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Automated coronary calcium scoring using deep learning with
multicenter external validation

David Eng'*', Christopher Chute''*, Nishith Khandwala?, Pranav Rajpurkar@®', Jin Long? Sam Shleifer’, Mohamed H. Khalaf @,
Alexander T. Sandhu®, Fatima Rodriguez (@7, David J. Maron®, Saeed Seyyedi®, Daniele Marin®, llana Golub’, Matthew Budoff’,
Felipe Kitamura @®°, Marcelo Straus Takahashi@?, Ross W. Filice'®, Rajesh Shah@®'", John Mongan '?, Kimberly Kallianos'?,
Curtis P. Langlotz ", Matthew P. Lungren?, Andrew Y. Ng' and Bhavik N. Patel '3

Coronary artery disease (CAD), the most common manifestation of cardiovascular disease, remains the most common cause of
mortality in the United States. Risk assessment is key for primary prevention of coronary events and coronary artery calcium (CAC)
scoring using computed tomography (CT) is one such non-invasive tool. Despite the proven clinical value of CAC, the current
clinical practice implementation for CAC has limitations such as the lack of insurance coverage for the test, need for capital-
intensive CT machines, specialized imaging protocols, and accredited 3D imaging labs for analysis (including personnel and
software). Perhaps the greatest gap is the millions of patients who undergo routine chest CT exams and demonstrate coronary
artery calcification, but their presence is not often reported or quantitation is not feasible. We present two deep learning models
that automate CAC scoring demonstrating advantages in automated scoring for both dedicated gated coronary CT exams and
routine non-gated chest CTs performed for other reasons to allow opportunistic screening. First, we trained a gated coronary CT
model for CAC scoring that showed near perfect agreement (mean difference in scores = —2.86; Cohen’s Kappa = 0.89, P < 0.0001)
with current conventional manual scoring on a retrospective dataset of 79 patients and was found to perform the task faster
(average time for automated CAC scoring using a graphics processing unit (GPU) was 3.5+ 2.1 s vs. 261 s for manual scoring) in a
prospective trial of 55 patients with little difference in scores compared to three technologists (mean difference in scores = 3.24,
5.12, and 5.48, respectively). Then using CAC scores from paired gated coronary CT as a reference standard, we trained a deep
learning model on our internal data and a cohort from the Multi-Ethnic Study of Atherosclerosis (MESA) study (total training n =
341, Stanford test n =42, MESA test n = 46) to perform CAC scoring on routine non-gated chest CT exams with validation on
external datasets (total n = 303) obtained from four geographically disparate health systems. On identifying patients with any CAC
(i.e., CAC= 1), sensitivity and PPV was high across all datasets (ranges: 80-100% and 87-100%, respectively). For CAC = 100 on
routine non-gated chest CTs, which is the latest recommended threshold to initiate statin therapy, our model showed sensitivities
of 71-94% and positive predictive values in the range of 88-100% across all the sites. Adoption of this model could allow more
patients to be screened with CAC scoring, potentially allowing opportunistic early preventive interventions.

npj Digital Medicine (2021)4:88; https://doi.org/10.1038/541746-021-00460-1

INTRODUCTION guidelines, such as initiation of statins and anti-hypertensives

Cardiovascular disease (CVD) is the leading cause of death
globally, responsible for approximately 17.9 million deaths in
2016'. Heart disease, the most common manifestation of CVD,
remains the most common cause of mortality in the United States,
accounting for over 655,000 deaths in 2016% Coronary artery
disease (CAD), the most common type of heart disease, was
responsible for 365,914 deaths in the United States in 20173
Coronary events are estimated to occur every 25s with a death
from the event occurring every minute in the United States”. Risk
assessment is the cornerstone for primary prevention of CVD and
coronary events, particularly as the long asymptomatic latency
period of CAD provides a window of opportunity for early
preventive intervention®. Moreover, treatment decisions and

are based on 10-year risk estimations using risk scores®™. The
American College of Cardiology and the American Heart Associa-
tion currently recommend use of the Pooled Cohort Equations to
guide risk assessment and tailor preventive therapies. However,
these and other risk prediction tools remain imperfect and have
significant limitations including poor performance across diverse
populations'®. Furthermore, many patients fall into an indetermi-
nant or intermediate risk categories, requiring use of additional
noninvasive assessment for proper risk stratification”''2,
Coronary artery calcium (CAC) scoring using computed tomo-
graphy (CT) is one of the most powerful independent noninvasive
predictors of CAD and has been shown to discriminate well across
diverse populations'"'>™'. Coronary calcium burden on cardiac CTs,
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Table 1. Cohort demographics and statistics for gated model.
Characteristic Retrospective gated coronary CT cohort Prospective gated coronary
CT cohort
Training Validation Test Total Test

No. of individuals (%F) 697 (51) 78 (56) 79 (43) 854 (51) 55
No. of exams 708 79 79 866 55
Mean age (range [+standard 56.9 (22-86 57.2 (18-82[+12.5]) 56.5 (27-85 56.9 (18-86 56.7 (35-75(+10.5])
deviation]) [£12.5]) [£11.8]) [£12.4])
% Flash scanner (vs. Force) 50.4 443 57.0 50.5 45.5
% GE Scanner (vs. Siemens) N/A N/A N/A N/A N/A
CAC Score Bucket

