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A repetitive movement pattern of many animals, a gait, is controlled by the Central Pattern

Generator (CPG), providing rhythmic control synchronous to the sensed environment.

As a rhythmic signal generator, the CPG can control the motion phase of biomimetic

legged robots without feedback. The CPG can also act in sensory synchronization,

where it can be utilized as a sensory phase estimator. Direct use of the CPG as the

estimator is not common, and there is little research done on its utilization in the

phase estimation. Generally, the sensory estimation augments the sensory feedback

information, and motion irregularities can reveal from comparing measurements with the

estimation. In this work, we study the CPG in the context of phase irregularity detection,

where the timing of sensory events is disturbed. We propose a novel self-supervised

method for learning mistiming detection, where the neural detector is trained by dynamic

Hebbian-like rules during the robot walking. The proposed detector is composed of

three neural components: (i) the CPG providing phase estimation, (ii) Radial Basis

Function neuron anticipating the sensory event, and (iii) Leaky Integrate-and-Fire neuron

detecting the sensory mistiming. The detector is integrated with the CPG-based gait

controller. The mistiming detection triggers two reflexes: the elevator reflex, which avoids

an obstacle, and the search reflex, which grasps a missing foothold. The proposed

controller is deployed and trained on a hexapod walking robot to demonstrate the

mistiming detection in real locomotion. The trained system has been examined in the

controlled laboratory experiment and real field deployment in the Bull Rock cave system,

where the robot utilized mistiming detection to negotiate the unstructured and slippery

subterranean environment.

Keywords: locomotion, central pattern generator, Hebbian learning, phase estimation, radial basis function

neuron, reflexes, hexapod walking robot, bio-inspired robotics

1. INTRODUCTION

Maintaining fluent gait motion in a body with a high degree of freedom while continually reacting
to terrain irregularities is a challenging problem that, however, can be observed in nature (Bekey,
1996). During the gait, the legged locomotion control sustains the regular repetitive motion using
reflexive reactions triggered by detected motion irregularities. In nature, animals demonstrate
stunning adaptability to motion disruptions through reflexes (Pearson and Franklin, 1984; Duysens
et al., 2000). Many of such reflexes are wired in neural circuits located close to the legs inside
the vertebrates’ spine or thoracic ganglia of many invertebrates. The spinal neural circuits must
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recognize an irregularity in the locomotion through
proprioception to trigger a reflex (Bekey and Tomovic, 1986).
Hence, the irregularity recognition needs a model of regularity
to which a measured state is compared. In this work, we focus on
phase irregularities, where the timing of the measured event is
compared to its estimate. The tool for phase modeling is a neural
structure that centrally generates rhythms, the Central Pattern
Generator (CPG).

CPGs play an essential role in gait locomotion control.
The CPG’s rhythmic patterns are combined with the sensory-
motor neural circuits and stabilize the gait periodicity. The CPG
activity and spinal neural control can generally be controlled
by descending (e.g., from the brain) signals. Interestingly, the
locomotion can be sustained without the brain’s participation
and sensory input in virtual locomotion (Brown, 1912), since
the CPG sustains its rhythmic signals even if it is disconnected
from its sensors and effectors. This suggests the CPG can
work in an open-loop mode, and thus the CPG provides
the motor control even without input excitations. On the
other hand, if the CPG is synchronized to the sensory
signals, the CPG acts as an estimator of the sensory phase
(Kuo, 2002).

We can identify that some signals are tightly coupled to
the gait motion and thus inherit the gait period, such as
swing stop or ground contact. The CPG that synchronizes
to such a periodic signal continually estimates the signal
phase. The estimated and measured sensory phase should
be the same during a regular motion. However, a regular
motion disturbed by unexpected dynamics, elevations, and
depressions can induce disturbances in the sensory signal.
Hence the motion irregularities can be detected by comparing
the measured sensory phase with its estimation (Miall and
Wolpert, 1996). Any difference between the timing of the
measured and estimated sensory events can be utilized for
mistiming detection (Goldschmidt et al., 2014), which is
insufficiently researched within the context of plastic CPG-based
neural networks.

In this paper, we propose a trainable CPG-based event
mistiming detector integrated into gait controller architecture
introduced in Szadkowski and Faigl (2020). Unlike common
architectures that model the phase of sensed (input) signal and
motor (output) signal with one CPG, the employed architecture
models each signal with either the motor CPG, generating the
motor signal phase, or sensory CPG, estimating the phase of
the sensory signal. We propose to utilize the sensory CPG
for the detection of irregularities in the sensory phase. We
couple a plastic Radial Basis Function (RBF) neuron to each
sensory CPG, which learns to anticipate sensory events. The
difference in timing of anticipated and measured events is
the phase error. The error is integrated by Leaky-Integrate-
and-Fire (LIF) neuron, which learns to distinguish the regular
phase error induced by regular measurement imperfections, and
fires on irregular phase error detecting the event mistiming.
Two types of event mistiming are distinguished: event absence,
which occurs when the sensory event is delayed, and event
disruption occurs when the sensory event is too early; see
Figure 1. Both types of event mistiming are detected by the

proposed CPG-based mistiming detector that augments the
sensory feedback information.

