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Activation of p-Catenin by Oncogenic PIK3CA and EGFR
Promotes Resistance to Glucose Deprivation by Inducing
a Strong Antioxidant Response
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Glucose is an essential fuel for cell survival and its availability limits aberrant cellular proliferation. We have hypothesized
that specific cancer mutations regulate metabolic response(s) to glucose deprivation (GD). By means of somatic knock-in
cellular models, we have analyzed the response to glucose deprivation in cells carrying the frequent
G13PKRAS or E*KPIK3CA cancer alleles. We demonstrate that, in mammary epithelial cells, glucose has an essential
antioxidant function and that these cells are very sensitive to GD. Conversely, isogenic cells carrying the “€74647°EGFR or
the ®**PIK3CA, but not the °"*°KRAS allele, display high tolerance to GD by stimulating the expression of anti-oxidant
genes (MnSOD and catalase). This adaptive transcriptional response is mediated by the activation of WNT/fB-catenin and
FOXO4 signalling. Our data highlights a new functional synergism between oncogenic EGFR and PIK3CA with WNT/j-
catenin conferring high tolerance to oxidative stress generated by nutrient deprivation.
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Introduction

Glucose is a fundamental cellular fuel for the generation of ATP
and NADH through glycolysis and the mitochondrial oxidative
phosphorylation; it is also an essential component of the pentose
phosphate shunt pathway (PPP) that leads to the production of
NADPH used to synthesize reduced glutathione, a potent
intracellular antioxidant. Thus, glucose deficit is likely to produce
energetic dysfunction and oxidative stress.

Glucose limitation is a common stress during tumor progression:
glucose concentration acts as an energetic barrier against the
aberrant cellular proliferation of pre-malignant cells [1]; more-
over, an energetic deficit occurs in certain areas of solid tumors
where glucose and oxygen deficiencies are generated by the
unstable tumor microenvironment or ischemia [1],[2]. Thus,
cellular adaptation to sub-optimal nutrients concentrations
appears as a relevant phenotype that cancer cells acquire during
tumor progression. A key open issue is to identify the specific
genetic alteration(s) that drive the metabolic adaptation of cancer
cells to glucose deficiency. Recently, the CIPERAS and """ B-Raf
oncogenes have been associated with a resistance to low glucose
and “"PKRAS mutations occur in cells upon selection in low
glucose environment [3]. In addition, tumors carrying deletions of
the tumor suppressor PTEN, a lipid phosphatase, are resistant to
caloric restriction i vivo [4].
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Epidermal Growth Factor Receptor (EGFR) and the phospha-
tidylinositol 3-kinase (PI3K), are oncogenes frequently mutated in
human cancers. PI3Ks are a family of lipid kinases that
phosphorylate the 3-OH group on phosphatidylinositols in the
plasma membrane. This leads to the recruitment to the cell
membrane and activation of the protein Ser/Thr-kinase AKT.
The PISK/AKT signaling cascade is critical in cancer develop-
ment since it controls the activity of fundamental cell fate
regulators and promotes cell survival and growth. Activating
mutations in PIR3CA, the gene encoding the pllOa catalytic
subunit or inactivating mutations of PTEN, have been identified in
a variety of solid tumors [3], [6], including colorectal, breast and
endometrial cancers. Notably, three recurrent oncogenic ‘“hot-
spot” mutations include the majority of somatic PIK3(CA muta-
tions. Two of these mutations, the E542K and the E545K, occur
in the helical domain, and the third mutation, H1047R, affects the
kinase domain [7]. All three mutations result in enhanced lipid
kinase activity.

EGIR is a receptor tyrosine kinase involved in the control of
DNA synthesis, cell proliferation, migration and adhesion [8].
Upon binding with extracellular ligands and dimerization, EGFR
leads to the activation of multiple intracellular signaling pathways,
such as the PI3K/AKT, the MEK/ERK and the JAK/STAT
pathways. EGFR overexpression by gene amplification or by
EGFR activation have been associated with several cancers,
including lung and breast cancer and glioblastoma multiforme [9],
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[10]. A specific point mutation L858R- and short in-frame
deletions in exon 19 account for approximately 90% of the
mutated cases [11]. The in frame deletion E746-A750 in exon 19
induces a ligand independent EGFR dimerization and activation
[12].

To date, we have limited information about the interference of the
specific cancer mutations of EGFR and PIK3CA with metabolic
responses of cells exposed to glucose deprivation. To gather
mformation on this issue, we have investigated the cellular response
to glucose deprivation (GD) in cells carrying the “*-47YEGRR
the PEPIE3CA or the “"*PKRAS mutations. For these studies, we
have implemented a panel of isogenic cell lines generated by targeted
homologous recombination to introduce (knock-in) a cancer allele in
the genome of human somatic cells [13]. The derivative cells express
the cancer alleles under the control of their endogenous promoter, thus
allowing the study of the mutated proteins under physiological
conditions relative to the expression levels and transcriptional
regulation.

