
*For correspondence:

alessandro.furlan@univ-lille.fr (AF);

david.tulasne@ibl.cnrs.fr (DT)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 20

Received: 09 July 2019

Accepted: 12 February 2020

Published: 24 February 2020

Reviewing editor: Joaquı́n M

Espinosa, University of Colorado

Anschutz Medical Campus,

United States

Copyright Duplaquet et al.

This article is distributed under

the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

Control of cell death/survival balance by
the MET dependence receptor
Leslie Duplaquet1, Catherine Leroy1†, Audrey Vinchent1†, Sonia Paget1,
Jonathan Lefebvre1, Fabien Vanden Abeele2, Steve Lancel3, Florence Giffard4,
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Abstract Control of cell death/survival balance is an important feature to maintain tissue

homeostasis. Dependence receptors are able to induce either survival or cell death in presence or

absence of their ligand, respectively. However, their precise mechanism of action and their

physiological importance are still elusive for most of them including the MET receptor. We

evidence that pro-apoptotic fragment generated by caspase cleavage of MET localizes to the

mitochondria-associated membrane region. This fragment triggers a calcium transfer from

endoplasmic reticulum to mitochondria, which is instrumental for the apoptotic action of the

receptor. Knock-in mice bearing a mutation of MET caspase cleavage site highlighted that p40MET

production is important for FAS-driven hepatocyte apoptosis, and demonstrate that MET acts as a

dependence receptor in vivo. Our data shed light on new signaling mechanisms for dependence

receptors’ control of cell survival/death balance, which may offer new clues for the pathophysiology

of epithelial structures.

Introduction
The Hepatocyte Growth Factor-Scatter Factor (HGF/SF) receptor MET was discovered three decades

ago. Its importance was highlighted during embryogenesis and injury repair, and also in neurode-

generative diseases and cancers (Furlan et al., 2014). MET activation triggers a wide variety of bio-

logical responses such as survival, proliferation, and migration. The HGF/SF-MET pair notably plays a

crucial role in the liver, both during development (Maina et al., 2001) and, in adults, in tissue

homeostasis and regeneration (Borowiak et al., 2004).

In addition to the survival role of ligand-activated MET, the receptor can also promote apoptosis.

This has led to classifying it as a dependence receptor. MET cleavage by caspases leads to produc-

tion of p40MET, an intracellular 40 kDa fragment that can amplify apoptosis, detected in apoptotic

primary hepatocytes and mouse livers (Lefebvre et al., 2013).

Caspase cleavage of MET occurs at the C-terminal DNID1374 and the juxtamembrane ESVD1000

sites (mouse sequence). The juxtamembrane site overlaps with the DY1001R site containing a phos-

phorylated tyrosine (ESVD1000p-Y1001R) responsible for the recruitment of CBL involved in the recep-

tor degradation (Peschard et al., 2004). Although C-terminal caspase cleavage of MET removes

only five amino acids in mice, a p40MET fragment to which these C-terminal amino acids remain

attached loses its apoptotic potential (Foveau et al., 2007; Ma et al., 2014).
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The p40MET fragment amplifies apoptosis through mitochondrial membrane permeabilization

leading to the release of pro-apoptotic factors. Mitochondrial permeabilization is regulated by anti-

apoptotic BCL2-family proteins and by pro-apoptotic BH3-only proteins such as BAX and BAK

(Wei et al., 2001). While specific silencing of BAK significantly inhibits the apoptotic capacity of

p40MET, no evidence of direct interaction between p40MET and a BH3-only protein has been

reported to date nor the mechanism involved (Lefebvre et al., 2013).

Besides their outer mitochondrial membrane (OMM) localization, the pro-apoptotic BH3-only pro-

teins have also been described at the endoplasmic reticulum (ER) (Zong et al., 2003). In this organ-

elle, they can interact with calcium channels such as inositol triphosphate receptors (IP3R) and

thereby cause deregulation of the calcium flux between the ER and the mitochondria (Nutt et al.,

2002; Scorrano et al., 2003; Zong et al., 2003; Oakes et al., 2005). Several studies have shown

calcium overload in the mitochondrial matrix to cause membrane permeabilization though mitochon-

drial Permeability Transition Pore (mPTP) opening that can trigger mitochondrial swelling and OMM

disruption (for review see Brenner and Grimm, 2006).

In the present study, we have evidenced p40MET in the mitochondria-associated endoplasmic

reticulum membrane (MAM) region and have characterized p40MET-triggered calcium transfer from

the ER to the mitochondria, which is important for its proapoptotic activity. We have also engineered

a knock-in mouse model expressing MET mutated at caspase site in order to assess its importance

in physiological apoptosis in vivo.

Results

p40MET localizes to the interface between the ER and the
mitochondria
To gain insights into the pro-apoptotic function of MET, we compared p40MET fragment with its

non-apoptotic variant p40MET D1374N, mutated at the C-terminal caspase site, both fragments

fused to Enhanced Green Fluorescent Protein (GFP) (Figure 1a; Figure 1—figure supplement 1a).

In MCF10A epithelial cells, ectopic expression of GFP-p40MET induced cytochrome C release and

caspase 3 cleavage as efficiently as the previously published flag-p40MET, in contrast to GFP-

p40MET D1374N or GFP alone (Figure 1b–c; Figure 1—source data 1; and representative pictures

in Figure 1—figure supplement 1b–c). Furthermore, in p40MET-transfected cells, treatment with a

pan-caspase inhibitor increased the proportion of cells displaying cytochrome-C release, a likely con-

sequence of an inhibition of late apoptosis, which would impair apoptotic cell detachment and favor

their detection (Figure 1—figure supplement 1d; Figure 1—source data 1). To assess the proa-

poptotic property of MET in hepatocytes, similar experiments were performed in immortalized

human hepatocytes (IHH) (Schippers et al., 1997). In these cells, apoptosis induced by BH3 mimetic

promoted p40MET generation, which was inhibited by pan-caspase inhibitor treatments and by MET

silencing (Figure 1—figure supplement 2). Moreover, ectopic expression of GFP-p40MET in this

cell line induced caspase 3 cleavage (Figure 1d; Figure 1—source data 1).

Because of a partial overlap between p40MET and mitochondrial signals acquired by immunofluo-

rescence (Lefebvre et al., 2013; Figure 1—figure supplement 3), we wondered whether p40MET

might localize to a peculiar zone very close to mitochondria, namely the MAM region. MAMs consti-

tute a subdomain with direct interactions between the ER and mitochondria. They notably play a cru-

cial role in amplifying cell death (Naon and Scorrano, 2014). We thus examined whether p40MET

might co-localize with Fatty Acid CoA Ligase 4 (FACL4), a protein residing mostly in MAMs, and this

proved to be the case (Figure 1e; Figure 1—source data 1). FACL4 was also found to colocalize

with the p40MET D1374N fragment, but not with GFP. To confirm this localization via another

approach, endogenous p40MET was generated by an apoptotic stress and subcellular fractionation

was performed. Mitochondrial fraction was enriched in the mitochondrial Ca2+ uniporter (MCU) and

an ER fraction in the ER chaperon protein calnexin. The MAM fraction displayed both MCU and cal-

nexin, as expected, and was enriched in FACL4 (Figure 1f). p40MET was found exclusively in the

MAM fraction, in agreement with the immunofluorescence.
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Figure 1. Locating the p40MET fragment by immunofluorescence and subcellular fractionation. (a) Schematic representation of MET receptor cleavage

by caspase during apoptosis, with besides representation of the GFP-p40MET fragment and of the GFP-p40MET D1374N fragment which still

possesses the C-terminal tail. (b, c, d) MCF10A (b–c) or IHH (d) cells were transiently transfected with a vector expressing GFP, GFP-p40MET, GFP-

p40MET D1374N, or flag-p40MET. After 24 hr transfection for MCF10A and 48 hr for IHH, the cells were fixed and labeled with an appropriate

