far away from this group. The results from the hierarchical clustering of the indi-

viduals are consistent with the observations based on PCoA results.

We noticed 11 CHB patients within the large cluster IIb that contains mostly HCC patients.

Therefore, we checked the meta-data to see if these 11 individuals had high risk factors for

HCC including liver cirrhosis, advanced age, male sex, etc. Six out of the 11 CHB patients in

cluster IIb had meta-data available. Five patients (CHB46, CHB48, CHB50, CHB60, CHB91)

are male and one is over 60. Patient CHB55 is female, who has liver cirrhosis and was over 60

years old. Thus, our meta-data do show that these patients have more risk factors.

We also colored the points in the PCoA plots corresponding to the individuals according to

the fractions of B and C genotypes with red indicating 100% genotype B and blue indicating

100% genotype C with intermediate color in between based on the jpHMM genotyping results,

and the corresponding figure is shown as FigS4 in the S1 Supplementary material. Similar

observations as based on STAR genotyping were obtained. Table S2 in the S1 Supplementary

material shows again that the first principal coordinate is highly associated with the fraction of

B genotypes in an individual, consistent with the results using the STAR genotyping tool.

Prediction of HCC status within the training set and validations using an

independent dataset

We used two methods, K-nearest neighbors and support vector machine (SVM), to predict

HCC status based on the word pattern frequency vector of the HBV pre-S region of the

samples.

The prediction results based on KNN are given in Table 3. It can be seen from the table that

the cross validation results measured by AUC are roughly the same with different word length

k and the AUCs center around 0.88. For the independent test data, the AUC increases slightly

with the word length from 0.62 for k = 2 to 0.67 when k is between 6 and 8.

The AUC values of SVM using cross validation and testing set and corresponding parameter

C using different word length k are shown in Table 4. We observe from the table that the predic-

tion accuracy measured by AUC with cross-validation increases slightly with word length from

0.86 when k = 2 to 0.93 when k = 7. On the other hand, the AUC for the independent data

Table 3. Prediction results from KNN using different word length k. �CV: cross validation.

Word length k k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

CV mean AUC 0.86 0.87 0.87 0.88 0.88 0.89 0.89

Predicting AUC 0.62 0.64 0.66 0.65 0.67 0.67 0.67

Optimal K 15 10 5 5 5 5 5

https://doi.org/10.1371/journal.pgen.1007206.t003

HBV pre-S region and HCC
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decreases with word length from 0.77 when k = 3 to 0.70 when k = 8. When k = 2, the AUC is

only 0.65. The good performance of the SVM model when k = 3 may be due to the relatively

small number of learning samples such that the derived SVM model with small number of

word patterns is more stable.

Using a subset of words decreases the prediction accuracy in the independent data.

We also investigated the use of a subset of all the words for predicting HCC status. For each

word of length k, we calculated its fractions in the 45 CHB and 95 HCC training samples. We

then used rank sum test statistic to test whether the two populations have the same distribution

and a p-value was obtained. We sorted the p -values of all words of length k in ascending

order. For a threshold α, we select the words with p-value less than α/N, where N = 4k/2 for

odd k and N = (4k + 2k)/2 for even k because we simultaneously considered a word and its

complement for word counting. We used such a criterion based on the idea of Bonferroni cor-

rection for multiple hypothesis testing. In our study, we let α = 0.05, 0.01, 0.001. We only used

the selected words based on training set to 1) train models and predict the HCC status for

SVM, and 2) calculate the Manhattan distance for KNN. The results are presented in Tables

S3-S8 in the S1 Supplementary material. Although selecting subsets of words can give better

results for cross-validation prediction, the results for independent data prediction are worse.

Significant words of training and testing sets could be different, which results in the impor-

tance of using all words.

Prediction accuracy increases with the number of reads and is stable above 3000 reads

per sample. To investigate the effect of number of reads, we down sampled the reads from

each individual by randomly choosing N reads from each sequencing file, where N changes

from 500 to 4000 by step 500. We then used the same procedure as above to obtain the cross

validation AUC. The boxplots of the relationship between AUC values and the number of

reads using different word length k for SVM and KNN are given in Figs 4 and 5, respectively.