| 346 40 40 426 25

I 55 9 3 67 10

1] 115 14 16 145 11

1\ 91 9 8 108 5

\Y 99 8 13 120 4

expressed as Agatston scores, has been shown to be more
prognostic and clinically useful when treatment decisions are
unclear for patients categorized as intermediate risk using traditional
risk models>®'". Despite the clinical value of CAC scoring, the current
clinical practice for CAC assessment arguably has two major
limitations. First, CAC scoring using gated coronary CT scans, the
gold standard, often require significant resources, which may not be
operationally feasible at small centers. These include capital intensive
CT machines and specialized monitoring (e.g. electrocardiogram
(ECG) gating and potential administration of beta-blockers)'®'”. After
image acquisition, specialized software on independent worksta-
tions, accredited 3D imaging labs, and specialized technologists to
separately perform the task of coronary artery segmentations and
calcium burden quantification is typically required. This clinical
workflow paradigm often results in delay of reporting the official
CAC score. Moreover, some imaging centers may not be able to offer
coronary calcium risk assessment due to the lack of aforementioned
human and capital resources. A second, and perhaps a far more
significant, limitation is the millions of patients who undergo routine,
non-gated chest CTs for non-cardiac indications (e.g., lung cancer
screening, infection, etc.) which demonstrate coronary artery disease
but whose presence is not routinely reported nor quantified thereb:
missing potential opportunities for early disease prevention'®.
Automation of CAC scoring has the potential to address these
shortcomings in current clinical practice.

Recent advances in deep learning techniques in image
recognition and image segmentation have motivated research
in applying deep learning applications to automated analysis of
medical imaging'®?2% Though many semi-automated and few
automated calcium scoring methods using gated CTs have been
proposed in the literature, to our knowledge, no study to date has
reported fully automated vessel-specific coronary calcium scoring
using an end-to-end deep learning architecture with prospective
validation and multi-center external validation®>%°. Additionally,
while some studies?®~? have reported the feasibility of automated
methods to quantify coronary calcium from non-gated unen-
hanced chest CTs, they are either not end-to end*”?® or do not use
deep learning methods®’*°, Most importantly, for validation, none
of these studies®®—? curated a dataset comprised of a strong
clinical reference standard for ground truth, which calls into
question the clinical claims and require further validation.

In this work, we hypothesized that deep learning models can
reliably provide accurate and rapid coronary artery calcium
scoring using both gated coronary calcium and routine non-
gated chest CTs. Thus, the purpose of our study was to develop
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two deep learning models that automatically quantify vessel-
specific CAC score using gated coronary calcium and non-gated
chest CTs. For the non-gated model training and testing, we used
a strong reference standard using calcium scores derived from
gated studies. We externally validated our non-gated model on
paired gated and non-gated datasets from four major geographi-
cally disparate health systems.

RESULTS

In this study, two deep learning models were developed that
automate CAC scoring using gated unenhanced coronary CT and
non-gated unenhanced chest CT, respectively. Please refer to the
methods section for complete details regarding the datasets used,
architecture details, deep learning model training, and reference
standard. Tables 1 and 2 show the cohort demographic
information and statistics from our internal and external sites.

Retrospective gated coronary model

Using a test set of 79 studies in 79 patients (Table 1),
Bland-Altman analysis showed little difference in individual
vessel-specific scores between manually derived scores and those
predicted by the model (mean difference [95% confidence interval
(C]: —2.86 [—88.49, 82.71]) (Figs. 1 and 2 and Supplementary Fig.
1). Biases [95% CI] for each vessel were —3.10 [—33.80, 27.59], 4.57
[—23.94, 33.08], —1.99 [—27.06, 23.09], and —2.37 [—75.51, 70.77]
for left main (LCA), left anterior (LAD), left circumflex (LCX), and
right coronary (RCA) arteries, respectively. Qualitatively, color
coded masks of coronary calcium generated by the model and
those manually appeared similar with small differences (Fig. 2).
Kolmogorov-Smirnov (K-S) test showed no statistically significant
difference in the distribution of CAC scores using the two methods
(P=10.99). When bucket scores (I-V, for Agatston scores of 0, 1-10,
11-100, 101-400, >400, respectively) were compared using
Cohen’s Kappa statistic, there was almost perfect agreement
between the two methods (Kappa = 0.89, P <0.0001).

Prospective validation of gated coronary model

A prospective trial of 55 patients (Table 1) who were referred to
our department for CAC scoring was performed to compare
automated scores to those derived manually by three technolo-
gists. Bland-Altman analysis showed little difference when
comparing automatic to the three manually derived individual
vessel-specific scores (mean difference in model from humans:
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Table 2. Cohort demographics and statistics for non-gated model.
Characteristic Retrospective non-gated coronary CT Cohort External non-gated validation
cohorts
Stanford MESA
Training  Validation  Test Total Training  Validation  Test Total Site 1 Site 2 Site 3 Site 4

Patient sex

M 87 1 24 122 67 1 21 99 22 53 46 61

F 64 1 18 93 59 11 24 94 0 22 25 74

N/A? 0 0 0 0 37 1 1 39 0 0 0 0
No. of exams 151 22 42 215 163 23 46 232 22 75 71 135
Mean age (range 60.9 60.6 (31-82 60.6 60.8 70.0 65.0 (55-80 65.9 67.8 64.6 62.4 66.5 N/A
[+ standard (18-80 [+12.1]) (47-73  (18-82  (54-111 [+7.3]) (55-91  (54-111 (38-76  (31-88 (43-83
deviation]) [+9.8]) [+7.5)  [+9.6])  [+9.0]) [£9.0])  [+9.0]) [+10.1]  [+13.3]))  [+9.0])
Median time 8.0 8.2 33 6.2 0.0 0.0 0.0 0.0 2.7 1.0 5.6 24
interval®
Scanner

GE 55 9 20 84 40 40 0 0 22 39 0 131

Siemens 920 13 20 123 123 123 23 46 0 11 71 3

Other 6 0 2 8 0 0 0 0 0 25 0 1
CAC Score Bucket

| 59 12 18 89 48 6 7 61 4 22 28 52

I 12 5 20 12 3 4 19 1 4 4 1

n 35 3 43 38 3 14 55 3 17 13 22

v 24 1 10 35 34 7 13 54 4 16 14 32

Vv 21 1 6 28 30 4 8 42 11 16 12 18
#Information was not available due to site specific patient privacy rules.
PMedian time interval (months) between non-gated routine chest CT and gated coronary CT for each test set.