Figure 1 continued on next page
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The p40MET fragment partners with the BH3-only protein BAK
The subcellular localization of the proapoptotic p40MET fragment prompted us to further investi-

gate functional relationship between p40MET and BCL2 family proteins. Indeed, beside their locali-

zation at the outer membrane of mitochondria, BCL2 proteins were found localized at the ER, both

localization being involved in apoptosis regulation (Scorrano et al., 2003; Rong et al., 2008). To

determine the putative involvement of the pro-apoptotic BCL2 family proteins in p40MET-induced

apoptosis, BAK, BAX or BOK were silenced in p40MET transfected MCF10A (Figure 2—figure sup-

plement 1a) and IHH cells (Figure 2—figure supplement 2a). In MCF10A, BAK siRNA abrogated

MET fragment induced caspase 3 activation and cytochrome C release, BOK silencing partially inhib-

ited them, while BAX silencing had no effect (Figure 2—figure supplement 1b–c; Figure 2—figure

supplement 1—source data 1). Similar results were obtained in IHH cells regarding p40MET

induced caspase 3 activation (Figure 2—figure supplement 2b; Figure 2—figure supplement 2—

source data 1). These results are consistent with our previous study on the impact of BAK and BAX

silencing on the apoptosis of MCF10A cells transfected with p40MET-Flag (Lefebvre et al., 2013)

and confirmed the main involvement of BAK in p40MET-induced apoptosis. To elucidate whether

p40MET actually interacts with BAK and other BCL2 family members, molecular engineering was car-

ried out to fuse these proteins with mTurquoise2 (mT2) or Super Yellow Fluorescent Protein 2

(SYFP2) in order to perform FRET (Förster Resonance Energy Transfer) experiments (Figure 2a; Fig-

ure 2—figure supplement 3a–b). Previous experiments had determined that this fluorophore cou-

ple was convenient for FRET quantification by fluorescence lifetime (Bidaux et al., 2018). The FRET

lifetime analysis is based on the fact that transfer energy between the donor (mT2 here) and its

acceptor (SYFP2) accelerates the fluorescent decay of the donor. Although maximum FRET efficiency

measured in that way hardly reaches 10%, it is interestingly not dependent on the fluorophore con-

centration in contrast to the intensity-based method. As a positive control, BAK-mT2 and BCL-XL-

SYFP2 co-transfection led to a mean FRET efficiency of 8% (in agreement with what can be obtained

for other heteromeric proteins), while it was negligible (<0.1%) with vector encoding freely diffusing

SYFP2 (Figure 2b; Figure 2—source data 1). Co-transfection with the vectors encoding BAK-mT2

and p40MET-SYFP2also gave rise to FRET about 2.5% efficiency (Figure 2b; Figure 2—source data

1). In the reverse donor-acceptor configuration, we found a mean FRET efficiency of 4% confirming

the interaction (Figure 2c; Figure 2—source data 1). We also noticed a FRET phenomenon occur-

ring between p40MET and BAX (with mean values respectively at 2.5% and 4.3%) (Figure 2—figure

supplement 4a–b; Figure 2—figure supplement 4—source data 1). In contrast, p40MET-mT2

hardly interacted with BCL-XL (1.5% mean FRET efficiency). These results are to be compared with

the 1% FRET efficiency recorded for negative control cells co-transfected with freely diffusing SYFP2

Figure 1 continued

antibody: anti-flag when transfected with the vector expressing flag-p40MET, anti-cytochrome C or anti-cleaved caspase 3 antibody to evaluate

apoptosis. The percentage of cytochrome C release or of cleaved-caspase-3-positive cells was determined with respect to the number of GFP- or flag-

positive cells. At least 150 cells per well (n = 6;± S.D.) (b), 200 cells per well (n = 6;± S.D.) (c) and 60 cells per well (n = 4;± S.D.) (d) were counted. (e)

MCF10A epithelial cells were transfected with a vector expressing GFP, GFP-p40MET, or GFP-p40MET D1374N. Twenty-four hours after transfection,

the nuclei were stained with Hoechst (blue staining) and immunofluorescence staining was performed with anti-FACL4 to label the MAMs (red staining).

Cells were observed by fluorescence confocal microscopy. Weighted colocalization coefficients were determined by means of Manders coefficients for

green staining (of GFP, GFP-p40MET, or GFP-p40MET D1374N) and FACL4 staining (red) on the basis of the fluorescence confocal microscopy images

(n = 30;±S.D.). (f) MCF10A cells were starved overnight and treated for 4 hr with 1 mM staurosporine (STS). After treatment, the cells were fractionated

into ER, MAM and mitochondrial fractions. Proteins from whole-cell lysates (50 mg) and from the different fractions (20 mg) were analyzed by western

blotting with antibodies against the MET kinase domain, the reticular protein calnexin, the MAM protein FACL4, and the inner mitochondrial

membrane protein MCU. The positions of prestained molecular weight markers are indicated. Arrows indicate the positions of p40MET, calnexin,

FACL4 and MCU; scale bar = 10 mm, ns, nonsignificant; *, p<0.05; **, p<0.01; ***, p<0.001 as determined by Student’s t test.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data of Figure 1b–c–d and Figure 1—figure supplement 1d reporting counting of GFP, active caspase 3, and cytochrome C

release positive cells, calculation of the percentage, mean and SD, diagram conception and statistical analyses; source data of Figure 1e reporting the

coefficient of fluorescence colocalisation, calculation of the mean, SD and statistical analyses.

Figure supplement 1. Validation of the vectors expressing GFP-p40MET and GFP-p40MET D1374N.

Figure supplement 2. p40MET fragment generation in IHH cells.

Figure supplement 3. Partial overlap between GFP-p40MET and mitotracker signals acquired by immunofluorescence.
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Figure 2. FRET measurement to analyze p40MET and BAK interaction. (a) Schematic representation of the mTurquoise2- or SYFP2-tagged proteins

used for FRET analysis. (b) Cells were co-transfected with a vector expressing BAK-mT2 as FRET donor and with a vector expressing free SYFP2, BCL-

XL-SYFP2, EYFP-IP3R1 or p40MET-SYFP2 as FRET acceptor. The fluorescence lifetime of BAK-mT2 was measured by Time-Correlated Single Photon

Counting (TCSPC) and the FRET efficiency was calculated with respect to the donor-alone condition. At least 35 cells were counted for each condition.

Figure 2 continued on next page
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(Figure 2c; Figure 2—source data 1). In a similar way, the study of p40MET interaction with BOK

resulted in negative output (Figure 2—figure supplement 4a–c; Figure 2—figure supplement 4—

source data 1) whereas a strong interaction between BOK and BCL-XL was evidenced.

In order to confirm the importance of p40MET interaction with BAK in hepatic cells, we carried

out FRET experiments with these proteins in IHH cells. We actually found a 1.5% FRET efficiency

(p<0.05) for a transfer from mT2-p40MET to SYFP2-BAK and 5.0% for a transfer from mT2-BAK to

SYFP2-p40MET (p<0.001) (Figure 2—figure supplement 4d–e; Figure 2—figure supplement 4—

source data 1). The interaction between p40MET and BAK is thus confirmed in these liver-derived

cell lines.

Since BAK can control apoptosis via the modulation of ER Ca2+ release, we wondered whether

we might detect interactions between BAK or p40MET and IP3Rs. No FRET was detected between

BAK-mT2 or p40MET-mT2 and IP3R1-EYFP (Figure 2b–c; Figure 2—source data 1). Hence, this last

part of experiment does not allow us to conclude on the putative involvement of IP3R in p40MET-

triggered apoptosis. Interactions between BCL2 family members involve the BH3 (BCL2 homology 3)

domain found notably in BH3-only protein such as BID or BIM but also in BH3-like proteins including

the receptor tyrosine kinase ERBB2 and ERBB4 (Naresh et al., 2006; Strohecker et al., 2008).