Our studies reveal that, in mammary epithelial cells, GD induces a
drop in the ATP content, a significant reduction of the cellular
antioxidant power resulting in oxidative stress and ultimately, cell
death. In contrast, isogenic cells carrying “#4EGER
or PPEPIESCA alleles, upon GD, engage antioxidant strategies, by
increasing the expression of MnrSOD and catalase genes that attenuate
the oxidative stress. The activation of such adaptive transcriptional
response is mediated by WNT signals through the action of B-catenin
and FOXO4 transcription factors.

Results

The 9/#7#6A720EGFR and the ®***PIK3CA cancer alleles
confer resistance to GD

We implemented a panel of isogenic cells generated by targeted
homologous recombination (Knock-in) of *##*A7pGRR,
EBEPIRSCA or “PPERAS cancer alleles in immortalized human
mammary epithelial cells (HME) [13]. The expression of cancer
alleles affects the regulation of downstream signaling pathways as
confirmed by serum deprivation experiments (Figure S1): in fact,
serum starvation elicited a dose-dependent reduction of phos-
phorylation of AKT(Ser473), of EGFR(Tyr1068), and ERK1/
2(Thr202/Tyr204) in wild type HME cells, while isogenic clones,
expressing the oncogenes, did not specifically reduce the
phosphorylation of the same substrates (Iigure S1).

We then investigated cell survival in response to GD of wild type
and the isogenic lines expressing the mutant alleles. Prolonged GD
affects cell cycle and cell viability [14,15]. FACS analysis revealed
that GD induced cell death in wild type cells, while isogenic clones
expressing the ™* PIK3CA or the “™**A7°EGFR mutated
proteins were resistant to GD. In contrast, the presence of
CIPERAS allele specifically led to higher sensitivity to GD
(Figure 1). Similar results were observed in independently
generated isogenic HME clones (Figure S2). To rule out that the
observed differences in cell viability between wild type cells and
the isogenic derivatives were an artefact due to the procedures
used to generate the cellular model, we analyzed isogenic HME
cells generated through the homologous recombination of the wild
type alleles of EGFR or PIK3CA genes, here referred to as
PIK3CA_cnt and EGFR_cnt. GD induced cell death of these
control cells as well as in wild type HME cells (Figure S2). These
data indicate that resistance to GD-induced death is specifically
conferred by the activating “*7CEGER or PPIK3CA
mutations.
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Adaptation to Glucose Deprivation by Oncogenes

The oncogenic variants control ATP levels and GSH/GSSG

ratio in response to GD

Glucose is a fundamental cellular energy supply for ATP
production. Moreover, glucose also fuels the pentose phosphate
pathway (PPP), the metabolic process that stimulates the
anabolism and generates cellular NADPH and supports the
production of reduced glutathione (GSH), the most important
cellular antioxidant. Thus, GD 1is expected to induce both
energetic and oxidative stress. To evaluate the metabolic effects
elicited by GD in HME wild type and isogenic clones, we
measured total ATP content and the ratio between reduced and
oxidized glutathione (GSH/GSSG ratio) following GD. Time
course analysis revealed that wild type HME and isogenic clones
carrying “PERAS or PEPIK3CA oncogenes displayed a
significant time-dependent reduction of the ATP levels following
GD; in contrast, isogenic clones carrying the WETICATSO pGER
retained 100% of ATP content up to 10 hours after treatment
(Figure 2A). Moreover, GD induced a significant reduction of the
GSH/GSSG ratio in wild type HME cells, in “*?KRAS-carrying
cells and in isogenic control cells but NOT in clones carrying
WETIGATORGER and P FPIK3CA alleles (Figure 2B). These data
show that glucose is essential in mammary epithelial cells to
maintain redox homeostasis and that some oncogenic mutations
specifically compensate redox unbalance induced by glucose
deprivation

GD induces cell death through oxidative stress

The results in Figure 2 indicated that, in wild type cells, GD
elicited a drop of the intracellular GSH/GSSG ratio that reduced
the intracellular antioxidant power and induced a redox stress. To
analyze the relevance of the oxidative stress generated by GD, we
measured the effects of antioxidants on GD-induced cell death.
Pre-treatment of wild type HME cells with N-Acetyl-L-Cysteine,
which increases the GSH pool and enhances ROS scavenging,
prevents cell death induced by GD (Figure 3A). Notably, under the
same conditions, pre-treatment of the cells with sodium pyruvate,
did not affect GD-induced cell death, indicating that the energetic
stress, resulting from ATP drop, was indeed not the major driver
of GD-induced cell death (Figure 3A). As NAC contributes also to
H50,-scavenging by increasing the GSH intracellular pool, we
assessed the relevance of Hy0y concentration in GD-induced cell
death. Our data show that treatment with purified human
catalase, an Hy0o-scavenger enzyme, inhibited GD-induced cell
death in wild type HME cells (Figure 3B). Taken together, these
data indicate that glucose has an essential antioxidant role in
mammary epithelial cells.