Difference (Model-Human)

a

Bland-Altman Plot of Difference (Model-Human) vs Mean

K-S test P-value: 0.99
_________ o = 95% upper limit

Kappa =0.89
P <0.0001
N=79

2000

zero bias line
mean diff:-2.86

95% lower limit

Agreement of GOLD_BUCKET and PRED_BUCKET

Model Bucket
~

O Exact Agreement

O Partial Agreement

1 2 3 4 5
Human Bucket

Cumulative Frequency

Mean (Model+Human)12 b

Fig. 1

Comparison of automated scoring using deep learning and manual scoring in a retrospective cohort. Bland-Altman plot (a) and

Cohen’s Kappa statistic agreement plot (b) comparing retrospective automated scoring of gated Al model to manual scoring of CAC using
gated coronary CT exams. Please refer to Supplementary Fig. 1 for a zoomed version of the Bland-Altman plot.

3.24, 5.12, and 5.48, respectively) (Figs. 3, 4, and Supplementary
Fig. 2). K-S test showed no statistically significant difference in the
distribution of automated and manually derived CAC scores (P-
values = 0.61, 0.90, and 0.98, respectively). Zero-inflated Poisson
regression test showed no statistically significant difference in
vessel-specific CAC scores (P=0.82). When bucket scores (I-V)
were compared using Cohen’s Kappa statistic, there was almost
perfect agreement between scores derived using the deep
learning model and those obtained manually (Kappa=0.83,
0.86, and 0.86, respectively, P<0.0001). Average time for
automated CAC scoring using a graphics processing unit (GPU)
was 3.5+ 2.1s compared to 261 s for manual scoring.

Published in partnership with Seoul National University Bundang Hospital

Non-gated chest CT model: internal validation

We trained a non-gated deep learning model on an internal
dataset comprised of non-gated routine chest CT studies acquired
at Stanford Hospital and those from the Multi-Ethnic Study of
Atherosclerosis (MESA) study®:. We evaluated the model on two
test sets: 42 chest CT exams in 42 patients from Stanford and 46
chest CT exams in 46 patients from MESA (Table 2) who also
underwent a paired gated coronary CT which served as a reference
standard for the CAC score. When comparing bucketed CAC scores,
Cohen's Kappa statistic showed almost perfect agreement
between automated and manually derived CAC scores for the
Stanford test set (Kappa=0.84, P<0.0001) and moderate

npj Digital Medicine (2021) 88
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Fig.2 Qualitative comparison between automated and manual CAC scoring. Coronary artery segmentation (manual on left; automated on
right) in two different patients (a, b) shows qualitatively similar performance between automated and manual methods of CAC scoring. Note
the false positive by model identifying coronary cusp calcification (blue circle). Remainder of aortic root calcification is accurately ignored by
the model. Red arrow shows an area of false negative within an area of right coronary artery calcification.

Bland-Altman Plot of Difference (Model-Human) vs Mean Bland-Altman Plot of Difference (Model-Human) vs Mean Bland-Altman Plot of Difference (Model-Human) vs Mean

K test P-value: 0,61 foo

1 test Pvalus: 090 oo

K-S testPvalue: 0.98

°
—— 95% upper imit

a N A b

Mean (Modsl+Human)2 C

1500 2000 0 500 1000 1500 2000
Mean (Model+Human)/2

Fig.3 Comparison of automated scoring using deep learning and manual scoring in a prospective cohort. Bland-Altman plots comparing
prospective automated scoring of gated Al model to manual scoring of CAC by three different (a-c) technologists using gated coronary CT
exams. Please refer to Supplementary Fig. 2 for a zoomed version of the Bland-Altman plot.

agreement for the MESA test set (Kappa = 0.52, P < 0.0001) (Table 3
and Fig. 5). Recent cholesterol guidelines recommend initiating
statin therapy when CAC score is =100 to reduce future risk of CVD
events®. For binary classification of patients with CAC score
greater than or equal to 100, the non-gated model had a sensitivity
and positive predictive values (PPV [95% Cl]) of 94 [86, 100]%. For
the MESA test set, the model had a sensitivity of 71 [58, 85]%, and
a PPV of 88 [79, 98]% for detecting CAC of >=100. For detecting the
presence of any CAC, sensitivity and PPV were high on the Stanford
dataset (100% and 96 [90, 100]%). Sensitivity for any CAC was
lower on MESA dataset (85 [74, 95]%) but a higher PPV (100%) was

npj Digital Medicine (2021) 88

seen. Model performance at other CAC score cutoffs are shown in
Table 3.

Non-gated chest CT model: external validation

Our non-gated model was externally validated on datasets at four
geographically disparate sites. Model performance at all sites is
summarized in Table 3 and shown in Fig. 6. The F1 score of the
model was high at all four external sites (=0.80). When comparing
bucketed CAC scores, Cohen’s Kappa statistic showed substantial
agreement at site 1 (Kappa =0.80, P < 0.0001), moderate agree-
ment at sites 2 and 3 (Kappa=0.68 and 0.64, respectively;

Published in partnership with Seoul National University Bundang Hospital



a Agreement of GOLD_BUCKET and PRED_BUCKET b

s

4

Mods! Bucket

Kappa=0.83
P <0.0001
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automated scoring to manual scoring by three different (a-c) technologists using gated coronary CT exams.