We demonstrate the benefits of the proposed mistiming
detector using the detection as a trigger of two reflexes: the
elevator and search reflexes. The elevator reflex elevates the leg
to avoid an obstacle detected during the leg swing phase. The
search reflex is a behavior where the leg searches for supporting
ground after not detecting the expected support at the end of the
swing phase. Hence, the elevator reflex is triggered by the early
stop of the swinging leg, and the escape reflex is triggered by
ground contact absence. Finally, even though the focus of this
work is plastic mistiming detection, we also extend the motor
control of our previous work to control multiple motion phases
with position and maximum torque commands.

The proposed CPG-based controller is deployed on a real
hexapod walking robot. The robot is trained to walk tripod gait
on flat terrain. First, the robot self-learns to estimate the sensory
phase needed for mistiming detection in a regular environment.
Then, we demonstrate the mistiming detector by guiding the
robot over elevations and depressions in two scenarios. In the
first scenario, the robot walks in a controlled environment, where
the detections are isolated and thus easily observable. The second
scenario tests the proposed controller’s limits in the Bull Rock
cave system, which provides highly unstructured terrain depicted
in Figure 1A.

The rest of the paper is organized as follows. The following
section is dedicated to related work. In section 3, the phase
estimation problem is described within the context of gait
control and the theoretical foundations for the event mistiming
detection. The CPG-based controller is presented in section 4,
where the sensory prediction and mistiming detection system
is described, followed by the description of the motor control
and reflex system. The experimental deployment is described in
section 5 and further discussed in section 6. Finally, the paper is
concluded in section 7.

2. RELATED WORK

CPG-based gait controllers were proposed for many robots and
body models, where the controller implementations vary in
architecture. In this section, we provide a brief overview of
existing related CPG-based controller architectures. In particular,
we focus on whether the CPG represents the phase of a sensory
signal (input), motor/control signal (output), or both. Existing
CPG-based controllers primarily use the CPG as a generator
of the motor phase. For example, the CPG in the controller
presented in Maufroy et al. (2008) determines whether the leg
is in the extension or flexion phase to select a subnetwork that
controls the respective actuator. Similarly in limbless locomotion,
a chain of coupled CPGs controls the flexion rhythm of each
servomotor in a modular lamprey-like robot (Li et al., 2014).
Locomotion patterns can be changed by altering the parameters
of the CPG. In Yu et al. (2020), the frequency of the CPG
oscillation is temporarily increased as a part of reflexive behavior,
where the leg performs fast spiral motions. Switching the
topology of coupling between CPGs changes the gait pattern,
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FIGURE 1 | (A) The utilized hexapod walking robot in Bull Rock cave. The unstructured environment causes motion disturbances, which result in sensory event

mistiming. The sensory phase φx measurement is compared to its estimation φ̂x , where their difference is the phase error e. We distinguish two types of phase error:

event absence, φx > φ̂x , and disruption, φx < φ̂x . An example of event absence is illustrated in (B), where at the beginning of the stance phase, the front leg finds

itself in a depression (orange dot) and thus detects the ground contact later than expected (blue dot). In the disruption example (C), at the end of the swing phase, the

front leg hits elevated terrain (orange dot) and thus detects the ground contact sooner than expected (blue dot).

which is used inWang et al. (2014) where CPG network generates
multiple gaits for a fish-like robot, such as forward and backward
swimming and turning. Besides the motor signal generation, a
CPG can also be used as a sensory phase estimator. A CPG that is
entrained by a periodic sensory signal can become synchronized
with the signal where the phases of the CPG and its entraining
signal evolve at the same rate (except for a short transient
behavior) (Pikovsky et al., 2001). In Kuo (2002), Kuo proposes
the CPG synchronization to model the sensory signal phase
continuously. He showed that the actuator controller that uses
the CPG’s sensory estimate, is more stable than a controller using
a raw sensory signal.