AMPKa. is a sensor of GD-induced oxidative stress

The AMP-activated protein kinase (AMPK) is a key molecular
sensor and regulator of the cellular response to glucose deprivation
[16,17]. To further understand to what extent glucose deprivation
elicits a metabolic stress in wild type HME and in isogenic clones
carrying oncogenes, we studied the activation of AMPKa by
measuring the phosphorylation of AMPKo(T172), a specific
marker of kinase activation [16,17]. Our data show that
AMPKo(T172) was highly phosphorylated upon 10 hours of GD
in wild type cells and “"“PKRAS expressing cells, whereas this
phosphorylation was attenuated in isogenic HME cells carrying
the " PIK3CA or the “F #7470 EGER cancer alleles (Fig. 4A).
Similar results were observed in independently generated isogenic
HME clones (Figure S3A). Moreover, the observed attenuation
was specifically induced by the oncogenes, since control cells
displayed a robust activation of AMPKa(T172) phosphorylation
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Figure 1. HME cells carrying the “£7#5A7°°EGFR or the ©***pIK3CA allele are resistant to GD-induced cell death. Wild type or isogenic
clones carrying 9E746A7°0EGFR or E*4°KPIK3CA or ®"*PKRAS alleles were glucose-starved (GD) for the indicated hours and the percentage of dead cells
were quantified by FACS analysis of propidium iodide positive cells. Graphs report the average of three independent experiments = SD (t-test,
**p<<0.05 or ***p<<0.001, Not treated Vs GD-treated cells). The diagrams are representative of a FACS analysis performed 24 hours after GD.

doi:10.1371/journal.pone.0037526.g001

after GD treatment (Figure S3B). The attenuation of AMPKa
phosphorylation by cancer alleles was further confirmed by time
course analysis of AMPKa(T172) phosphorylation after GD
(Figure 4B).

AMPK is a general stress sensor that can be activated by AMP
or by multiple intracellular signals such as calcium [18], free fatty
acids [19] and reactive oxygen species (ROS) [20]. To link the
oxidative stress induced by GD to AMPK activation, we pre-
treated wild type HME cells before GD with the antioxidant NAC
and we analyzed the AMPKo(T172) phosphorylation. Immuno-
blot analysis of protein extracts shows that NAC attenuated GD-
induced phosphorylation of AMPK (Figure 4C). Similar results
were obtained by pre-treating the cells with a SOD mimetic
compound that is able to neutralize cellular superoxide (Figure 4D).
Finally, pre-treatment of wild type HME cells with purified human
catalase reduced also GD-induced AMPK phosphorylation
(Figure 4E). The antioxidant activity of glucose is dependent on
its ability to stimulate GGPDH activity and to support the PPP: in
fact, the inhibition of G6PDH by the specific inhibitor 6-
aminonicotinamide (6AN) was sufficient to induce oxidative stress
and to phosphorylate AMPK in the presence of glucose. 6AN-
induced AMPKa phosphorylation was controlled by ROS since it
was inhibited by the pre-treatment of cells with NAC (Figure 4F).
These data show that GD induces a significant oxidative stress that
contributes to AMPK phosphorylation. In cells carrying activated
oncogenes, this circuitry is not efficient. It is possible that the
oxidative stress is attenuated in these cells, as suggested by Figure 2.
However, it is also likely that AMPK is inhibited by oncogenic
ERK-dependent signals through increased phosphorylation of the
major AMPK activating kinase, LKB1, which, when phosphor-
ylated at Serine 428, inhibits AMPK [21,22]. To discriminate
between these two possibilities we measured the phosphorylation
of LKB1(S428) after GD in wild type HME and isogenic clones.
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Western blot analysis showed that LKB1 levels were comparable
in wild type HME and in isogenic clones (Figure 5A). GD induced
a reduction of total LKBI1 protein both in wild type and isogenic
cells carrying “*EPIK3CA or “H7 047 EGER alleles. By using
specific antibodies against phospho-Ser428LKBI1, we found that
GD reduced phospho-LKB1(S428) levels in wild type HME cells
as well as in isogenic clones (Figure 5A). Moreover, the treatment
with AICAR, an AMP analogue, efficiently induced AMP-
Ko(T172) phosphorylation in wild type HME cells as well as in
isogenic clones carrying the “F*47CEGER and #**PIK3CA
alleles (Figure 5B). Importantly, AICAR treatment, in contrast to
GD, did not downregulate LKB1 and phospho-LKB1(S428) levels
(Figure 5B), supporting the hypothesis that other mechanisms, in
addition to the AMP/ATP ratio, control the LKB1/AMPK
complex after exposure to GD. Collectively, these data demon-
strate that mammary epithelial cells expressing the “*7#
A7EGER and the “**PIK3CA oncogenes have a functional
AMP/LKB1/AMPKua sensor circuitry and that the attenuation of
AMPK activation depends on the control of oxidative homeostasis.

delE746-A7S0EGFR and E°**¥PIK3CA oncogenes specifically
induce antioxidant enzymes in response to GD