Several conclusions can be drawn from Fig 4 using SVM. First, for all word length k, the

mean AUC increases with the number of reads when the number of reads is smaller than 3000

and then tends to be stable. For example, when k = 6, the mean AUC is 0.90 when the number

of reads is 500, while the mean AUC increases to 0.94 when the number of reads is 3000. Sec-

ond, for a fixed number of reads, mean AUC increases with word length k. Similar patterns are

observed for KNN (Fig 5) except that the AUC becomes stable at the number of read of 1500.

For a given number of reads and word length k, the mean AUC based on SVM is higher than

that based on KNN.

Discussion

Several recent studies have clearly shown the advantage of NGS over traditional Sanger

sequencing in detecting rare HBV sequence mutations [15] and for the prediction of anti-virus

therapy response [31, 32]. In this study, we used high throughput sequencing to investigate

composition of HBV sequences in a large number of both CHB and HCC individuals, to com-

pare differences of genetic composition between them, and to predict HCC status using novel

Table 4. Prediction results from SVM using different word length k. �CV: cross validation.

Word length k k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

CV mean AUC 0.86 0.90 0.91 0.93 0.93 0.93 0.92

Predicting AUC 0.65 0.77 0.72 0.70 0.70 0.70 0.70

Optimal C 16384 16384 32768 32768 32768 32768 16384

https://doi.org/10.1371/journal.pgen.1007206.t004
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word pattern based approaches. Several interesting results were obtained. First, we showed

that there was extensive heterogeneity of HBV composition among the individuals based on

the NGS data. Almost all the individuals contain some marked fractions of both genotype B

and genotype C HBV sequences in Chinese individuals infected with HBV. Previous studies

have shown the existence of co-infection of different genotypes of HBV [33–35] and inter-

genotype HBV co-infection is the prerequisite of HBV recombination incidence that have

Fig 4. Boxplots of the relationship between AUC values and the number of readsusing different word length k for SVM. For each word

length k and number of reads N, there are 200 random replicates and AUC values.

https://doi.org/10.1371/journal.pgen.1007206.g004
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been reported broadly [36–38]. Our results highlight the importance of using NGS to study

the distribution of different genotypes within individuals.

Second, we used a novel word pattern based approach to cluster the individual samples and

investigated the cluster distributions of HCC patients and CHB individuals. Alignment-free

sequence comparison based on word counts has been widely used in studying the relationships

among sequences or NGS data as reviewed in [39, 40]. However, this approach has not been

Fig 5. Boxplots of the relationship between AUC values and the number of readsusing different word length k for KNN. For each word

length k and number of readsN,there are 200 random replicates and AUC values.

https://doi.org/10.1371/journal.pgen.1007206.g005
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used for the analysis of HBV data. In this paper, we used alignment-free sequence comparison

methods based on word counts to study the relationship among the individuals. We used a dis-

similarity matrix based on Manhattan distance between the word frequencies of the NGS data

to cluster all the individuals. We showed that there was a strong correlation between the clus-

tering and the fractions of genotypes (B or C) of individuals. This observation was surprising

and proved the effectiveness of the alignment-free method on classification based on sequence

dissimilarity.

Third, since the second coordinate of PCoA was remarkably correlated with the probability

of having HCC, we further applied K-nearest neighbors (KNN) and support vector machine

(SVM) approaches to classify HCC or CHB individuals based on word counts. Using cross-val-

idation, we achieved a high area under the receiver operational characteristic curve (AUC) of

around 0.88 for KNN and 0.92 for SVM for word length from 4 to 8.