The difference between a motor CPG and a sensory CPG is
that the former represents an actuator phase, while the latter
represents a phase of the entraining sensory signal. Assuming the
sensor andmotor phases are the same, a single CPG can represent
both phases. In Yan et al. (2017), it is assumed that the gait phase
is a function of the sensory phase, e.g., a function of the hip joint
angle. Thus the gait phase is estimated by the CPG synchronized
to sensory events, such as maximum hip flexion. The functional
dependence between the sensory andmotor variables is implicitly
assumed by synchronizing the CPG to the sensory input and
using the same CPG as themotor phase generator (Fukuoka et al.,
2003; Endo et al., 2004; Righetti and Ijspeert, 2006). However,
such an architecture needs some prior knowledge about the
robot morphology, where it must be determined which motors
and sensors are functionally dependent. On the other hand, the
morphology agnostic approach is not to assume any functional
dependence and model each phase, be it sensory or motor, with
its respective CPG. The controller presented in Héliot and Espiau
(2008) is composed of a layer of the sensory CPGs estimating the
phase that is fused and fed into the central motor CPG, which
controls the gait phase. A more general approach is presented in
our previous work (Szadkowski and Faigl, 2020), where both the
sensory and the motor variables have their own CPGs forming a
layer of sensory CPGs, which is connected to a layer of the motor
CPGs. Hence, the CPGs in biomimetic controllers have two basic

roles: motor phase generator and the sensory phase estimator. In
the rest of this section, we focus on the sensory CPGs only, as the
proposed approach enriches their utilization.

A sensory model that estimates the sensory state can help
in the detection of motion disturbances. In the context of
animal locomotion, such disturbances can be small obstacles,
depressions, slippage, and others, to which the animal reacts
with reflexes documented in Pearson and Franklin (1984)
and Duysens et al. (2000). The reflexes are triggered by
proprioceptive events such as increased load on a muscle or
tensile sensing (Bekey and Tomovic, 1986; Duysens et al.,
2000), which indicates a motion disturbance. Motion disturbance
detection is implemented in a number of biomimetic reflex
controllers, where each reflex has to be triggered by such
a disturbance. The disturbance detection can be realized by
comparing the estimated values with the measured ones; if
the difference is too high, a disturbance is detected. In the
context of periodic sensory signals, two differences can be
measured: difference in amplitude and difference in phase. The
amplitude trigger is simple; the detector directly measures a
value above (or below) a certain threshold, which triggers the
reflex reaction. For example, the reflexive slip responses can be
triggered by detecting leg movement while the leg is on the
ground (Boone and Hodgins, 1995). The elevator reflex, where
the leg avoids an obstacle blocking its protraction during a
swing motion, can be triggered by a significant angle error in
the protractor motor, as shown in Klaassen et al. (2002). The
author of Bläsing (2006) shows that the search reflex, where
the leg tries to find support during the stance, can be triggered
by lowering the leg under the threshold, which indicates a gap.
Besides, the search and elevator reflexes are implemented in
multiple other controllers (Espenschied et al., 1996; Li et al.,
2018; Yu et al., 2020). However, the above-mentioned reflex
triggers are hand-tuned and thus dependent on the robot body
morphology. Generally, the robot morphology can change in
time or is not entirely known, and thus the disturbance detection
algorithm must adapt. A simple, adaptive mechanism is used
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in Lewinger and Quinn (2010), where the system remembers
the depressor motor position during the last stance. Another
learning algorithm is presented in Kirkwood et al. (1989), where
the controller is trained to fusemultiple sensor inputs into a given
reflex trigger.

The presented amplitude-based detectors are dependent on
measuring unusual sensory values directly, where the value
crosses a threshold. However, some disturbances do not change
the sensory signal’s amplitude but a phase, causing a sensory
mistiming, such as the absence of anticipated foot contact or
protraction stopping too early. The event mistiming can be
detected from the difference between the phasemeasurement and
phase estimation provided by the internal model. Generally, the
internal model estimates the sensory feedback either by directly
processing the current sensory measurement or processing the
copy of motor command (so-called efference copy) (Miall and
Wolpert, 1996). In Goldschmidt et al. (2014) the efference copy
from a motor CPG is processed into a ground contact phase
estimation, where the absence of ground contact triggers the
search reflex. Maffei et al. pointed out that the sensory model
that maps the efference copy onto sensory estimation is sensitive
to the specific controller configuration. The authors propose to
adapt the sensory model directly to the sensory feedback (Maffei
et al., 2017). In the context of phase estimation, the CPG
entrained to the sensory feedback estimates the sensory phase.
The idea of phase estimating CPGs introduced in Kuo (2002) is
expanded in Dzeladini et al. (2014), where the difference between
the measured and estimated sensory phase is used as a corrective
term that participates in motor activity regulation. However,
the authors use one CPG per actuator and select the entraining
sensory feedback using prior knowledge.

In the proposed approach, we leverage the sensory/motor
CPG distinction presented in Szadkowski and Faigl (2020) and
design a self-learning mistiming detector on the sensory CPG
layer. Hence, the main expected advantage of the proposed
motion irregularity detection is that no prior knowledge about
sensory-motor relation is needed.