A simple mechanism explaining the resistance of oncogene-
carrying cells to GD is the production of endogenous glucose, for
example from glycogen storage. Determination of total glycogen
levels indicated that HME cells carrying the “*#*47°EGER and
EBEPIESCA alleles contain higher total glycogen compared to
isogenic wild type or control HME (Figure 6). Notably, 30" after
GD, we observed a rapid and strong decrease of glycogen content
in both control and oncogene-carrying cells; after 30 minutes of
GD, glycogen content declined in all cell lines, although steeper in
oncogene-carrying cells than controls. Also, the pharmacological
mhibition of glycogenolysis with a glycogen phosphorylase
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Figure 2. ATP content and GSH/GSSG ratio in wild type or oncogene-expressing HME cells after glucose deprivation. (A) Total ATP
content after GD in wild type HME cells and isogenic clones carrying 96744750 GFR, E5#*KpIK3CA or ®'*PKRAS cancer alleles. At the indicated time, cells
were harvested and the total ATP content was analyzed; ATP amount was normalized for the number of nuclei. Results (mean = SD, n=3) are
expressed as percentages of the ATP amount respect to T=0. WTp: wild type HME parental cells; PI3K_cnt and EGFRdel_cnt are HME control cells
carrying the wild type alleles obtained through somatic homologous recombination (see text for details). (B) Reduced and oxidized glutathione ratio
(GSH/GSSG) in wild type, control and oncogenes-carrying cells after GD. Cells were glucose starved for 10 hours, and then the GSH/GSSG ratio was
measured. Results report the average of eight independent experiments = SD (t-test, **p<<0.01, Not treated Vs GD-treated cells. ns: not significant).

doi:10.1371/journal.pone.0037526.9002

inhibitor (CP91149) did not significantly affect the viability of
oncogene-carrying cells after GD (data not shown). These data
indicate that glycogen storage was not responsible for the
resistance to GD of oncogene-carrying cells.

We next tested the possibility that resistance to GD may depend
on antioxidant strategies. An efficient antioxidant response relies
on the rapid changes of expression of antioxidant enzymes. To this
end we analyzed the expression of relevant antioxidant genes.
Quantitative real time-PCR analysis revealed that HME cells
expressing the “*7*CA7YEGER or FPEPIE3CA alleles showed a

@ PLoS ONE | www.plosone.org

two fold increase of Manganese Superoxide dismutase (MnSOD) mRNA
compared to wild type cells (Figure 7A). Moreover, HME clones
expressing selectively EGFR and PIK3CA oncogenes displayed a
robust expression of Manganese Superoxide dismutase (MnSOD) and
catalase mRNAs following GD (Figure 7B). On the other hand,
CIDERAS-expressing cells did not stimulate the expression of these
antioxidant genes (Figure 7B). Western blot analysis on total
protein extracts confirmed that oncogene-carrying clones have
significant higher levels of MnSOD protein compared to wild type
cells (Figure S4).
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Figure 3. NAC and Catalase confer resistance to GD-induced cell death. (A) Antioxidant but not pyruvate treatment inhibits GD-induced cell
death. Wild type HME cells were glucose starved for 36 hours with or without 5 mM N-acetyl-L-Cysteine or sodium pyruvate at the indicated
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doi:10.1371/journal.pone.0037526.9003

B-catenin and FOXO4 are involved in the oncogenes-

driven responses to GD

To find the specific transcriptional network induced by the
oncogenes following GD, we have searched for transcription
factors that stimulate Catalase and MnSOD gene expression. These
genes are known targets of the Forkhead transcription factors
(FOXOs) [23,24] and B-catenin, a key effector of the WNT
pathway [25,26]. Although the PISK/AKT-dependent signaling
has been recognized as a negative regulator of FOXOs, FOXO4
and P-catenin proteins can accumulate into nucleus and act as
transcriptional sensors of oxidative stress independently of the
presence of growth factors [26,27]. Based on these observations,
we studied the regulation of B -catenin and FOXO4 after GD in
wild type HME cells and in isogenic clones carrying oncogenes.
Since stability and nuclear localization of B-catenin are negatively
controlled by a GSK3p kinase-dependent phosphorylation of
Ser33,37 and Thr41 residues of PB-catenin, we assayed the
phosphorylation of these residues in response to GD. Western
blot with specific antibodies indicated that phosphorylation of the
Ser33,37 and Thr41 of B-catenin was rapidly inhibited in response
to GD in oncogenes-carrying cells but not in wild type cells
(Figure 8A and 8B). Ser33,37 and Thr41 phosphorylation of B-
catenin in wild type cells under GD was mainly dependent on
GSK3p kinase activity since exposure to the GSK3p inhibitor,
lithium chloride, eliminated the phosphorylation of these residues
of B-catenin (Figure 8A). These data suggest that oncogenic EGFR
and PI3K selectively inhibit GSK3B during GD. Accordingly,
immunoblot analysis showed that the levels of phosphorylated
GSK3B(S9), an inhibitory site phosphorylated by AKT, was
higher in oncogene-expressing cells exposed to GD (Figure 8C).