Alignment of BH3 domain from BH3-only and BH3-like proteins with p40MET sequence revealed a

putative BH3 domain with an LXXXXD core motif conserved in mice and humans (Figure 2—figure

supplement 5a). Mutation of the corresponding L1110 and D1115 residues in GFP-p40MET abro-

gated its pro-apoptotic activity (Figure 2—figure supplement 5b–c; Figure 2—figure supplement

5—source data 1). Furthermore, FRET experiments with plasmids encoding mT2-p40MET and

SYFP2-p40MET mutated or not on L and D residues (Figure 2a; Figure 2—figure supplement 3a–

b) showed that mutation of the potential BH3-like domain of p40MET decreased its interaction with

BAK (Figure 2d–e; Figure 2—source data 1). Taken together, these results suggest that p40MET

interacts directly with BAK through a putative BH3-like domain and that this partner might partici-

pate in the pro-apoptotic action of p40MET.

Apoptosis amplification by p40MET involves calcium flux deregulation
Under stress conditions, the ER can release Ca2+ via functional units present mostly in MAMs. Within

MAMs, IP3R channels are very close to the MCU channels of the mitochondria, and this allows Ca2+

uptake by the mitochondria. Ca2+ overload in the mitochondria leads to their permeabilization and

Figure 2 continued

(c) Cells were co-transfected with a vector expressing p40MET-mT2 as FRET donor and a vector expressing free SYFP2, BAK-SYFP2, EYFP-IP3R1 or BCL-

XL-SYFP2 as FRET acceptor. The fluorescence lifetime of p40MET-mT2 was measured by TCSPC and the FRET efficiency was calculated with respect to

the donor-alone condition. At least 40 cells were counted for each condition. (d and e) Cells were co-transfected with a vector expressing BAK-mT2 as

FRET donor and with a vector expressing free SYFP2, p40MET-SYFP2 mutated or not at the L and D residues of the putative BH3-like domain as FRET

acceptor (d). Inversely, cells were co-transfected also with vectors expressing p40MET-mT2 mutated or not on the L and D residues as FRET donor and

a vector expressing free SYFP2, BAK-SYFP2, or BCL-XL-SYFP2 as FRET acceptor (e). The fluorescence lifetime of p40MET-mT2 and BAK-mT2 were

measured by TCSPC and the FRET efficiency was calculated with respect to the donor-alone condition. At least 30 cells were counted for each

condition.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data of Figure 2b-e reporting FRET source data and diagram conception.

Figure supplement 1. Effect of BAK, BAX and BOK silencing on p40MET-induced apoptosis in MCF10A cells.

Figure supplement 1—source data 1. Source data of Figure 2—figure supplement 1b–c reporting counting of GFP, active caspase 3, and cyto-

chrome C release positive cells, calculation of the percentage, mean and SD, diagram conception and statistical analyses.

Figure supplement 2. Effect of BAK, BAX and BOK silencing on p40MET-induced apoptosis in IHH cells.

Figure supplement 2—source data 1. Source data of Figure 2—figure supplement 2b reporting counting of GFP and active caspase 3 positive cells,

calculation of the percentage, mean and SD, diagram conception and statistical analyses.

Figure supplement 3. Validation of the vectors expressing m-Turquoise2- or SYFP2-tagged proteins in FRET experiments.

Figure supplement 4. FRET experiments between p40MET and BCL2 family members.

Figure supplement 4—source data 1. Source data of Figure 2—figure supplement 4a–e including FRET source data and diagram conception.

Figure supplement 5. Consequence of putative BH3 domain mutation on p40MET-induced apoptosis.

Figure supplement 5—source data 1. Source data of Figure 2—figure supplement 5b–c reporting counting of GFP, active caspase 3 and cyto-

chrome C release positive cells, computation of the percentage, mean and SD, diagram conception and statistical analyses.
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ultimately to apoptosis (Naon and Scorrano, 2014). Because, BAK has been described to play a role

in this process by promoting Ca2+ release from the ER (Scorrano et al., 2003), we checked for a

possible involvement of Ca2+ in p40MET-induced apoptosis. We found p40MET-induced cyto-

chrome C release to be inhibited in MCF10A cells cultured in Ca2+-free medium (Figure 3a; Fig-

ure 3—source data 1). In addition, Ca2+ chelation prevented p40MET-induced cytochrome C

release in MCF10A cells or caspase 3 activation in IHH (Figure 3b–c; Figure 3—source data 1). Sim-

ilar inhibition of cytochrome C release in MCF10A were observed upon treatment with xestospongin

B, a potent IP3R inhibitor (Figure 3d; Figure 3—source data 1), or with an siRNA against MCU

(Figure 3e–f; Figure 3—source data 1). Apoptosis induced by staurosporine was unaffected by

such treatments (Figure 3—figure supplement 1a–c). Taken together, our data demonstrate that a

Ca2+ flux between the ER and mitochondria is required for p40MET-induced cytochrome C release

from the mitochondria.

To further evaluate the impact of p40MET on Ca2+ exchange, we used thapsigargin, a sarcoplas-

mic-endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitor. SERCA inhibition causes the depletion of

the ER Ca2+, allowing indirect measurement of the ER Ca2+ concentration with Fura-2, a cytosolic

calcium probe. After thapsigargin addition, GFP-p40MET-expressing cells showed a significantly

lower Fura-2 fluorescence peak than cells expressing GFP-p40MET D1374N or GFP (Figure 3g). This

suggests that the ER Ca2+ pool was depleted after p40MET transfection. To see if this depletion was

accompanied by Ca2+ accumulation in the mitochondria, we used a mitochondrion-specific biosen-

sor, 4mtD3cpv. This probe consists of a fluorescent FRET couple linked to a calmodulin binding site,

allowing Ca2+-dependent modulation of FRET. We found p40MET transfection to increase the FRET

efficiency by 26% (p=0.0013) as compared to transfection with a control plasmid, suggesting a sub-

stantial increase of the calcium concentration in mitochondria (Figure 3h; Figure 3—source data 1).

Lastly, we examined whether mPTP pore opening, which can be driven by mitochondrial calcium

overload, might participate in p40MET-induced apoptosis. As suspected, mPTP inhibition by cyclo-

sporin A was found to reduce the p40MET-induced apoptosis (Figure 3i; Figure 3—source data 1).

Altogether, these data show that p40MET impairs the ER-to-mitochondria calcium homeostasis,

eventually causing a mitochondrial calcium overload and permeabilization.

Generation of a new MET knock-in mouse model and derived primary
cell lines to study MET pro-apoptotic activity
To investigate the in vivo involvement of MET cleavage in apoptosis, we used Cre-Lox recombination

to develop a knock-in mouse model where the Met gene locus is modified in the C-terminal caspase

site (Figure 4a–b). The mutation introduced is D1374N, as in the above-described in vitro experi-

ments, and it prevents C-terminal cleavage. We chose to mutate residue D1374 rather than the jux-

tamembrane residue D1000 because the latter also belongs to the DYR sequence driving Cbl

recruitment, mutating it would probably alter both mechanisms.

As in vivo studies on apoptosis classically induce the animal’s death and in order to comply with

animal model ethics recommendations, we chose first to derive primary cell models to validate the

relevance of MET cleavage by caspases ex vivo and to evaluate the response to several apoptotic

conditions. We focused on primary cells that are long-lived and do not require animal dissection for

each experiment. First results showing D1374N Mouse Embryonic Fibroblasts (MEFs) to be more

resistant than wild-type to anisomycin treatment evidenced the importance of the caspase cleavage

site for optimal apoptosis (Figure 4—figure supplement 1a–b; Figure 4—figure supplement 1—

source data 1). MEFs, however, produce relatively low levels of MET receptor (Foveau et al., 2007),

so we chose to derive more relevant long-lived cells, namely Bipotential Mouse Embryonic Liver

(BMEL) cells to analyze MET involvement in the liver survival-apoptosis balance. Several WT and

MET D1374N BMEL clones were derived from embryonic livers. We selected two WT clones (A and

B) and two D1374N clones (A and B) displaying comparable BMEL marker expression quantified by

RT-Q-PCR (Krt19, Hnf4a as BMEL markers; Aldob, Alb, as markers of differentiated hepatocytes)

(Figure 4c; Figure 4—figure supplement 1c). We first found WT and D1374N BMEL clones to show

comparable doubling times (Figure 4d). In addition, HGF/SF stimulation induced islet scattering

with equal efficiency in the WT and D1374N clones (Figure 4e). The D1374N MET mutation likewise

did not alter either HGF-induced MET phosphorylation or AKT and ERK phosphorylation (Figure 4f).