Cumulative Frequency

External validation cohorts

Table 3. Diagnostic performance of non-gated model.
Cutoff CAC score  Metric? Internal validation cohorts
Stanford MESA
Cohen’s Kappa 0.836 0.517

Site 1
0.802

Site 2
0.684

Site 3
0.644

Site 4
0.583

Sensitivity (%)
Specificity (%)

Specificity (%)

100 (100, 100)
94.4 (87.5, 100)

100 (100, 100)

84.6 (74.2, 95.0)
100 (100, 100)

PPV (%) 96.0 (90.1, 100) 100 (100, 100)
NPV (%) 100 (100, 100) 53.8 (394, 68.3)
F1 0.980 0.917

10 Sensitivity (%) 100 (100, 100) 88.6 (79.4, 97.8)
Specificity (%)  95.2 (88.8, 100)  90.9 (82.6, 99.2)
PPV (%) 95.5(89.2, 100)  96.9 (91.8, 100)
NPV (%) 100 (100, 100) 71.4 (584, 84.5)
F1 0.977 0.925

100 Sensitivity (%)  93.8 (86.4, 100)  71.4 (58.4, 84.5)
Specificity (%)  96.2 (90.3, 100)  92.0 (84.2, 99.8)
PPV (%) 93.8 (86.4, 100)  88.2 (78.9, 97.5)
NPV (%) 96.2 (90.3, 100)  79.3 (67.6, 91.0)
F1 0.938 0.789

400 Sensitivity (%)  83.3 (72.1,94.6) 75.0 (62.5, 87.5)

100 (100, 100)

PPV (%) 100 (100, 100) 100 (100, 100)
NPV (%) 97.3 (924, 100)  95.0 (88.7, 100)
F1 0.909 0.857

94.4 (84.9, 100)
100 (100, 100)

100 (100, 100)

80.0 (63.3, 96.7)
0.971

100 (100, 100
100 (100, 100
100 (100, 100
100 (100, 100
1.000

92.9 (82.1, 100)
100 (100, 100)
100 (100, 100)
88.9 (75.8, 100)
0.963

100 (100, 100)
91.7 (80.2, 100)
90.9 (78.9, 100)
100 (100, 100)
0.952

)
)
)
)

92.5 (86.5, 98.4)
90.9 (84.4, 97.4)
96.1 (91.7, 100)
83.3 (74.9, 91.8)
0.942

95.9 (91.4, 100)
88.5 (81.2, 95.7)
94.0 (88.6, 99.4)
92.0 (85.9, 98.1)
0.949

90.6 (84.0, 97.2)
93.0 (87.3, 98.8)
90.6 (84.0, 97.2)
93.0 (87.3, 98.8)
0.906

93.8 (88.3, 99.2)
93.2 (87.5, 98.9)
789 (69.7, 88.2)
98.2 (95.2, 100)
0.857

93.0 (87.0, 99.0
78.6 (68.9, 88.3
87.0 (79.0, 94.9
88.0 (80.3, 95.7
0.899

92.3 (86.0, 98.6
84.4 (75.8, 92.9
87.8 (80.1, 95.5
90.0 (82.9, 97.1
0.900

88.5 (80.9, 96.0)
93.3 (97.4, 99.2)
88.5 (80.9, 96.0)
93.3 (97.4, 99.2)
0.885

91.7 (85.1, 98.2)
98.3 (95.3, 100)
91.7 (85.1, 98.2)
98.3 (95.3, 100)
0.917

)
)
)
)

)
)
)
)

81.9 (754, 88.4
90.4 (85.4, 95.4
93.2 (88.9, 97.4
75.8 (68.6, 83.0
0.872
88.9 (83.6, 94.2
90.5 (85.5, 95.4
91.4 (86.7, 96.2
87.7 (82.2,93.2
0.901
74.0 (66.6, 81.4)
94.1 (90.1, 98.1)
)
)

)
)
)
)
)
)
)
)

88.1 (82.6, 93.6
86.0 (80.2, 91.9
0.804

83.3 (77.0, 89.6)
97.4 (94.8, 100)
83.3 (77.0, 89.6)
97.4 (94.8, 100)
0.802

PPV positive predictive value, NPV negative predictive value.
2All values significant (P < 0.0001).

P <0.0001), and fair agreement at site 4 (Kappa = 0.58, P < 0.0001).
Diagnostic performance for detecting any CAC (=1) was high at all
sites (sensitivity range: 82-94% and PPV range 87-100%).
Sensitivity and PPV for detecting CAC > 100 was highest at sites
1 and 2 (93 [82, 100]%, 100% and 91 [84, 97]1%, 91 [84, 971%,
respectively) (Table 3 and Fig. 7 and Supplementary Fig. 3).

Diagnostic performance based on ground truth methodology
chosen

Compared to other studies that reported using deep learning to
automate CAC scoring on non-gated chest CT exams®*7', we
chose to use calcium scores derived from paired gated coronary
studies as the ground truth for non-gated routine chest CTs. The
rationale for this was to ensure accurate quantitation that reflects

true calcium burden as defined by the current clinical standard,

Published in partnership with Seoul National University Bundang Hospital

which is gated coronary CT exams. To highlight the disparity and
role of ground truth in diagnostic performance, we report results if
ground truth convention used by others were to be followed. That
is, we compare our model performance to calcium scores derived
from those obtained through manual segmentation by a board-
certified diagnostic radiologist on the non-gated routine chest CT
exams rather than CAC scores obtained from the contempora-
neous gated coronary CTs. For the MESA dataset, individuals
underwent the gated coronary CT and non-gated chest CT on the
same day and, therefore, serves as an ideal cohort for this
experimentation. Figure 8 and Table 4 show the differences in
performance in baseline models (without XGBoost) based on the
ground truth method used. As an example, baseline model
performance for binary classification of CAC = 100 would have an
F1 of 0.88 if gated studies were not used as the ground truth
(compared to 0.48).
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Fig. 6 Comparison of automated and manual CAC scoring on non-gated chest CT exams using four external site datasets. Confusion
matrices for the four (a-d) external validation datasets comparing automated scoring non-gated chest CT exams to ground truth scores.
Ground truth scores are on the y-axis and model prediction are on the x-axis of each matrix.