Fourth, we validated the prediction models on an independent set of 46 HCC patients and

31 CHB individuals. The AUC for the independent set was around 0.70 when word length is

from 6 to 8 for SVM and 0.67 for KNN. Surprisingly, the AUC for SVM was 0.77 when word

length is 3. The good result of k = 3 may be explained by the appropriate number of features

compared with the number of individuals. The results showed the usefulness of our prediction

models for separating HCC patients from CHB individuals. Numerous studies have revealed

the divergence in pre-S region between CHB and HCC patients and deletions in pre-S was one

of the most noticeable characteristic of HCC patients [41–44]. In addition, fewer studies also

found that several nucleotide mutations were also associated with incidence of HCC [19, 45,

46]. Nevertheless, we have succeeded in the establishment of predictive model for HCC via the

word pattern frequencies of the pre-S gene following the NGS. The superior performances in

both the cross validation and independent cohort validation are also indicative of the advan-

tages of NGS compared with Sanger sequencing.

Finally, we showed that the HCC status can be effectively predicted based on word pattern

frequencies using support vector machine and that prediction accuracy increases with the

number of reads and becomes stable at about 3000 reads per individual. To our knowledge,

this is the first study focusing on the implication of the number of reads on model effectiveness

trained on NGS data. With the development of NGS technology, investigators are interested in

appropriate number of reads and our study provides guidelines for designing of NGS studies.

Despite these significant results, our study has several limitations. First, the numbers of

HCC and CHB individuals, although large compared to previous studies, were still not very

large and more individuals are needed to further confirm the applicability of our word pattern

based method for investigating HBV infected individuals. Second, the AUC values for the

independent test data using both KNN and SVM were much smaller than the corresponding

mean AUC values for cross-validation. Potential explanations for the lower AUC value for the

independent test data is that the independent samples may come from populations different

from that in the training data. Potential experimental variations from the testing data may also

decrease the prediction accuracy. Third, we concentrated on the HBV pre-S region in this

study and other regions may have different properties. Further studies for other regions or

even the whole genome are needed. Fourth, we investigated Chinese HCC and CHB individu-

als with dominant B and C genotypes. The applicability of our results to other ethnic groups or

population samples needs to be further investigated.

In conclusion, our study showed the applicability of word pattern based methods to investi-

gate the diversity of HBV sequences, to compare HBV communities among different individu-

als, and for the prediction of HCC status. Further studies are needed to extend the results to

much larger genomic regions over large number of individuals.
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Materials and methods

Patient samples and NGS sequencing of the HBV pre-S region

Patient samples. We first studied a set of 94 HBV related HCC and 45 CHB patients. We

originally planned to recruit about 100 HBV and 100 CHB patients. However, during the pro-

cess of sampling and sequencing, some samples were discarded due to low concentration of

HBV DNA levels (less than 104 IU/ml), failure in amplification, or low number of reads in

some files. Most HCC samples were successfully sequenced, while a large fraction of CHB sam-

ples encountered sequencing failure. Finally, HCC samples out-numbered CHB samples by a

ratio of around 2:1. All the HCC patients received curative hepatectomy (R0) between March

2011 and May 2012 at the Eastern Hepatobiliary Surgery Hospital, Shanghai, China and the

diagnoses were confirmed by operative findings and histopathological examination. Tumor

tissue samples were collected from HCC patients and serum samples were collected from CHB

patients. To validate our predictive models, we additionally enrolled 46 HCC and 31 CHB

patients as independent patient cohort and corresponding tumor tissue and serum samples

were collected. The Ethics Committee of the Eastern Hepatobiliary Hospital approved this

study with approval number EHBHKY2015-01-004 and written informed consent was

obtained from all participants.