Similar results were obtained with the other pair of WT and D1374N BMEL clones (Figure 4—figure

supplement 1d–e). Lastly, massive apoptosis induced by a 7 hr staurosporine treatment led to
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Figure 3. Evaluation of p40MET-induced apoptosis after inhibition of calcium exchanges between the ER and mitochondria. (a, b) MCF10A epithelial

cells were starved overnight in a calcium-free medium or treated with the calcium chelator BAPTA-AM (10 mM). The next day cells were transfected with

a vector expressing a GFP-tagged fragment. (c) IHH cells were transfected with a vector expressing a GFP-tagged fragment and treated the next day

with the calcium chelator BAPTA-AM (10 mM) for 24 hr. (d) MCF10A cells were transiently transfected with a vector expressing GFP, GFP-p40MET, or

Figure 3 continued on next page
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generation of the p40MET fragment in the WT cells and of a slightly longer p40MET D1374N frag-

ment in the D1374N cells, in agreement with the presence of the C-terminal tail, which was pre-

vented by pan-caspase inhibitors (Figure 4g). In conclusion, hepatic progenitors from WT and

D1374N mice responded similarly to HGF/SF but produced, under apoptotic conditions, either

p40MET or the longer p40MET D1374N fragment.

Hepatic progenitors depend on p40MET to complete the apoptosis
process
A first hint regarding the relative sensitivities of WT and MET D1374N cells to apoptosis was

obtained by removing the collagen coating and comparing the abilities of these cells to adapt to

this stress. Whereas the WT cells failed to grow under these conditions, MET D1374N BMEL cells

formed small clusters from day 2, showing a better capacity to cope with the loss of matrix-driven

signals (Figure 5a; Figure 5—figure supplement 1). Next, a 4 hr treatment with staurosporine, used

to induce partial apoptosis, proved suitable for comparing cell death in the two cell lines. While

staurosporine treatment induced caspase 3 and PARP cleavages in the WT cells, these cleavages

were undetected in the MET D1374N cells (Figure 5b). Immunostaining for cleaved caspase 3 fur-

ther showed the MET D1374N cells to be more resistant than the WT cells to staurosporine-induced

apoptosis (Figure 5c; Figure 5—source data 1). Resistance to apoptosis in MET D1374N cells was

also observed upon BH3 mimetic ABT737 treatment (Figure 5—figure supplement 2). These results

demonstrate the importance of MET cleavage for apoptosis amplification in hepatic progenitors.

To assess how calcium flux affects apoptosis in this cell model, we evaluated caspase 3 activation

after Ca2+ flux inhibition. First, a lower percentage of MET D1374N BMEL cells than WT cells dis-

played staurosporine-induced caspase activation as shown above (Figure 5d; Figure 5—source

data 1). Second, only the WT population responded to the additional presence of the IP3R inhibitor

xestospongin, confirming involvement of Ca2+ flux for p40MET induced cell death. Next, to evaluate

mitochondrial Ca2+ uptake by WT and MET D1374N BMEL cells, we assessed the capacity of BMEL-

cell mitochondria to buffer cytoplasmic Ca2+ increases upon addition of exogenous Ca2+. We

treated WT and MET D1374N BMEL cells with staurosporine, permeabilized and incubated them

with a calcium-green fluorescent probe, and injected exogenous Ca2+. A rapid and transient increase

in cytosolic Ca2+ was followed by a decrease due to uptake of the Ca2+ excess by the mitochondria

Figure 3 continued

GFP-p40MET D1374N and treated or not with the IP3R inhibitor xestospongin-B (5 mM). (a–d) After 24 hr transfection for MCF10A and 48 hr for IHH,

cells were fixed and processed for immunostaining with an anti-cytochrome C or anti-cleaved caspase 3 antibody to evaluate apoptosis. The

percentage of cytochrome C release or of cleaved caspase-3-positive cells was determined with respect to the number of GFP positive cells. At least

100 cells were counted per well (n = 6;± S.D.) for MCF10A and at least 60 cells (n = 4;± S.D.) for IHH. (e–f) One day before transfection with a vector

expressing a GFP-tagged fragment, MCF10A cells were transfected with a control siRNA or with a mixture of three siRNAs targeting the mitochondrial

calcium channel MCU. Twenty-four hours later, (e) one part of the cells was lysed and extracts were analyzed by western blotting with an anti-MCU and

an anti-GAPDH antibody. (f) For immunofluorescence, staining was performed with an anti-cytochrome-c antibody and nuclei were labeled with

Hoechst. The percentage of transfected cells displaying cytochrome-c release was determined. At least 60 cells were counted per well (n = 3;± S.D.). (g)

HEK293 cells were transfected with a vector expressing a GFP-tagged fragment. The next day, the cells were incubated in Ca2+-free HBS solution and

treated with 1 mM Thapsigargin (Tg). The calcium concentration was determined by estimating the uncorrected 340 nm/380 nm fluorescence ratio of

fura-2AM. At least 20 cells were measured per condition (n = 3;± S.D.). The presented results are representative of three independent experiments.

Black arrows indicate Tg injection. (h) HEK293 cells were co-transfected with the 4mtD3cpv biosensor and a plasmid encoding either GFP or GFP-

p40MET. The CFP fluorescence lifetime was recorded and the FRET efficiency, indicative of the calcium level in the mitochondria, was calculated with

respect to the level observed for the control, set as reference. At least 30 cells were counted for each condition (n = 3;± S.D.). Below, schematic

representation of the 4mtD3cpv biosensor constituted by two fluorescent probes linked by a calmodulin binding site, allowing FRET measurement. (i)

MCF-10A epithelial cells were transiently transfected with a vector expressing GFP, GFP-p40MET, or GFP-p40MET D1374N and were treated or not

with 2.5 mM cyclosporinA (CSA). Twenty-four hours after transfection, the nuclei were stained with Hoechst and immunofluorescence staining was

performed with an anti-Flag antibody and an anti-cytochrome C antibody. The percentage of MET-transfected cells displaying cytochrome C release

was determined. At least 200 cells were counted per well (n = 3;± S.D.). ns, non significant; *, p<0.05; **, p<0.01 as determined by Student’s t test.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data of Figure 3a–b–c–d–f–i reporting counting of GFP, active caspase 3 and cytochrome C release positive cells, computation

of the percentage, mean and SD, diagram conception and statistical analyses; source data of Figure 3h including FRET source data and diagram

conception.

Figure supplement 1. Involvement of calcium flux in staurosporine-induced apoptosis.
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Figure 4. Generation of MET knock-in mice mutated at the C-terminal caspase cleavage site and isolation of hepatic progenitors. (a) Strategy for

generating knock-in mice. The targeted Met allele is depicted. White boxes represent Met exon 22 with, in red, the generated knock-in (KI) mutation

GAT >AAT (D1374N). Bold black arrowheads indicate LoxP sites. The positions of the genotyping primers are marked with thin black arrows. (b) To

confirm the presence of the KI mutation in Met exon 22, PCR genotyping was performed with primers flanking the loxP sites and amplifying a 476 bp of

Figure 4 continued on next page
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(Figure 5e). This process was repeated until mitochondrial uptake was no longer possible, as

attested by a fluorescence plateau. After the first injections, MET D1374N cells took up Ca2+ more

efficiently than WT cells. Furthermore, on average, mitochondrial uptake stopped in the WT cells at

a total concentration of 100 mM, versus 140 mM for the MET D1374N cells (Figure 5e–f; Figure 5—

source data 1). This lower Ca2+ uptake capacity of staurosporine-treated WT BMEL cells as com-

pared to MET D1374N BMEL cells suggests that the former are already overloaded with Ca2+, possi-

bly because of p40MET generation.