Since active B-catenin is targeted to the nucleus, we monitored
B-catenin nuclear accumulation in response to GD. Our data show
that HME cells carrying-oncogenes accumulate significant nuclear
B-catenin in response to GD compared to isogenic wild type cells
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(Figure 8D). To further document the activation of B-catenin, we
performed immmunoflorescence analysis by using specific anti-
bodies recognizing active, not-phosphorylated, B-catenin. Our
data indicate that nuclear localization of active B-catenin is
increased in HME cells expressing the “#7#%47EGER or the
EBEPIE3CA alleles compared to the isogenic wild type cells; after
exposure to GD, active B-catenin robustly accumulate into nucleus
of oncogenes-carring cells, more efficiently than wild type cells.
These data demonstrate that the “*AEGFR and the
FSPKPIK 3CA proteins stimulate B-catenin activation and target-
ing to the nucleus following exposure to glucose deprivation
(Figure 8E). We next analyzed the expression of FOXO4: western
blot analysis demonstrated that oncogenes-carrying cells displayed
a 2-fold increase of nuclear FOXO4 compared to wild type cells,
independently of GD (Figure 8D); this effect was specific to
FOXO4, since nuclear FOXO1 was indeed reduced in cells
carrying activated EGFR and PI3SK pathways (Figure 8D).
However, we observed a reduction of nuclear FOXO1 in response
to GD in wild type cells but not in isogenic clones carrying
oncogenes, suggesting that oncogenic EGFR and PIK3CA also
stabilized FOXO1 in response to GD (Figure 8D).

To further investigate whether FOXO4 and B-catenin cooper-
ate to activate the expression of antioxidant genes in response to
GD in HME cells, we used a MnSOD promoter reporter assay
previously described [25,26]. B-catenin was able to enhance
FOXO4-dependent and independent transcription of the MnSOD
promoter in wild type HME cells under GD (Figure 8F, left
graph), indicating that MnSOD promoter can be also activated by
stimuli FOXO4-independent, but p-catenin-dependent (Figure 8F,
left graph). As expected, MnSOD promoter reporter assay was
significantly stimulated in HME cells carrying the WETICATSVpGER
or the ™**PIK3CA oncogenes compared to wild type cells
(Figure 8F, right graph).
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The GSK3B/FOX04/MnSOD axis enhances the survival of ~ wild type HME cells (Figure 9A). Moreover, we also demonstrate
mammary epithelial cells exposed to GD that the expression of the GSK3B(K85A) mutant - a GSK3p

To functionally link the GSK3p and B-catenin axis with the %{inase dominant.negative - protects wilcll type cells from _GD'
response to glucose deprivation, we co-expressed B-catenin and induced death (Figure 9A). Expressing wild type GSK3P kinase

FOXO#4 in wild type HME cells and monitored cell death after did not induce the protective effect. These data underline the
48 hours of exposure to GD. Our data demonstrate that the importance of the constitutive, oncogenic activation of EGFR/

expression of B-catenin and FOXO4 improves resistance to GD of
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doi:10.1371/journal.pone.0037526.9g005

PI3K/GSK3p signaling in protecting and selecting cells during
GD.

To directly link the MnSOD expression with resistance to GD,
we generated wild type HME cell lines stably expressing the
antioxidant MnSOD enzyme. Upregulation of MnSOD expres-
sion was sufficient to protect the cells from GD-induced cell death
(Figure 9B). These results indicate that the increased MnSOD
expression 1is an Important component of oncogene-induced
resistance to GD in cells carrying the “#7*47EGER or
EBEPIE3CA cancer alleles.

All together, these data show that the oncogenic inactivation of
GSK3B by the “F#6-ATORGER or F*¥KPIK3CA cancer proteins
significantly increases nuclear B-catenin pool in response to GD
and enhances B-catenin- and FOXO4-dependent expression of
genes involved in antioxidant stress response.

@ PLoS ONE | www.plosone.org

Discussion

An essential antioxidant role of glucose in mammary
epithelial cells

In mammary epithelial cells the metabolic checkpoint for
glucose concentration is based on ROS homeostasis. GD induces a
significant reduction of the GSH/GSSG ratio, a severe oxidative
stress and, ultimately, cell death. GSH level is controlled by PPP
and depends on activation of NADPH oxidase and SOD.
Activation of G6PDH and glutathione peroxidase in combination
with NADPH oxidase and SOD maintains stable GSH levels [28].
In the absence of glucose and under low ATP levels, this process is
mefficient and the GSH/GSSG ratio decreases, leading to rise of
ROS levels. ROS generated by GD induce the phosphorylation
and activation of AMPKao. Similarly, 2-Deoxy-D-glucose, a not-
hydrolysable glucose analogue, stimulates AMPKa(T172) phos-
phorylation by a ROS-mediated mechanism (LC, unpublished
data and [29]). Thus, ROS generated by GD act as metabolic
intermediates able to activate AMPK. HME cells expressing the
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cells after glucose deprivation. Total glycogen content after GD in
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PIK3CA_cnt and EGFR_cnt are HME control cells carrying the wild type
alleles (see text for details).

doi:10.1371/journal.pone.0037526.g006

ETICATSOEGER and X PIK3CA mutants are resistant to GD-
generated oxidative stress and show reduced AMPK activation.