DISCUSSION

In this study, we developed fully automatic, end-to-end deep
learning models for automated CAC scoring using gated coronary
CT and non-gated routine unenhanced chest CT exams. The
novelty and impact of our work is that our models are completely
end-to-end, were trained using a stronger reference standard, and
the non-gated model was evaluated on multiple external datasets.
We also release labeled datasets of gated and non-gated scans
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with annotations to potentially help fuel further efforts in this
domain by other investigators. Our gated model achieved almost
perfect agreement with manual CAC scoring and took less time
than conventional methods. Our non-gated model achieved good
diagnostic performance in identifying patients with any CAC and
CAC scores =100 across all sites (PPV ranges from 87 to 100%).
CAC is an imaging biomarker of coronary atherosclerotic
disease and an independent indicator of future cardiovascular
events>>. A US Preventive Services Task Force (USPSTF) statement
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Fig. 7 CAC scoring case examples. Coronary artery segmentation (reference image on left, manual in middle; automated on right) in four
different patients (a-d). Row a shows qualitatively similar performance between automated and manual methods of CAC scoring on non-
gated chest CTs. Row b shows model prediction in a patient with significant aortic root calcification. Note that the model does not misclassify
this as CAC. Row c is an example of false negative prediction by the model in the left circumflex. Row d is an example of a false positive in the

left circumflex.

provided an evidence report highlighting that adding CAC to
traditional risk models results in highest improvement in disease
discrimination and risk reclassification compared to other
nontraditional factors (e.g., ankle-brachial index and high-
sensitivity C-reactive protein)®***’. Most notably, a recent large
retrospective study determined that the presence and severity of
CAC identified patients that would most benefit from statin
therapy®®. Our work relates to improving the efficiency and

Published in partnership with Seoul National University Bundang Hospital

reducing potential barriers to obtaining CAC scoring. One such
barrier may be the physical task of performing the CAC
quantitation. For small radiology practices, a single- or small
group of radiologists may use an independent workstation to
generate CAC score reports®®. However, this may not be
sustainable as those practices grow, nor is it for larger centers
with increasing volume and breath of cases. Thus, many centers
employ 3D labs where post-processing for cross-sectional
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Fig.8 Confusion matrices for non-gated model performance on the MESA test set based on ground truth method chosen. The left matrix
(@) compares model prediction to scores derived from manual segmentations on non-gated chest CT exams while the right matrix (b)
compares model predictions to scores derived from gated coronary CT exams, the clinical reference standard for CAC scoring. Note the
performance differences (higher on the left) based on ground truth chosen.

imaging, including CAC scoring, is performed>°*°. Costs associated
with these 3D labs often include those associated with space,
post-processing hardware and software, and salaries for dedicated
specialized technologist®***°, Our gated model performs CAC
scoring at a nearly perfect level to the ground truth with vessel-
specific calcium burden in a fraction of the time required by
manual process. Such automation could help decrease costs for
hospital systems and help streamline workflow for busy 3D labs
that could focus on other complex post-processing tasks.

To date, a few deep learning models for automated CAC scoring
on gated coronary CT have been reported. A notable difference
and advancement of our deep learning model is that it is fully-
automated and end-to-end with vessel-specific calcium scoring,
not requiring co-registered CT atlas®®** or a coronary CT
angiography to define coronary artery anatomy?>. Although we
did not use the aforementioned techniques used by others to
focus the models on relevant coronary anatomy, our model is able
to discern between coronary and non-coronary calcification (e.g.,
valvular calcification) that might otherwise present as a false
positive.

Cardiovascular disease (CVD) is the leading cause of death in the
United States (US) resulting in annual direct and indirect costs of
$320 billion*®*, It is projected that by 2030, 44% of the US
population will have some form of CVD resulting in an increase to
$918 billion*. Treatment of risk factors, including the use of anti-
hypertensive and lipid-lowering treatment, can significantly impact
future incidence of CVD. Studies have shown that presence of CAC
appears to motivate an improved diet, increased exercise, and the
initiation of and adherence to preventive therapies***°. The latest
ACC/AHA cholesterol guidelines recommend testing for CAC when
patients are at low to intermediate risk for a heart attack, and when
there is uncertainty about whether or not to prescribe a statin
medication for cholesterol lowering. When the CAC score is =100
Agatston units, these guidelines recommend using statin therapy to
reduce risk®>*. However, CAC testing and preventive therapies remain
vastly underutilized particularly as most insurance plans do not
usually cover CAC testing. As a result, millions of asymptomatic
people remain unaware of their high risk for a heart attack and
remain undetected and undertreated. Meanwhile, up to 19 million
non-gated chest CT scans were performed in 2014 alone for non-
cardiac indications'®4¢. Though these exams may demonstrate
coronary calcification, up to 80% of radiologist reports do not
mention it**%, Even if radiologists report incidental coronary
calcification, accurate quantitation is difficult as no widely accepted
standard currently exists unlike scoring using gated coronary CT.
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Thus, calcification burden would be reported subjectively (e.g., mild,
moderate, or severe), if at all. This underreporting represents a
missed opportunity as the ability to accurately, systematically, and
efficiently determine the presence and quantify the severity of CAC
from existing ungated chest CTs would allow opportunistic screen-
ing of patients for cardiovascular risk without incremental radiation
or cost. We developed a deep learning model that can automatically
quantify coronary calcium burden on non-gated chest CTs. Using a
model such as ours could potentially allow millions of patients at risk
for cardiovascular disease to be identified and presented with the
opportunity to start preventive medication and lifestyle change to
reduce the risk of myocardial infarction. This deep learning model
could also provide added value to routine radiologist interpretations
via automated quantification and reporting on routine chest CTs. In
addition to the large number of patients who receive a chest CT for
other indications, this model could also be applied to populations of
chest CTs retrospectively to identify high-risk individuals and
potentially intervene with optimized medical management, leading
to significant advantages for population health prevention manage-
ment efforts.