HBV DNA extraction and Illumina sequencing of pre-S region. HBV genomes were

extracted from tumor tissue or 200μL of serum samples using QIAamp DNA Mini kit (QIA-

GEN GmbH, Hilden, Germany) and eluted in 100μL of distilled water. The pre-S region was

amplified using Phanta Super-Fidelity DNA Polymerase (Vazyme Biotech, Piscataway, New

Jersey, USA) with a pair of primers: 5’-CGCCTCATTYTKYGGGTCA-3’ (forward, nucleotides

2801–2819) and 5’-TCCKGAACTGGAGCCACC-3’ (reverse, nucleotides 62 to 79). PCR

amplicons of the pre-S region were purified with Agencourt AMPure XP beads (Beckman

Coulter. Beverly, Massachusetts) and quantified with Qubit dsDNA HS assay kit (Invitrogen,

Carlsbad, CA, USA). Library of PCR products of the pre-S region was prepared using the Tru-

Seq DNA PCR-Free sample preparation kit (Illumina, San Diego, CA, USA) and run on a

MiSeq sequencer (Illumina, San Diego, CA, USA) for paired-end sequencing, according to

Illumina’s protocol. Finally, fluorescent signals were analyzed using the MiSeq control soft-

ware and transformed to paired-end reads with 2�300 bps long sequences. We removed the

adapter sequence for each read. To process the raw reads, we first evaluated the quality of raw

reads using the online tool fastqc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

). Then we trimmed the bases at the 3’ end so that all the remaining bases have quality score

above 20 (corresponding to error rate 1%) for each read. We also analyzed the sequence data

using quality score threshold of 30 (corresponding to error rate 0.1%) resulting in shorter

higher standard pair-end reads after quality control, and the results were presented as S1 Sup-

plementary material Tables S9-S11. Next, we joined the paired-end reads with FLASH v1.2.10

(http://ccb.jhu.edu/software/FLASH/) which is widely used in NGS data processing [47, 48].

After that, we removed barcodes from the joint reads and generated sequence data in FASTQ

format. The distributions of read length before and after linking were given in S1 Supplemen-

tary material FigS6.

Sequence read genotyping

HBV were divided into ten major genotypes A to J with the dominant genotype B or C in

China. Merged pre-S region sequences were genotyped with HBV STAR software [49] that is

one of the most widely used software tools for HBV genotyping [50–52]. It is based on a statis-

tically defined, position-specific scoring model (PSSM) [53]. Even though our sequence reads
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are relatively short compared to the whole genome, it has been shown that any 300 bps

sequence segment of the polymerase N-terminal domain containing pre-S is reliable for

sequencing-based HBV genotyping [54]. STAR [49] uses all the known HBV sequences with

known genotypes to construct a PSSM for each genotype A to H (I and J are not well under-

stood) and then scores each read with respect to each genotype to have eight scores. We further

transformed the scores into Z scores as in [49]. As recommended in [49], if the maximum

score of a read was above 2.0, we predicted the genotype of the read as the one yielding the

highest Z score. If the maximum score was below 2.0, STAR uses a slide window of 150bps to

find the genotype for each window. We considered the reads with Z score below 2.0 and hav-

ing windows with distinct genotypes as recombinant reads.

Consistent with the fact that the dominant HBV genotypes are B and C in China, over 95%

of the reads are of the two genotypes or recombinants of B and C for all the samples with some

small fractions of genotype A. The fraction of recombinant reads for 95% of the samples (132/

139) was less than 5%, and only 3 samples had the fraction of recombinant reads above 20%.

Therefore, we ignored the fractions of other genotypes and recombinant reads, normalized the

fractions of B and C to sum to 1, and calculated the fraction of genotypes B and C, respectively,

for each sample.

In addition to STAR, we also used another program jpHMM [30] for the identification of

recombinant reads in NGS reads to see how different programs will affect our results. jpHMM

uses a jumping hidden Markov model to identify recombinant reads between different geno-

types. For each read, it identifies regions corresponding to a particular genotype. We defined a

read to be a non-recombinant if a consecutive region of at least 400bps belongs to the same

genotype while only at most 57bps belong to different genotypes. The details were given in the

S1 Supplementary material section 2.

Clustering of individuals based on word pattern frequencies

For each individual, we counted the number of occurrences of any word pattern of length k
(also called k-tuples, k-mers, k-grams) in the NGS data. The relative frequency of a word of

length k was its count divided by the total counts of all the words of length k for the individual.