We have found that the resistance strategies involve, at least in
part, the activation of antioxidant enzymes such as MnSOD and
catalase. The upregulation of MnSOD is adaptive since it
increases the ROS neutralization as well as the rate of GSH
production [28]. High basal levels of MnSOD expression has been
reported associated to invasive and highly aggressive breast cancer
[30,31] and this may indicate the high ability of tumor cell to
adapt to nutrient deprivation. Since the EGFR and PIK3CA are
among the most frequently activated oncogenes in cancer, we
suggest that the specific anti-oxidant transcriptional program
driven by these oncogenes protects and favours the selection of the
cells carrying the mutated proteins. Our data offer a mechanistic
explanation for the selection and the reproductive success of such
cells under environmental metabolic stress. We suggest that
MnSOD and catalase expression may represent a common anti-
oxidant mechanism in pre-cancerous cells harbouring activating
mutation of the EGFR- and PI3K-dependent pathways. The
ability to tune metabolic enzymes and pathways to survive under
nutrient stress may represent a relevant and common phenotype of
cancer cells. In this framework, we believe that also the
hypertrophy of the serine synthesis pathway in breast cancer cells
[32,33] reflects the ability of cancer cells to continuously adapt to
different metabolic needs.

Oncogenes and glucose metabolism: not just a matter of
addiction in tumor progression

Specific metabolic changes occur during tumor development and
allow cellular adaptation to the unstable tumor microenvironment.
One of the most prominent metabolic changes in cancer cells is the
high glycolytic rate in the presence of oxygen, a phenomenon known as
the Warburg effect [1,34,35]. As consequences of the Warburg effect,
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cancer cells show increased glucose needs and higher sensitivity to
glucose deprivation compared to normal cells, a phenomenon known
as glucose addiction [35,36]. In cancer cells, the expression of
constitutive active AKT [37], [38], KRAS [3,39,40] or the activation
of the mTOR pathway [14,41] has been associated with an increased
Warburg effect and higher sensitivity to glucose deprivation. Here, we
demonstrate that in not-transformed mammary epithelial cells GD
elicits cell death and that the expression of oncogenic EGFR and
PIK3CA confers resistance rather than sensitivity to glucose depriva-
tion. Moreover, we did not observe a significant increase of the
glycolytic index in oncogenes-carrying clones compared to wild type
HME (data not shown). This apparent contradiction might be
explained by different experimental and biological conditions: i) the
use of a constitutive membrane-bound AKT mutant [38], [37]
compared to the "*FPIKSCA and the 47 0EGFR
oncogenes; 1) the endogenous expression levels of the oncogenic allele
in the knock-in models compared with the constitutive transgenic over-
expression; iii) tissue-specific metabolic effects of each cancer mutations;
1v) the use of pre-cancerous cells instead of transformed cancer cells that
could, indeed, carry on additional mutations and whose combination
could generate more complex metabolic phenotypes.

The observed oncogene-induced resistance to glucose depriva-
tion in epithelial cells indicates that, during neoplastic progression,
cancer cells may display a variable degree of glucose addiction,
depending on the tumor stage: advanced tumors may show an
increased glycolytic rate and glucose addiction as adaptive
strategies that support acidosis, hypoxic growth and invasion.
We suggest that pre-cancerous cells have an opposite strategy,
since glucose addiction represents a strong metabolic Achilles’ heel
that limits the progression of cells carrying a functional AMPK,
which represents an important metabolic checkpoint controlling
cell fate under glucose deprivation [14]. In this perspective,
glucose availability represents an intrinsic barrier that restricts
aberrant proliferation of mammary cells. Oncogenic activation of
EGFR or PI3K pathways selects and drives cellular clones able to
surmount such metabolic barriers and to survive under sub-
optimal microenvironment conditions.

Enhanced nuclear B-catenin and FOXO04 signalling by
oncogenic EGFR and PIK3CA

We have documented a positive feedback between the
oncogenic EGFR and PI3K pathways with the FOXO4 and -
catenin signals in response to glucose deprivation. The role of
FOXO proteins as tumor suppressors has been largely recognized
and has been associated with their ability to promote cell cycle
arrest [42]. Here, we propose that FOXO4, specifically activated
by B-catenin, promotes cell resistance to oxidative metabolic stress
and survival of oncogenes-carrying cells. This dual function of
FOXOs may depend on a complex code of post-translational
modifications and interacting co-activators that differentially
control FOXOs functions under different conditions and in a
tissue specific manner [42,43]. There is evidence indicating an
evolutionary conserved interaction between FOXO4 and f-
catenin induced by starvation and enhanced by oxidative stress
that drives the expression of antioxidant enzymes, such as
MnSOD [26]. Along with these observations, our findings support
the conclusion that B-catenin is a transcriptional co-activator that
switches on FOXO target genes under nutrient stress and
promotes cell survival.