Our deep learning model for automated CAC scoring on non-gated
chest CTs has some key notable differences to the few other models
reported in the literature to date??%*'*°, Some models use a two-
stage process for CAC scoring®, such as an atlas for registration®' or
bounding box to define anatomy®. Our model uses a single
convolutional neural network (CNN) for an end-to-end approach.
Most significantly, all deep learning models?®?%2°*132 on CAC scoring
using non-gated unenhanced chest CTs reported to date have used
manual scoring on non-gated chest CTs solely as the reference
standard, which may be inadequate. Most notably, a recent study by
Zeleznik et al3® demonstrated substantial agreement between
automated and manual stratification of CAC scores into one of four
risk buckets in a multi-center trial cohort comprised of over 20k
asymptomatic individuals. However, the comparison here was also
made to manual quantitation performed on non-gated studies as
opposed to the current standard of care to quantify CAC, a gated
coronary CT exam. Though several studies®*>> have reported good
agreement between CAC scores derived from non-gated chest CTs
and gated coronary CTs, there were still significant differences in
median absolute scores. Moreover, practice convention has not
changed, and the current standard clinical practice is to still use gated
coronary CTs for accurate CAC scoring®. A number of factors may
contribute to this lack of paradigm shift>’. The most obvious is the
superior spatial resolution of coronary CT and lack of motion artifact
from ECG-gating thereby minimizing over- and underestimation of
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0.853
0.727
0.458
0.545

41.2 (27.0, 55.4)
42.3 (28.0, 56.6)
63.2 (49.2, 77.1)
88.4 (79.1, 97.6)

NPV (%)

100 (100, 100)
100 (100, 100)
87.5(77.9,97.1)
100 (100, 100)

PPV (%)

Specificity (%)
100 (100, 100)
100 (100, 100)
96.0 (90.3, 100)
100 (100, 100)

Gated coronary CT
Sensitivity (%)

74.4 (61.7, 87.0)
57.1 (42.8, 71.4)
33.3 (19.7, 47.0)
37.5 (235, 51.5)

F1

0.967
0.952
0.875
1.000

88.2 (78.9, 97.5)
92.3 (84.6, 100)
97.4 (92.7, 100)
100 (100, 100)

NPV (%)

100 (100, 100)
100 (100, 100)
87.5(77.9,97.1)
100 (100, 100)

PPV (%)

Specificity (%)
100 (100, 100)
100 (100, 100)
97.4 (92.7, 100)
100 (100, 100)

Non-gated routine chest CT

93.5 (86.4, 100)
90.9 (82.6, 99.2)
87.5(77.9, 97.1)
100 (100, 100)

Diagnostic performance of non-gated model based on chosen ground truth method.
Sensitivity (%)

PPV positive predictive value, NPV negative predictive value.

Table 4.
Cutoff score
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100

400
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calcium that might otherwise occur with routine non-gated chest
CTs'%°%"8, Because non-gated chest CT are performed for non-cardiac
indications, acquisition parameters differ than those for gated
coronary CTs which can affect the accuracy of calcium quantitation®®.
Coronary CTs for calcium scoring are often reconstructed with a
smaller field-of-view, higher definition kernel, and thinner slice
thickness (e.g., 2-3 mm) compared to routine non-gated chest CTs
which are typically reconstructed with a soft tissue kernel and thicker
collimation (e.g., 5mm)'®. While lung cancer screening non-gated
chest CT and low dose gated coronary CT may have similar radiation
doses (i.e, 30-35mAs)*°%", standard non-gated chest CT doses for
non-lung cancer screening can approach tube currents of 200 mAs®'.
These tube current differences can affect image noise and
quantitation®®, Thus, we used Agatston scores from gated coronary
CT as a more robust reference standard for our non-gated model
training in an attempt to more accurately quantify calcium burden on
non-gated chest CTs. We further highlight the significance of an
adequate ground truth by reporting diagnostic performances
between our method that used gated CTs and those used by others
that use human annotations on non-gated routine chest CTs. This
analysis revealed that results of our model performance would have
been inflated if an inadequate clinical reference standard, in this case,
a score derived from segmentations using a non-gated chest CT, were
used. The need for accuracy is particularly significant in light of the
latest cholesterol guidelines recommending statin therapy initiation in
patients with a CAC > 100>,

This study has important limitations. For both models, limita-
tions associated with a retrospective study design are present. For
the gated model, the input requires a reconstructed smaller-field-
of-view (FOC) around the heart. Thus, centers that do not routinely
reconstruct smaller FOV would have to make this additional exam
processing step prior to using such a model for inference. For the
non-gated model, we used gated coronary CTs as the reference
standard for Agatston scores on corresponding chest CTs;
however, the paired scans were performed at different times
except for the MESA cohort. Therefore, the interval difference
between the gated and non-gated scan could affect the accuracy
of scores used for the non-gated chest CTs. We used a maximum
time interval of 1 year for all test sets. Studies have shown that a
majority of patients with zero CAC scores on CT show no annual
increase®®. However, patients with existing CAC may show
progression, and thus, it is possible some of our patients may
have progressed. An annual change of 8.3 Agatston unit change
has been reported for patients with baseline scores of 1-100°3;
thus, the impact on the ungated model's performance on
classifying patients with a score of =100 may not be significant.
Finally, because our training data would not likely have a sufficient
number of training example of patients with anomalous coronary
arteries, the models would not be expected to perform reliably in
such cases.

In conclusion, we developed deep learning models capable of
performing CAC scoring using both gated coronary CT and non-
gated chest CT. These models could potentially reduce barriers for
screening larger populations and thereby allow initiation of
preventive therapy such as statin use. Further studies are
necessary for correlating automated scores to patient outcomes.