C-terminal caspase cleavage of MET is required in vivo for optimal
apoptosis in the mouse liver
WT and MET D1374N mice displayed no obvious phenotypic differences and interbreeding between

WT, D1374N, and heterozygous mice gave the expected Mendelian distributions (Figure 6a–b).

D1374N mice did not display any notable developmental anomalies in agreement with a functional

pro-survival MET signaling. We also looked more carefully at the organization of the liver and mam-

mary glands, organs known to require MET activity for their proper morphogenesis, which displayed

normal organization (Figure 6c; Figure 5—figure supplement 1).

To investigate the sensitivity of WT and MET D3174N mouse liver tissues to apoptosis, we

focused on FAS-induced fulminant hepatitis, a condition in which HGF/SF production is reported to

promote hepatocyte survival (Kosai et al., 1998). To prevent any survival response induced by

ligand-activated MET, mice were treated beforehand with crizotinib, a potent clinically used MET

inhibitor (Zhang et al., 2016). HGF/SF was indeed able to induce a survival response in primary

hepatic progenitors and this response was reduced by crizotinib (Figure 6—figure supplement 2a–

b) Therefore, mice received crizotinib orally before administration of FAS agonistic antibody by intra-

peritoneal injection. Caspase 3 activation was scored by the mean of image analysis on liver slices,

according to the proportion of stained area (from negative – (0% to 2%) to highly positive +++

(>10%)). As expected, the livers of animals not having received a FAS injection were negative for

cleaved caspase 3 staining (Figure 6d; Figure 6—figure supplement 3a). Four hours after FAS injec-

tion, the WT mice displayed more caspase 3 activation than D1374N mice, with respectively 62% (8/

13) and 27% (2/15) highly positive livers. Conversely, only one WT liver out of 13 (8%) was found

negative for caspase 3 activation, as opposed to 47% (7/15) of the D1374N livers (Figure 6e; Fig-

ure 6—source data 1; Figure 6—figure supplement 3b for a complete-panel illustration), clearly

demonstrating the resistance of MET D1374N mice to apoptosis induction, with respect to WT mice.

Overall, 92% (12/13) of the WT mice were positive for cleaved caspase 3 staining, as compared to

53% (8/15) of the MET D1374N mice. Dosage of plasma transaminase activities, ALAT (alanine ami-

notransferases) and ASAT (aspartate aminotransferases), can also be used to monitor liver injury. In

independent experiments, ALAT and ASAT concentrations were therefore measured in plasma from

WT and MET D1374N mice before and after FAS-agonist treatment. The resistance of MET D1374N

mice to FAS-induced apoptosis was corroborated by these dosages, since WT mice displayed a

Figure 4 continued

the wild-type allele (WT) and a 563 bp fragment of the Met KI allele (D1374N). (c) Levels of Krt19, Hnf4a, Aldob, and Alb transcripts were measured by

RT-qPCR in Bipotential Mouse Embryonic Liver cell (BMEL) clones derived from WT and MET D1374N mice, and murine hepatocytes as a control.

Analyses of two WT BMEL clones (Clones A and B) and two D1374N clones (clones A and B) are shown. The results presented are averages of three

independent experiments, with errors bars showing standard deviations. (d) BMEL cells were cultured under routine conditions and were counted after

24, 48, or 72 hr and the doubling times of the WT and MET D1374N BMEL cells were established by averaging the values obtained for the two

corresponding clones. (e) Cells were seeded at low confluence. The next day the cells were starved for 30 min in the presence or absence of 10 ng/ml

HGF/SF. Representative pictures were taken after 24 hr; scale bar = 100 mm (f) BMEL cells were starved overnight in RPMI-0% FCS and stimulated or

not for 10 min with 20 ng/ml HGF/SF. For each condition, the same amount of whole cell lysate was analyzed by western blotting with antibodies

against mouse MET, ERK, AKT, and their phosphorylated forms. (g) BMEL cells were treated for 7 hr with 1 mM staurosporine (STS) with or without the

pan-caspase inhibitor zVAD-FMK or Q-VD (20 mM). The same amount of protein was resolved by SDS-PAGE and analyzed by immunoblotting with

antibodies against the MET kinase domain and cleaved PARP, to assess apoptosis induction, and GAPDH, to assess loading.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Figure supplement 1. Culture phenotype of MEF and BMEL cells and responses of WT-B and D1374N-B clones to survival or apoptosis induction.

Figure supplement 1—source data 1. Source data of Figure 4—figure supplement 1b reporting counting of active caspase 3 positive cells according

to the number of cells per field, computation of the mean, percentage, SD, diagram conception and statistical analyses.
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Figure 5. Comparison of WT and MET D1374N BMEL cell death. (a) Representative pictures of BMEL cells (clones WT-A and D1374N-A) cultured for 1,

2, and 3 days (d1, d2 and d3) without a collagen coating; scale bar = 100 mm. (b–c) BMEL cells were cultured for 24 hr on a (b) Petri dish or (c) an ibidi

slide, both coated with poly-L-lysine, and treated for 4 hr with 1 mM staurosporine. (b) For each condition, the same amount of whole-cell lysate was

analyzed by western blotting with antibodies against cleaved caspase 3, PARP1, and GAPDH. (c) Cells were fixed and immunofluorescence staining was

Figure 5 continued on next page

Duplaquet et al. eLife 2020;9:e50041. DOI: https://doi.org/10.7554/eLife.50041 12 of 22

Research article Cell Biology

https://doi.org/10.7554/eLife.50041


significantly greater proportion of mice with a plasma level of transaminases at least doubled

(>100% increase over the initial level) with respect to MET D1374N mice (Figure 6f). Four hours

after FAS injection, 82% of WT mice (14/17) had doubled their plasma ALAT levels vs only 46% (5/

13) of MET D1374N mice (Figure 6f; Figure 6—source data 1). Similarly, the plasma ASAT levels

had doubled for all WT mice (17/17) vs 70% of MET D1374N (9/13) mice. This was mirrored by a

greater proportion of MET D1374N mice in groups with moderate ALAT and ASAT level increases

(<50% increase and 50% to 100% increase) (Figure 6f; Figure 6—source data 1). The MET D1374N

mice thus displayed resistance to FAS-induced apoptosis, which demonstrates the importance of

MET C-terminal caspase cleavage for optimal apoptosis in vivo and highlights MET function as a

dependence receptor.

Discussion
The function of a protein is largely determined by its location and by its molecular partners. This is

well illustrated by the MET dependence receptor. Whereas full-length MET is located at the plasma

membrane and allows response to its ligand, MET cleavage by caspases in the absence of its ligand

unleashes an intracellular fragment that can amplify apoptosis. The p40MET fragment thus affects

the activity of the mitochondria, a central hub in determining the cell life/death balance.

In this study we demonstrate that p40MET localizes to MAMs, a microdomain where the ER is

closely apposed with mitochondria. A growing body of evidence demonstrates that this microdo-

main is involved in various cellular processes, including intra-organelle Ca2+ exchange. The juxta-

posed membranes promote ER-mitochondrion Ca2+ transfer through the IP3R channel at the ER

membrane and through the VDAC and MCU channels at the outer and inner mitochondrial mem-

branes. Massive calcium entry into the mitochondria leads to mPTP opening, enabling the release of

mitochondrial components. Interestingly, BCL-2 family proteins are shown to localize to both the ER

and the mitochondria and to control calcium homeostasis (Scorrano et al., 2003; Oakes et al.,

2005). The anti-apoptotic members Bcl-2 and Bcl-XL can interact with IP3R channels and modulate

ER Ca2+ homeostasis, thus promoting apoptosis resistance (Li et al., 2007). Conversely, the pro-

apoptotic proteins BAX and BAK can induce massive calcium leakage from the ER, followed by mito-

chondrial Ca2+ accumulation and apoptosis (Nutt et al., 2002) Recent findings demonstrate that

BAK facilitates calcium transfer by promoting contacts between mitochondria and the ER

(Mebratu et al., 2017). We have previously reported BAK silencing or Bcl-XL overexpression to

reduce p40MET-induced apoptosis (Lefebvre et al., 2013). Interestingly, the results of our FRET

experiments show that p40MET interacts with BAK but not Bcl-XL.