We show that somatic mutations frequently observed in breast
cancer lead to B-catenin activation: this observation strengthens
emerging data outlining the relevance of the B-catenin activation
in breast cancer [44,45] and the crosstalk between EGFR and
WNT signals in breast cancer development [46]. One mechanism,
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type or the indicated isogenic HME cells were glucose starved and RNA was harvested at the indicated time points. The relative expression of the
MnSOD or Catalase genes, normalized to f-actin mRNA, was analyzed by quantitative real time PCR. Data show means = SD.
doi:10.1371/journal.pone.0037526.9007
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presence or not of lithium chloride and equal amounts of proteins were assayed by immunoblot. The anti-pf-catenin antibody recognizes the
phosphorylated Ser33,37 and Thr41 residues of B-catenin. The graph reports the densitometry analysis of the pf-catenin/B-catenin (gray bars) and
the B-catenin/B-actin (black bars). (B) Time course analysis of -catenin phosphorylation after GD. HME clones were GD for the indicated time. Total
proteins were analyzed by immunoblot as indicated. The graph reports the densitometry analysis of pB-catenin/fB-catenin. (C) Regulation of GSK3f
phosphorylation in response to GD. The indicated HME clones were glucose starved for 6 hours and total protein extracts were analyzed by
immunoblot as indicated. pGSK3p antibody recognizes specifically the phospho-Ser9 residue of GSK3f. The graph reports the densitometry analysis
of the pGSK3p/p-catenin signals. (D) Regulation of nuclear B-catenin and FOXO4 accumulation by oncogenes in response to GD. Wild type HME or
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experiments = SD (t-test, **p<<0.01; *p<<0.05). (E) Intracellular localization of active B-catenin (ABC) after GD exposure. Wild type HME or isogenic cells
carrying the /746~ AZS0EGER or the E**PIK3CA cancer alleles were glucose-starved for 5 hours. Cell were fixed and stained with a specific anti active,
not phosphorylated B-catenin antibody (Red) and DAPI (Blue) for the nuclear staining and analyzed by fluorescence microscopy. Graphs report the
percentage of B-catenin positive nuclei (average = SD of 10 different fields containing at least 40 cells/field. t-test, ***p<<0.001, **p<<0.01, *p<<0.05).
The exposure time was kept constant through the images analysis. (F) f-catenin contributes to MnSOD promoter activation under GD. (Left graph)
Wild type HME cells were transfected with vectors expressing the indicated proteins together with a wild type MnSOD promoter luciferase-reporter
(—3340+1MnSOD-luc), or with a mutant derivative which contains mutated FOXO binding sites (—3340+1mutMnSOD-luc) and analyzed after 8 hours
of GD. Data represent means =+ SD derived from four independent experiments. (Right graph) Wild type HME cells or isogenic clones expressing the
delE746-A750EGFR or the E545KPIK3CA allele were transfected with vectors expressing the indicated proteins in presence of wild type MnSOD
promoter luciferase-reporter and analyzed after 8 hours of GD. Data represent means * SD. The efficiency of transfection was normalized by the
cotransfection of CMV-Renilla luciferase reporter.

doi:10.1371/journal.pone.0037526.9008
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Figure 9. The GSK3p/B-catenin/MnSOD axis promotes resistance to GD-induced cell death. (A) Wild type HME cells were cotransfected
with equal amounts of the indicated expression vectors. 24 hours after transfection, cells were glucose-starved for 48 hours and the percentage of
dead cells was quantified by FACS analysis of propidium iodide positive cells. Graphs report the average derived from three independent experiments
+ SD (t-test, **p<<0.01). The inset shows an anti-HA immunoblot of total protein extracts from cells transfected with the HA-GSK3p or HA-
GSK3pB(K85R) vectors and used for the GD experiments. -actin was used as loading control. (B) Wild type HME cells stably transfected with an empty
vector (pcDNA#1 and pcDNA#2) or with an expression vector for MnSOD (MnSOD+#1 and MnSOD#2) were exposed to GD for 60 hours and the
percentage of dead cells were quantified by FACS analysis of propidium iodide positive cells. At least three independent empty vector- or MNSOD-
transfected clones were analyzed and gave similar results. The inset represents an immunoblot analysis showing the expression of MnSOD in total
protein extracts from two representative clones used for the experiments. B-actin was used as loading control. Graphs report the average derived
from three independent experiments = SD (t-test, **p<<0.01 or ***p<<0.001, empty vector Vs MnSOD).

doi:10.1371/journal.pone.0037526.9009

at least, involves the regulation of GSK3p, a key kinase controlling Materials and Methods
B-catenin stability. We propose that the GSK3p, B-catenin and
MnSOD axis represents a potential target to lower the resistance
to oxidative stress of tumor harboring oncogenic EGFR and

PISKCA.