The distance between any pair of individuals was measured by the Manhattan distance be-

tween their corresponding frequency vectors. We constructed a distance matrix of all samples

from the training set to see how the individuals cluster together. We chose the Manhattan dis-

tance because previous studies showed that it gave better clustering results than Euclidean dis-

tance for the clustering of genome sequences in many applications [55]. For different values of

k, we used principal coordinate analysis (PCoA) to project the data onto two-dimensional

space to see how the individuals group together. The basic idea of PCoA was to represent the

data in the low dimensional space so that the distances between the samples in the low dimen-

sional space are as close as possible to their true distances. In addition, we hierarchically clus-

tered the individuals based on their word pattern frequencies. We used UPGMA to calculate

the distance between any two clusters as the average of all the pairwise distances between the

pairs of individuals from both clusters.

Predicting HCC status using word pattern frequencies

We investigated the optimal approaches for predicting HCC status from the word pattern fre-

quencies. Based on the PCoA and hierarchical clustering results, it can be seen that if the word

pattern frequency vector of an individual is similar to others having HCC status, the individual

is more likely to have HCC. Therefore, we first used the K-nearest neighbors (KNN) algorithm

to predict HCC status, where K is the number of neighbors used for prediction. In KNN, an
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individual is predicted as having HCC if the fraction of HCC individuals among the top K

most similar individuals according to word pattern frequency is above a threshold. We also

used supporting vector machine (SVM) to predict HCC status using word pattern frequencies

as features. For SVM, we had several kernel functions and parameters to choose from. We

used linear kernel only here because for most cases it can work well and it has only one param-

eter C. For the parameter C, we used cross validation within the training set to choose C yield-

ing the highest AUC (area under the receiver operational characteristic curve) value and used

the parameter to construct a model for predicting the testing set.

Evaluation criteria and determination of parameters in KNN and SVM. With both

KNN and SVM, a score can be obtained based on the word pattern frequency vector of an

individual. The higher the score is, the more likely the individual has HCC. Therefore, for a

given threshold, we predicted an individual as having HCC if the score was above the threshold

and not having HCC if the score was below the threshold. By comparing with the true status of

the individuals, we were able to calculate the true positives, false positives, false negatives and

true negatives, respectively. The true positive rate (TPR) is the fraction of true positives among

the individuals having HCC. The false positive rate (FPR) is the fraction of false positives

among the individuals not having HCC. The receiver operational characteristic (ROC) curve

shows the relationship between the true positive rate and the false positive rate. The area under

the ROC curve (AUC) was used to evaluate the different prediction methods.

We used cross validation within the training set to choose the parameter K for KNN. The

cross validation procedures were as follows. From the training set containing 139 samples, we

randomly chose 100 samples containing 70 HCC and 30 CHB samples to train a model and

predicted the labels of the remaining 39 samples containing 24 HCC and 15 CHB samples. For

a given value K, we used the 100 samples to predict the labels of the remaining 39 samples

using the KNN method. For each number of neighbors K ranging in 5, 10, 15, ���, 30, we

repeated the random separation for 200 times and calculated the mean AUC value for different

K. We tried different word length k from 2 to 8 and investigated the corresponding results.

The parameter estimation for C in SVM was similar to the determination of K for KNN.

The separation of the data was the same as that for KNN. For each fixed value of C ranging

from 2−5 to 215, we obtained the SVM classifier using the 100 training samples and obtained

the AUC score using the 39 testing samples. We chose the value of C yielding the highest aver-

age AUC across the 200 separations of the data due to computational time.

Finally, we used the optimal parameters, the number of neighbors in KNN and the value of

C for SVM, and the complete 139 samples to learn optimal model for predicting HCC. We

then evaluated the different approaches using the independent data set.