Given the observed localization and BAK being a partner of p40MET, we investigated p40MET

possible involvement on calcium flux regulation. We show here that inhibiting calcium exchanges

prevents p40MET-induced apoptosis, since culturing cells in Ca2+ depleted medium impairs the pro-

apoptotic action of p40MET, as does a treatment with an inhibitor of ER (IP3R) or the silencing of

Figure 5 continued

performed with anti-cleaved caspase 3 antibody. Nuclei were stained with Hoechst. At least 200 cells per well were counted and the percentages of

cleaved-caspase 3 positive cells, averaged over three independent experiments, are represented (n = 6;± S.D.). (d) BMEL cells were cultured for 24 hr

on an ibidi slide coated with poly-L-lysine and treated for 4 hr with 5 mM xestospongin-B and 1 mM staurosporine. Immunofluorescence staining was

performed with an anti-cleaved caspase-3 antibody. The nuclei were stained with Hoechst. At least 80 cells per well were counted and percentages of

cells displaying cleaved caspase 3 are shown (n = 3;± S.D.) (e) BMEL cells (WT-A and D1374N-A) were treated for 4 hr with 1 mM staurosporine to

induce apoptosis. The mitochondrial Ca2+ uptake capacity of digitonin-permeabilized BMEL cells (250000/ml) was measured with a cytosolic calcium

green Ca2+ probe upon addition of sequential Ca2+ pulses (black and gray arrows) to the medium in an O2K-oxygraph apparatus (Oroboros). (f) The

measurements of three independent experiments were averaged. ns, nonsignificant; *, p<0.05; **, p<0.01; ***, p<0.001 as determined by Student’s t

test. Black arrows = Ca2+ injection for WT and D1374N cells; gray arrows = Ca2+ injection for D1374N cells only.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data of Figure 5c–d reporting counting of GFP and active caspase 3 positive cells, computation of the percentage, mean and

SD, diagram conception and statistical analyses; source data of Figure 5f reporting concentration of Ca++ uptake, computation of the mean and statis-

tical analysis.

Figure supplement 1. Culture of BMEL WT-B and D1374N-B clones without collagen coating.

Figure supplement 2. Induction of BMEL apoptosis by ABT 737.
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Figure 6. Evaluation of hepatocytes apoptosis in WT and D1374N mice. (a) Pictures of newborn wild-type (WT) and MET D1374N mice; scale bar = 1

cm. (b) Pie chart representation of the proportions of WT, heterozygous (HT) and homozygous (HO) progeny obtained by crossing mice with different

genotypes. (c) WT and MET D1374N mouse liver sections stained with hematoxylin/eosin, showing a hepatic lobule with a centro-lobular vein at the

center; scale bar = 50 mm. (d) Example of hematoxylin/eosin and cleaved-caspase 3 staining (brown) in the livers of WT mice pretreated before the

Figure 6 continued on next page
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mitochondrial (MCU) calcium channels. Furthermore, using Ca2+ probes with different specificities,

we have shown that in the presence of p40MET, the ER is depleted of Ca2+ while the mitochondria

are overloaded. The MAM location of p40MET is thus in agreement with its action on the intrinsic

apoptotic pathway. In the light of our various findings, we propose that upon MET cleavage by cas-

pases, p40MET is released into the cytoplasm where it interacts with BAK at MAMs and promotes a

Ca2+ flux from the ER to the mitochondria, causing mitochondrial permeabilization and apoptosis

amplification (Figure 7).

The MET receptor’s ability to induce both survival in the presence of ligand and apoptosis in the

absence of ligand enables us to classify it as a dependence receptor. Dependence receptors dis-

played a great variety of mechanisms to promote apoptosis (Negulescu and Mehlen, 2018). For

example, both DCC and UNC5H receptors undergo caspase cleavage and act as caspase activators

though death-domain unmasked by the cleavage and carried by the part that remains membrane-

anchored (Mehlen et al., 1998; Llambi et al., 2001). The TrkC receptor, on the other hand, releases

upon caspase cleavage a pro-apoptotic fragment which shuttles to the mitochondria and promotes

BAX activation (Ichim et al., 2013). We highlight here another original mechanism. To the best of

our knowledge, this is the first time a dependence receptor has been shown to act via regulation of

the Ca2+ flux.

Knock-out of the Met or Hgf/sf gene is lethal in utero and leads to a reduced liver size associated

with decreased hepatocyte proliferation (Schmidt et al., 1995; Uehara et al., 1995). Furthermore,

altered liver regeneration has been found in MET-deficient mice (Huh et al., 2004). Here we have

engineered a novel knock-in model to investigate the physiological impact of the pro-apoptotic

p40MET fragment. We have found that liver and mammary gland organogenesis, both of which

depend on MET pro-survival signaling, are not affected by the MET D1374N mutation. These data

validate the specificity of our model for studying MET pro-apoptotic activity. Following apoptosis

induction with a FAS agonist and pretreatment with MET inhibitor to prevent ligand-dependent sur-

vival, we observed more apoptosis in WT than in MET D1374N mouse livers, thus evidencing for the

first time that MET acts as a dependence receptor in vivo. It would be interesting now to assess the

importance of p40MET pro-apoptotic activity in pathological situations such as hepatic steatosis, in

which cells expressing the MET receptor face and try to adapt to stresses.

Dependence receptors have placed the role of apoptosis in tumorigenesis in an unexpected per-

spective. Overexpression of the ligand of the Deleted in Colorectal Cancer (DCC) dependence

receptor inhibits its pro-apoptotic activity and can promote spontaneous adenoma formation

(Mazelin et al., 2004). Although DCC-deficient mice (like MET D1374N mice, data not shown) do

not develop spontaneous tumors, experiments in which they were crossed with mice bearing a can-

cer-predisposing APC mutation suggest that DCC acts as a conditional tumor suppressor gene

(Castets et al., 2012). In agreement with this concept, the COSMIC (Catalogue of Somatic Muta-

tions in Cancer) database lists six MET mutations affecting the MET caspase sites in various cancers.

Also described are exon 14 splice-site mutations found in 3% of pulmonary tumors and leading to

Figure 6 continued

experiment with 100 ml of 5 mg/ml Crizotinib and then treated for 4 hr with Jo-2 antibody against FAS (4 mg/20 g mouse weight); scale bar = 300 mm.

(e) WT and D1374N mice were treated as reported in (d). The total liver area and cleaved caspase-3 staining area were quantified for each slide. The

data represent the distribution of cleaved-caspase 3 staining scores (-: 0% to 2%; +: 2% to 5%; ++: 5% to 10%; +++:>10%). In each column, the number

of mice obtaining each score is indicated. Statistical analysis applied to differences in negative (-) and positive (+, ++ and +++) staining between WT

and D1374N. p<0.05 was determined by Fisher test (WT: n = 13; D1374N: n = 15). (f) WT and D1374N mice were treated as reported in (d). Blood

samples were collected just before and 4 hr after Jo-2 antibody treatment. The graphs represent the distribution of the evolution of plasma ALAT (left)

or ASAT (right) levels between these 2 time points (up to 50% increase, 50–100% increase or more than 100% increase). Statistical analysis applied to

differences in <100% increase and >100% increase between WT and D1374N. p<0.05 was determined by Fisher test (WT: n = 17; D1374N: n = 13).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data of Figure 6e reporting percentage of active caspase 3 in liver IHC, repartition in staining score (-;+;++;+++), computation

of the percentages, diagram conception and statistical analyses; source data of Figure 6f reporting ALAT and ASAT concentration in mouse blood, rel-

ative increase, diagram conception and statistical analyses.