Plasmids

Flag-B-catenin, pMT2-HA-FOXO4, pSOD-luc(—3340+1) and
the pSODmut-luc carrying point mutations in two FOXO binding
sites were a generous gift from Dr B.M. Burgering (University
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Medical center, Utrecht, The Netherlands) and have been
described elsewhere [24,26]. CMV-Renilla luciferase was pur-
chased from Promega. The pCDNA-MnSOD has been previously
described [47]. Expression plasmids for wild type GSK3f and
dominant-negative GSK3B(K85A) were purchased from Addgene.

Cell viability

Cell wviability was determined by flow cytometry using
propidium iodide (PI) staining. Briefly, after the specific treat-
ments, detached and attached cells were collected, washed twice
with PBS 1x and stained with propidium iodide; PI positive cells,
e.g. death cells, were detected by flow cytometry with a
FACSCalibur (Becton Dickinson) and analyzed by using the
CellQuest software (Becton Dickinson).

ATP quantification

Cells were counted and plated in a 96-well plate in quadrupli-
cates at the density of 3000 cells/well. After 48 hours, cells were
glucose-starved and harvested at different time points. ATP assay
was carried out using the ATPlite assay (Perkin Elmer) according
to the manufacturer’s instructions. A parallel experiment was
performed to determine the cell number by nuclei counting after
staining with 1 ug/ml Hoechst 33342. Nuclei were detected by
florescence microscopy with a BD pathway H'T bioimager with
the AttoVision Acquisition Software Module and quantified by
using the BD Date Image Explorer Software.

GSH/GSSG measurement

Reduced and oxidized Glutathione ratio was measured by using
the GSH/GSSG-Glo assay kit (Promega) according to the
manufacturer’s protocol.

Quantitative Real-Time PCR

Total RNA extraction was done using Tryzol (Invitrogen)
according to the manufacturer’s instructions. Total RNA was then
reverse-transcribed into ¢cDNA by using M-MLV Reverse
Transcriptase (Gibco BRL) with oligo random hexamers. The
cDNA was subjected to quantitative PCR analysis by using Light
Cycler (Applied Biosystem) with SYBR Green PCR Master MIX
Kit (Applied Biosystem). The primers sequences for the PCR
analysis are available on request.

Statistical analysis

Data are presented as mean standard deviation (SD).
Statistical significance was analyzed by using, where appropriate,
a two-tailed Student’s ttest. P values less or equal than 0.05 were
considered statistically significant.

Additional experimental procedures (materials and reagents,
cell lines, cell culture and transfection, protein extracts, western
blot analysis, glycogen measurement, luciferase reporter assay and
immunoflorescence analysis) are provided as Methods S1.

+

Supporting Information

Figure S1 The insertion of oncogenic alleles by homol-
ogous recombination (knock-in) effectively and specifi-
cally affects the downstream signaling pathways in
mammary epithelial cells. Wild type HME or isogenic cells
carrying “EAPOEGER or PPEPISKCA or “PERAS cancer
mutations were treated with the indicated serum concentrations
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for 16 hours. Equal amounts of total protein extracts were
analyzed by immunoblot with the indicated antibodies. ERK1/2
indicates the p42/p44 proteins; pERK1/2 indicates the Thr202
and Tyr204 phosphorylated residues of ERK1/2. pMEK1/2
indicates the phosphorylated residues at Ser217 and Ser221 of
MEKI1/2. Data are representative of three independent experi-
ments that gave similar results.

(TIF)

Figure $2 HME clones carrying the “*#*4”'EGFR or
the ©**XPIK3CA allele are resistant to GD-induced cell
death. Additional HME clones carrying oncogenic mutations -
independently generated from clones presented in Figure 1 - were
glucose starved for 48 hours. The percentage of dead cells was
quantified by FACS analysis of propidium iodide positive cells.
Results report the data derived on the average from four
independent experiments £ SD.

(TIF)

Figure S3 Phosphorylation of AMPKe(T172) in wild type
HME cells and in isogenic control knock-in cells. (A)
Additional HME clones carrying oncogenic mutations - indepen-
dently generated from clones presented in Figure 1 - were glucose
starved for 10 hours and equal amount of total protein extracts
were assayed by immunoblot with the indicated antibodies. (B)
Wild type HME and isogenic knock-in clones generated by
homologous recombination of the wild type EGFR or PIK3CA
alleles were treated and analyzed as in (A). The levels of
pAKT(S437) on the same protein extracts are also reported
showing that the activation of the PI3K-dependent pathways is
comparable in all three clones.

(TIF)

Figure S4 Upregulation of MnSOD by EGFR or PIK3CA
cancer alleles in response to GD. Wild type HME and
isogenic cells carrying “#7 A7 EGER or EIBRPIESCA alleles
were glucose starved for the indicated hours. Total proteins were
extracted and analyzed by immunoblot with the indicated
antibodies. The graph reports the densitometry analysis of the
MnSOD/TOMI signals and the average from three independent
experiments = SD.

(TIF)

Methods S1
DOC)
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