Investigating the effect of the number of reads on prediction accuracy for KNN and

SVM. The number of reads can affect the accuracy of predicting HCC. If the number of

reads is low, the word pattern frequency vector may deviate from the true composition of the

word pattern in the samples resulting in low and highly variant prediction accuracy. In addi-

tion, the number of reads can vary for different sources of data. We found that the number of

reads of our data varies widely. The difference was quite common due to the experimental

technologies and random bias. Therefore, it is important to understand the effect of the num-

ber of reads on prediction accuracy. Thus, we conducted the following study to show the rela-

tionship between the number of reads and prediction accuracy.

For the data from the training set, we randomly chose N sequences to count the occur-

rences of word patterns. Here N was chosen to be 500 to 4000 by step 500. If the total number

of reads was smaller than N, we just used the entire reads set. We then use the same procedures

as above to obtain the AUC scores using both KNN and SVM.
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Supporting information

S1 Table. The normalized fraction of genotypes B and C of the individuals used in this

study. The fraction of genotypes is computed using both STAR and jpHMM. Both training

set and independent set of individuals are included.

(XLSX)

S1 Supplementary material. Supplementary results including Figs S1-S6 and Tables S1-S11.

(PDF)

S1 Fig. The histogram of the fraction of recombinant reads for 139 samples detected by

STAR using the threshold Z score of 2 as recommended in Myers et al [49].

(TIF)

S2 Fig. (a) The histogram of the fraction of recombinant reads among the 139 samples

using the genotyping tool jpHMM. (b) The relationship between the fractions of genotype

B using jpHMM and STAR. For STAR, we only considered reads having score above 2.0. For

jpHMM, only reads with at least 400 bps consecutive region of the same genotype were consid-

ered. All fractions were normalized such that the sum of genotypes B and C is 1. Each dot cor-

responds to a sample.

(TIF)

S3 Fig. (a) The histograms of genotype B reads among the 94 HCC patients and 45 CHB individ-

uals genotyped using jpHMM. (b) The relationship between the ratio of the fraction of HCC indi-

viduals in the bin over that of the CHB individuals and the fraction of genotype B sequences.

(TIF)

S4 Fig. PCoA plots based on the 94 HCC and 45 CHB patients. The distance matrix is calcu-

lated based on the Manhattan distance between the frequency vectors of word patterns of

length (a) k = 6 and (b) k = 8, respectively. Color shows the fractions of geno-types B and C

reads based on the jpHMM genotyping results. Red represents 100% genotype B and blue rep-

resents 100% genotype C. Reference B and C sequences are also added on the figures as refer-

ences. The relationship between the first principal coordinate and the fraction of genotype B

calculated using jpHMM, (c): k = 6, (d): k = 8.

(TIF)

S5 Fig. The hierarchical clustering results of 94 HCC and 45 CHB samples from the first

data set. The samples are colored with four different colors: red means HCC sam-ples with

genotype C dominant, yellow means HCC samples with genotype B dominant, green means

CHB samples with genotype C dominant, and blue means CHB samples with genotype B dom-

inant. The dominant genotype is defined as the genotype having the largest fraction. The geno-

type fractions are calculated using jpHMM.

(TIF)

S6 Fig. Histograms of read length: (a) data trimmed under Q20, (b) data trimmed under

Q30. Number of reads in the corresponding files are indicated in the legend.

(TIF)
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4. Norder H, Couroucé A-M, Magnius LO. Molecular basis of hepatitis B virus serotype variations within

the four major subtypes. Journal of General Virology. 1992; 73(12):3141–5.

5. Okamoto H, Tsuda F, Sakugawa H, Sastrosoewignjo RI, Imai M, Miyakawa Y, et al. Typing hepatitis B

virus by homology in nucleotide sequence: comparison of surface antigen subtypes. Journal of general

Virology. 1988; 69(10):2575–83.

6. Lindh M, Andersson A-S, Gusdal A. Genotypes, nt 1858 variants, and geographic origin of hepatitis B

virus—large-scale analysis using a new genotyping method. Journal of Infectious Diseases. 1997; 175

(6):1285–93. PMID: 9180165
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