Figure supplement 1. Mammary gland organization in WT and MET D1374N mice.

Figure supplement 2. Evidence of Crizotinib efficacy against HGF-induced survival in BMEL cells.

Figure supplement 3. Complete-panel illustration of cleaved-caspase 3 staining of liver slices.
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loss of the MET juxtamembrane domain, which contains the caspase site leading to p40MET release

(Duplaquet et al., 2018) Altogether, the presence of these multiple MET-caspase-cleavage-abolish-

ing mutations supports the notion that the MET pro-apoptotic function might put a brake on

tumorigenesis.

This study highlights MET as a key regulator of the cell survival-apoptosis balance. In addition to

shedding light on pathophysiological mechanisms, this feature of MET may be relevant to their ther-

apeutic targeting. In diseases with exacerbated cell death, such as hepatic steatosis, one might

restore the balance by favoring MET pro-survival signaling with ectopic HGF/SF treatment. To favor

cancer cell death on the other hand, one might combine MET kinase activity inhibition with agents

promoting its pro-apoptotic action. Elucidating the mechanisms of MET pro-survival and pro-death

signaling is instrumental to identifying new possible targets and to expanding, potentially, the thera-

peutic arsenal.

Figure 7. Schematic representation of the MET pro-survival and pro-apoptotic pathways in the presence of HGF/SF, MET receptor dimerizes and

activates pro-survival signaling by activating the MAPK and PI3K/AKT pathways. In the absence of ligand, MET is cleaved by caspase 3 at a

juxtamembrane and a C-terminal site to generate the p40MET fragment, which translocates to the MAM microdomain. p40MET may interact with BAK

and promote deregulation of the Ca2+ flux between the ER and the mitochondria, causing mitochondrial permeabilization involved in amplification of

apoptosis. This dual role of MET classifies it as a dependence receptor. D1374N MET, mutated at the C-terminal caspase site, generates a slightly

longer fragment that can no longer promote apoptosis. Upon stress induction by FAS activation in WT and D1374N mice, D1374N hepatocytes show

less apoptosis. This suggests that C-terminal caspase cleavage of MET is important for optimal apoptosis in vivo.
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Materials and methods

Cytokines, drugs, and cell cultures
HGF/SF was purchased from Peprotech (Rocky Hill, NJ, USA) Anisomycin from Calbiochem (San

Diego, CA, USA), staurosporine from Sigma (St Louis, MO, USA) and ABT 737 from Santa Cruz Bio-

technology (Santa Cruz, CA, USA). Pan-caspase inhibitor zVAD-FMK was purchased from Calbio-

chem and Q-VD-OPH from Sigma. HEK293 cells (CRL-11268) and MCF10A human mammary

epithelial cells (CRL-10317) were purchased at the ATCC and were cultured as previously described

(Lefebvre et al., 2013). Bipotential mouse embryonic liver (BMEL) cells were harvested from E14

embryos as described (Strick-Marchand and Weiss, 2002). The immortalized human hepatocytes

(IHH) cells were provided by Dr F. Kuipers (Groningen, The Netherlands) and cultured as previously

described (Schippers et al., 1997). All our cell lines were cultured in presence of 1% ZellShield

(Minerva Biolabs) and are tested every three months for presence of mycoplasma (MycoAlert LT07-

218, Lonza, ME, USA).

Transfections and RNA interference
Transfections of HEK293 cells on 6-well plates and 60 mm Petri dishes were performed with FuGENE

HD (Promega; 2 mg DNA, 8 ml FuGENE, 100 ml Opti-MEM in 1.5 ml complete medium) or in X-treme-

GENE 9 DNA (Roche; 2 mg DNA, 3 ml X-tremeGENE 9, 100 ml medium without serum in 3 ml com-

plete medium). For the immunofluorescence, MCF10A or IHH were plated on glass coverslips in 12-

well plates at 100,000 and 50,000 cells per well, respectively. The next day, they were transfected

with FuGENE HD. For MCU, BAK, BAX and BOK silencing, MCF10A or IHH were first transfected

with Lipofectamine 2000 (2.5 ml per ml final volume) with control Stealth siRNA or the following

siRNA; for MCU (a combination of three siRNAs: HSS132001-3 Invitrogen; 150 nM final concentra-

tion); for BAK (HSS184085; 50 nM); for BAX (HSS141354; 50 nM); for BOK (HSS141392; 50 nM). After

that, transfection with the plasmid was carried out as described. Analyses were performed 24 hr or

48 hr after plasmid transfection for MCF10A and IHH, respectively. The previously described MET

siRNA (Kherrouche et al., 2015) were transfected in IHH cells cultured in 6-well plates at 150,000

cells/well as described above. For FRET, HEK293T cells were seeded on glass-bottom dishes (Mat-

Tek; coverslip #1.5) and transfected in FuGENE HD.

Plasmid engineering
p40MET-EGFP constructs were obtained by insertion of the PCR-amplified cDNA with primers con-

taining XhoI and BamHI restriction sites into pEGFPC3 (Clontech). The p40MET mutated at L1110E

and D1115E was created with the QuickChange site-directed mutagenesis system of Stratagene.

BAK, BAX, BOK, and BCL-XL fusions with mTurquoise 2 and SYFP2 were generated by PCR amplifi-

cation on Flag-tagged BAK, BAX or BCL-XL or BOK-EGFP (kind gift from Pr Thomas Kaufmann, Uni-

versity of Bern, Switzerland), with EcoRI and XhoI restriction enzymes into mTurquoise2 and SYFP2

plasmids (Pr T.W. J. Gadella and Dr. J. Goedhart, Amsterdam). p40MET-mTurquoise 2 and SYFP2

were obtained by PCR amplification of p40MET-EGFP and cloned with KpnI and BamHI. The IP3R1-

EYFP plasmid was a kind gift from Dr. Geert Bultynck, Leuven, Belgium.

Antibodies
FAS antibody (Jo-2) was purchased from Becton Dickinson. Antibody against the MET cytoplasmic

domain was purchased from Life Technology (3D4/37-0100). Antibody against the C-terminal

domain of human MET (L41G3), the MET phosphorylated tyrosine (Y1234/1235)(#3126), the phos-

pho-ERK (Thr202/Tyr204)(#9106), phospho-AKT (Ser-473) (#9271), MCU, and cleaved Casp3

(asp175, #9661) were purchased from Cell Signaling Technology (Danvers, MA). Antibody against

cytochrome C(20E8) was purchased from BD Biosciences (San Jose, CA). Antibody against calnexin

(ab75801) was purchased from Abcam (Cambridge, MA), antibody against FACL4/ACSL4 (NBP2-

16401) from Novus Biologicals (Oakville, ON, Canada), antibody against GFP from Sigma (Saint

Louis, MO). Green-fluorescent Alexa fluor 488 conjugated anti-mouse IgG and red-fluorescent Alexa

fluor 594 conjugated anti-rabbit IgG were purchased from Invitrogen. Antibodies against PARP-1

(sc-7150), GAPDH (sc-32233, ERK2 (sc-154) and AKT (sc-8312) were purchased from Santa Cruz
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Biotechnology (Santa Cruz, CA). Peroxidase-coupled secondary antibodies were from Jackson Immu-

noresearch Laboratories (West-Grove, PA).