METHODS

All site protocols were Health Insurance Portability and Accountability Act-
compliant and approved by respective Institutional Review Board of the
participating institutions, and a waiver of informed consent obtained. All
sites participated as a consortium and external validation was performed
through a federated manner in which no data was shared between sites.

Retrospective internal coronary CT dataset

We retrospectively searched the electronic medical record database at our
single tertiary care academic center (Stanford Hospital and Clinics) for
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consecutive patients who underwent prospectively gated unenhanced
coronary CT for CAC scoring between June 2016 and July 2018. 866 CT
exams in 854 unique patients were collected (Table 1). 5 mm small field-of-
view (FOV) axial slices were used as input for deep learning model
development. The smaller FOV is routinely reconstructed at our institution
as part of routine clinical practice. These studies were split into training
(708 studies in 697 patients), validation (79 studies in 78 patients), and test
sets (79 studies in 79 patients). To generate the validation and test sets,
stratified random sampling was used to ensure that there was class
balance. There was no patient overlap between training, validation, and
test sets. Ground truth scores were those that were performed manually
and prospectively at the time of the clinical exam and were extracted from
the radiology reports. Automated CAC scores generated by the deep
learning model were then compared to these manual derived scores.
Vendor and scanner model distribution is reported in Table 1.

Prospective internal coronary CT cohort

For internal prospective validation of our gated deep learning CAC scoring
model, we collected 55 unenhanced gated coronary CT exams performed
on 55 unique patients over a 5-day trial period in September 2018 (Table
1). Exams were retrieved from our Picture Archiving and Communication
System (PACS) after image acquisition at the end of each day. Automated
CAC scores generated by the deep learning model were compared to
manually derived scores from three independent 3D lab technologists.
One technologist labeled the exam prospectively at the time of the clinical
exam, working in parallel with a radiologist who is responsible for
interpreting the entire exam as part of our standard clinical workflow*.
Two technologists, with 7 and 10 years of experience, retrospectively
annotated the scans for calcium scoring. Vendor and scanner model
distribution is reported in Table 1.

Internal chest CT cohort

The non-gated model was trained on a mixed cohort dataset of data from
Stanford and that from the MESA study. First, we retrospectively searched
our PACS for patients who underwent a non-gated unenhanced chest CT
and a gated coronary CT between 2013 and 2018. The gated coronary
study served as the reference standard for CAC scores on ungated chest
CTs. To increase the size of the internal training datasets, patients were
eligible if a gated coronary CT was performed within no more than a 2-year
time interval of the index chest CT exam, though the test set (n=42)
comprised of only paired studies that were no more than one year apart
(median time interval of 3.3 months). Rationale for restricting the test set to
1 year was based upon studies showing 8.3 Agatston unit change for
patients with baseline scores of 1-100°® and an overall low percentile (~5%)
annualized change or median progression (29 Agatston units/year) in
calcium score®®®*, MESA non-gated chest CTs and MESA gated coronary
CTs were performed on same day. A random 70/10/20 split to create
training, validation, and test sets was performed. Table 2 shows the data
distribution (Fig. 9), cohort statistics, and time interval between the paired
exams. A total of 447 exams were included between Stanford and MESA for
training (Table 2). 5 mm axial slices from unenhanced chest CTs were used
as input with Agatston scores from corresponding gated coronary CT
exams as output for model development. Automated CAC scores generated
by the deep learning model on non-gated routine CT chest exams were
compared to manually derived scores from gated coronary exams.

External site descriptions

External datasets from 4 sites were obtained in which retrospectively
performed paired exams no more than 1 year apart were included. The
median time interval between exams and other data statistics are shown in
Table 2. Distribution of CAC scores across the sites are illustrated in Fig. 9.
Site 1 represented an inpatient and outpatient health system affiliated with
a University. Site 2 represented the largest diagnostic radiology company
in Latin America (5th largest in the world). Sites 3 and 4 represented major
tertiary academic centers.

Reference standard, annotation, and image preprocessing

For both the coronary CT and chest CT cohorts, a board-certified
radiologist manually segmented calcium within the four coronary arteries
on slice-by-slice level using an open-source Digital Imaging and
Communications in Medicine (DICOM) viewer (Horos version 3.1.1, 2019
The Horos Project). These segmentation masks were used for model
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Fig. 9 CAC score distribution across internal and external sites
used for the non-gated model. Violin plots show median (white
point), each data point (horizontal lines), and interquartile range
(vertical gray bar). Note that though the plots extension below a
CAC score of 0 reflects properties of the kernel density estimator
associated with violin plots. CAC score of less than 0 would not be
realistic.

training. Ground truth calcium scores corresponding to these segmenta-
tions were taken from were derived from the exam report that was
generated prospectively at the time of image acquisition. Per routine
clinical workflow, scores were calculated using established methods using
the 130 Hounsfield Unit (HU) threshold®®. For chest CT exams, while
reports may provide a qualitative score (e.g., mild, moderate, or severe
coronary calcification), quantitative scores are not provided and are not
standard of care. Because of this and because use of the conventional 130
HU threshold may be insensitive to detect calcium within voxels due to
inherent differences in acquisition parameters for non-gated chest CT
compared to gated coronary CTs>°, Agatston scores from the correspond-
ing coronary CT exam was used as ground truth for the segmentations.
Exams for input into the model were extracted from our PACS in DICOM
format and scaled to 512 x 512 pixels.

Algorithm

Our approach was to develop a fully automatic algorithm that takes a CT
exam series as input, and outputs an Agatston score for each of four
coronary arteries: LCA, LAD, LCX, and RCA. This approach requires neither
manual segmentation of anatomy nor a cardiac atlas for localizing the
coronary arteries, and thus contrast-enhanced coronary CT angiography
(CTA) is not required.