Immunofluorescence staining
MCF-10A were plated on glass coverslips in 12-well plates (100,000 per well) and transiently trans-

fected the next day as described. BMEL cells were plated on m-slide 8-well poly-L-lysine (Ibidi,

20,000 per well) and treated for 4 hr with staurosporine (1 mM). IHH cells were plated on glass cover-

slips coated with poly-L-lysine (100 mg/ml) in 12-well plates (50,000 per well) and transiently trans-

fected the next day as described. After transfection or treatment, the cells were washed and fixed in

4% PFA. They were permeabilized with PBS containing 0.5% Triton X-100 and blocked 30 min in

0.2% casein. Incubation with primary antibodies was carried out for 1 hr. The cells were washed with

PBS and incubated for 1 hr with a combination of Alexa Fluor-conjugated secondary antibodies

(Alexa Fluor 488 anti-mouse IgG and Alexa Fluor 594 anti-rabbit IgG; 2 mg/ml). The nuclei were

counterstained with Hoechst 33258. For fluorescence microscopy, slides were observed in an Axion

Imager Z1 (Carl Zeiss), numerical aperture PC-Plan NEOFLUAR 40x/1.3 oil and the ZEN acquisition

software. Ibidi chambered coverslips were observed in an inverted-lens microscope (AxioObserver

Z1 Video-DG4 numerical aperture; Plan APOCHROMAT 40x/1.3 oil). Mitochondria were stained with

100 nM MitoTracker (Invitrogen). Cells were washed and fixed in methanol:acetone (1:1 v/v). MAM

and ER staining was performed as described. Slides were observed in an LSM 880 Laser Scanning

Confocal Microscope (Carl Zeiss), numerical aperture PLAN-APOCHROMAT 63x NA 1.4. Weighted

colocalization coefficients were measured with the JACoP plugin of ImageJ software using Manders

Coefficients. The immunofluorescence experiments were performed at least two times.

Immunohistochemistry staining
Livers were fixed in 4% PFA, dehydrated in successive baths (30%, 70%, 95%, and 100% ethanol and

toluene), and paraffin-embedded. Immunohistochemistry was performed to detect cleaved caspase

3 using a Ventana Discovery XT autostainer on 4 mm-thick sections. Slides were deparaffinized with

EZPrep buffer and epitopes unmasked in CC1 EDTA buffer. Sections were incubated 40 min with

anti-cleaved caspase 3 antibody (1/1000). Secondary antibody (Omnimap Rabbit Ventana) was incu-

bated 16 min. After washes, staining was performed with DAB and sections were counterstained

with Hematoxylin. Whole slide images were digitized at 20 � using the ScanScope CS scanner (Leica

Biosystems, Nussloch, Germany).

Subcellular fractionation
MCF10A were treated for 4 hr with staurosporine (1 mM) and the MAM, ER, and mitochondrial frac-

tions were isolated as previously described Wieckowski et al. (2009).

FLIM-FRET
HEK293T cells were seeded into 35 mm glass-bottom dishes (MatTek, Ashland, MA) and transfected

as described. Imaging was performed at 37˚C in a thermostatic chamber in L-15 medium. FLIM was

carried out with a Nikon A1 inverted confocal coordinated with a 440 nm pulsed laser (PicoQuant,

Berlin, Germany) set at 40 MHz. FRET experiment were performed by Time-Correlated Single Pho-

ton Counting (TCSPC) methods by using hybrid detector (Picoquant) and a TCSPC counting card for

photon counting (HydraHarp400; PicoQuant). NIS (Nikon) and SymPhoTime64 (PicoQuant) softwares

were used to handle acquisition. Fluorescence lifetime determinations were performed as described

Leray et al. (2013). FRET efficiency was calculated as follows: EFRET = 1 TDA/TD, from measurement

of the donor lifetime in presence of the acceptor (TDA) and the donor alone lifetime (TD) in

reference.

Calcium measurements
HEK293 cells were grown on a glass bottom dish and transfected as described. 24 hr later, cells

were loaded for 30 min at 37˚C with 5 mM Fura-2 AM immediately prior to acquisition and rinsed in

HBSS medium with 0.04 g EGTA pH >7. The emitted fluorescence of Fura-2 was captured at 510 nm

with a photomultiplier-based system (Photon Technologies International Ltd, Princeton, NJ) after cell

excitation at alternately 340 and 380 nm. Thapsigargin (1 mM) was added 5 min after the start of
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acquisition. [Ca2+] was calculated from the ratio of the emitted fluorescence excited by 340 light to

that excited by 380 nm light (Grynkiewicz et al., 1985). The 4mtD3cpv biosensor was a generous

gift from Roger Tsien (University of California, San Diego). FRET transfer was measured by lifetime

analysis, as described. To measure mitochondrial calcium in BMEL, the cells were resuspended in cal-

cium buffer (150 mM KCl, 5 mM KH2PO4, 1 mM MgCl2, 5 mM Tris pH 7.4) containing 0.5 mM rote-

none, 10 mM succinate, and 2.5 mM ADP. They were then permeabilized with 2.5 mg/millions-of-cell

digitonin. Cells were placed in an Oroboros chamber (Oroboros Oxygraph-2k Instruments) and cal-

cium green probe (Life Technologies) was added at 0.2 mM and the fluorescence intensity was mea-

sured with an O2K-Fluo Led2-module. A pulse of calcium was delivered every 2 min (10 mM final

concentration) until the mitochondria became overloaded.

Real-time RT-PCR
Total RNA was extracted with the Nucleospin RNA/Protein Kit (Macherey-Nagel). cDNA was

reverse-transcribed with random hexamers (Applied Biosystems, Green Island, NY, USA). Levels of

Krt19 (CK19), Hnf4a (HNF4a), Aldob (aldolase b) and Alb (albumin) mRNAs were evaluated by real-

time RT-PCR with Fast SYBR Green mix (Applied Biosystems). Relative gene expression levels were

calculated using the 2-DDCt method. The level of each transcript was normalized to the Ppia (pepti-

dylprolyl isomerase A). The primers used were: Krt19, 5’-CCTGGAGATGCAGATTGAGAG-3’; 5’-

AGGATCTTGGCTAGGTCGACA-3’); Hnf4a (5’-CCTCTTCCTTCCTGGTGC-3’; 5’-GCCTCCAGA-

GAGATGGCTTTA-3’), Aldob (5’- AGCGGGCTATGGCTAAC-3’; 5’-GAGGCTGTGAAGAGCGAC-3’);

and Alb (5’- AAGGCTGCTGACAAGGAC-3’; 5’-GGTTGTGGTTGTGATGTG-3’).

Mouse model strategy
Transgenic MET D1374N mice were obtained at the Mouse Clinical Institute in Strasbourg, France

by homologous recombination in C57/bl6 embryonic stem cells with a plasmid bearing exons 21, 22

of Met gene with the GAT codon coding residue Asp1374 mutated to AAT coding for an Asn. A

floxed neo cassette was inserted downstream of the met sequence. After Cre recombinase action, a

unique loxP site remained. Chimeric mice were obtained after injection of mutated ES cells and

crossed with C57/bl6 mice. The mice were cared in accordance with FELASA recommendations with

protocols approved by the CEEA75 Ethics Committee (agreement B59-350009). Mice were geno-

typed by PCR: 5’-AAATCGGTAGCTCTCCGTAATTCATCC-3’ and 5’-CCTGAATCAGGCATCTCA-

CAATGATCT-3’.

FAS-injection-induced apoptosis in mice
For the in vivo apoptotic studies, each genotype of male C57BL/6 mice of comparable ages and

weighing 20–30 g, were randomly separated and force-fed with 200 ml of 5 mg/ml Crizotinib (Sigma)

5 days, 2 days, and 1 day before the experiment. After fasting overnight, the mice were injected

intraperitoneally with anti-FAS antibody (Jo2, 4 mg/20 g). Four hours later, the mice were sacrificed

by cerebral dislocation. Their livers were perfused with PBS, quickly removed, and placed in 4% PFA.

Plasma aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT) activities were

determined by colorimetric assay following the manufacturer recommendations (Biolabo).

Western blotting
Western blotting were performed at least two times as previously described Paumelle et al.

(2002). For Key Resources Table see the Supplementary file 1.
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