The first stage of our algorithm is a convolutional neural network (CNN)
which takes a CT volume as input and processes it slice-by-slice. The CNN
performs two operations end-to-end: First, it segments calcium lesions that
contribute to the Agatston score. Second, the CNN categorizes each
calcium lesion as belonging to the LCA, LAD, LCX, or RCA. We choose to
parametrize these two functions with the same neural network because
both functions require significant knowledge of the underlying coronary
anatomy. For example, the model must be able to localize the aorta to
avoid segmenting irrelevant calcium lesions, since calcium lesions inside
the aorta do not contribute to the Agatston score. Similarly, mitral and
aortic valvular calcifications must be localized so as not to inadvertently
incorporate them into the final CAC score.

Concretely, for each pixel of the input, the CNN outputs a vector of
probabilities (p_calc,p_Ica,p_lad,p_Icx,p_rca), where p_i € (0,1) for all i and
p_lca+ p_lad + p_lcx + p_rca=1. The second stage of our algorithm is
tasked with converting from these pixel-by-pixel probabilities to the
Agatston score contributed by a slice. We begin by classifying all pixels
with p_calc> 0.5 as belonging to a calcified lesion. We perform connected
components analysis with 8-connectivity to combine pixels into calcium
lesions. Further, we assign to each pixel the artery label given by argmax
(p_lca,p_lad,p_lcx,p_rca) and we label the entire lesion with the most
frequently occurring label assigned to its constituent pixels. Finally, we
calculate the area of each calcium lesion, restricting to pixels with an
attenuation of >130 Hounsfield Units, and scale the area by the maximum
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attenuation. The slice-wise Agatston scores are summed to arrive at the
Agatston score for the CT exams

For all experiments on ungated exams, an additional post-processing
stage was applied. The segmentation outputs were summarized using
vector with four components: the sum of predicted calcified area, the
maximum intensity in HU within the predicted calcified region, sum of area
weighted by maximum intensity within each lesion, and the number of
lesions predicted. These summary vectors were then used as input to a
gradient boosted decision tree classifier. In particular, summary vectors
were computed for each axial slice in the exam, and the summary vectors
for the slices with the 5 highest predicted areas were concatenated. The
resulting 20-component vector was used as input to a gradient boosted
decision tree classifier which was trained and cross-validated using the
same dataset splits as the CNN, using CAC scores from paired gated
coronary CT as a reference standard. The CAC scores from paired gated
coronary CT were also used as a reference standard for evaluation of
studies in the test set. The gradient boosted decision tree classifier was
trained to classify entire exams into CVD risk buckets |-V.

CNN architecture

Both the gated coronary model and non-gated chest CT model were
trained with the same CNN architecture on different datasets. For both
models, we used an encoder-decoder architecture, where the encoder is a
50-layer SE-ResNeXt 2D CNN®® pretrained on ImageNet® (Fig. 10). We
employed skip connections at three levels from the encoder to the decoder,
in a fashion similar to U-Net®®. The decoder is a stack of 4 convolutional
blocks, where each block performs 2x up-sampling with a 4 x 4 transposed
convolution, sandwiched between two 3 x 3 convolutions.

We trained our network on 4 NVIDIA GeForce GTX 1070 GPUs, using
input slices of raw Hounsfield Units clipped to the range [—-800,1200] and
zero-centered. During training, we randomly sampled mini-batches of
64 slices containing calcified lesions. We used the Adam optimizer with
default B parameters (1= 0.9, $2 =0.999) and a learning rate of 1 x 10/
(—3) for the randomly initialized weights and 1x 10A(—4) for the
pretrained weights. Training began by only including slices with calcium
lesions, and we expanded the training set after every epoch to include
misclassified slices with no calcified lesions. For the learning rate schedule,
we adopted a linear warmup for 5k iterations, followed by cosine
annealing for 300k iterations®®’°. Additionally, we delayed the learning
rate schedule by 10k iterations for the pretrained weights. We applied L2
regularization of 1x 10A(—4) to all learnable parameters. For the loss
function, we used cross-entropy loss for the region-wise classification
head, and Dice loss”"”? for the binary segmentation (calcium vs. no-
calcium) head. At test time, we sequentially sample slices from each series,
and we sum the region-wise predictions for each slice to obtain the series-
level Agatston score.

Statistical analysis

Statistical analysis was performed using the Statistical Analysis System (SAS)
software, version 9.4 (SAS institute, Cary, NC). To compare individual vessel
scores between automated model and human readings, Bland-Altman Plot
was used to evaluate the agreement. Through Bland-Altman Plot, the
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average bias and its 95% confidence intervals allows quantification and the
range of differences between automated and manually derived scores’.
Kolmogorov-Smirnov (K-S) test was also used to analyze the similarity of
distributions from the deep learning model predictions and human scores.
For bucketed scores (I-V, for Agatston scores of 0, 1-10, 11-100, 101-400,
>400, respectively’*’*), Cohen’s Kappa statistics was used to evaluate the
level of agreement between the automated and manually derived scores.
The following guidelines for the interpretation of Kappa coefficients were
used: (<0.00): poor; (0.00-0.20): slight; (0.21-0.40): fair; (0.41-0.60):
moderate; (0.61-0.80): substantial; (0.81-1.00): almost perfect agreement76.
Kappa statistics were also visualized with the agreement plots from which
we can show the distribution of each categories (the size of the bucket) and
the agreement status (exact agreement: dark blue, partial agreement (differ
from 1 between two methods): light blue, and complete disagreement:
blank). To address a large amount of zero values and abnormal distribution
in CAC scores, for the prospective trial, a random effect zero-inflated
Poisson regression model was used to compare model CAC scores to the
three manual readings. Diagnostic performance metrics (sensitivity,
specificity, PPV, NPV, and F1) at various CAC score cutoffs were calculated
for the non-gated model.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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