3. PROBLEM STATEMENT

The sensory mistiming detection is based on the periodicity
of the sensory signal, which is entrained by the repetitive gait
motion. The repetitive motion pattern arises from the rhythmical
motor actuation. The motor actuation is controlled by the control
signal u(t) which has period Tgait during the regular motion.
The periodically actuated body interacts with the environment,
and the effects of the interactions are measured by sensors. We
focus on such a sensory signal x(t) that inherits the actuation
periodicityTgait . Themotor φu and sensory φx phases are defined
as variables that grow linearly with time at the rate ωgait =

2π(Tgait)−1 during the regular motion, formally φ̇x = φ̇u =

ωgait ; see Figure 2. Likewise, we define the sensory amplitude Ax

as a variable that does not change, i.e., Ȧx = 0 and similarly for
the motor amplitude Au; however, this work is focused on the
phase variables.

The phase difference between sensory and motor phases
1φux = φu(t) − φx(t) is not changing in regular environments
with 1φ̇ux = φ̇u − φ̇x = 0, but it is dynamic in irregular
environments, which cause disturbance of the motion. The
motion disturbances propagate into the controller through the
sensory signal, and the controller needs to react to sustain the
regular gait.

The disturbance in a sensory signal can be assessed by
comparing the sensory signal with the sensory estimation x̂(t).
Focusing on the phase, the sensory phase estimation φ̂x(t) yields
the phase of a sensory signal during regular motion: φ̂x(t) =

ωgaitt + 8, where 8 is the sensory phase at t = 0. During
the regular motion, the phase difference between estimated and
measured phase, refered to as phase error, is e(t) = φx(t) −
φ̂x(t) = 0. However, the phase error can be non-zero due
to sensory signal disturbances caused by irregular motion. The
authors of Pikovsky et al. (2001) describe the disturbance in
dynamic systems with stable periodicity as perturbations in
the phase and amplitude of the system. The perturbations can
be approximately formalized as Ȧx(t) = pA(t) and φ̇x(t) =

ωgait + pφ(t), where pA(t) and pφ(t) are amplitude and phase
perturbations, respectively. The phase error then gains dynamics
driven by the phase perturbation ė(t) = ωgait + pφ(t) −

ωgait = pφ(t). Hence, the positive error e(t) > 0 represents
sensory signal being ahead of time while negative e(t) < 0 is
being delayed, which is illustrated in Figures 1B,C. If the phase
error accumulated over one gait cycle exceeds a given threshold,
∫ τ

τ−Tgait
|e(t)|dt > θ , then the sensory mistiming is detected at the

time τ .
There are two necessary tools for detecting the sensory

mistiming: the sensory phase estimator φ̂x(t) and the phase error
threshold θ . Moreover, the sensory phase is rarely measured
continually, as pointed out in Héliot and Espiau (2008). Instead,
it is measured as a short periodic event, and only during this
sensory event, the phase measurement can be compared to the
phase estimation. In this work, the i-th sensory input xi(t) ∈

[0, 1] is a binary signal, where its high level xi(t) ≈ 1 indicates the
event. However, since each sensor has a different sensitivity and
the sensory events have different duration, the estimator and the
error threshold must be self-learned for each sensor input. The
proposed neurodynamic approach for self-learnable mistiming
detection and its utilization in gait locomotion is presented in the
next section.

4. THE GAIT LOCOMOTION CONTROLLER

This section presents the proposed sensory event mistiming
detector that is integrated within the CPG-based gait controller.
The overall architecture of the gait controller, depicted in
Figure 3, can be described as two coupled sub-controllers: the
phase control, which estimates the phase of sensory input and
generates the motor phase, and the amplitude control, which
generates the command values for the actuators. The phase
controller is composed of two CPG layers: the sensory CPGs
that estimate the phase for each i-th sensory input φx

i , and the
motor CPGs that generate the motor phase of each j-th actuator
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FIGURE 2 | (A) An illustration of an ant during the tripod gait, a motion pattern where three legs propel the body while the other three legs swing forward. During the

tripod gait, the ant puts a front leg on the ground and senses the ground contact with x(tevent) = 1 at the fourth of the gait period tevent =
1
4 T

gait. During the

regular motion, such an event occurs periodically with x(tevent + nTgait) = 1 for any n ∈ N . Therefore, (B) for the sensory signal x, we define the sensory phase φx

on which we can map the event occurrence at φx (tevent + nTgait) = 1
2π for any n ∈ N . Notice that the sensory phase is directly measured only at tevent, and there

is no sensory phase measurement for the rest of the gait cycle.

φu
j . The sensory CPGs provide a continuous estimation of the

sensory input phases utilized by themotor CPG. Themotor CPGs
generate the phase of the motion for each actuator. Based on the
motor phase, the amplitude control generates the control signal
uj for each j-th actuator, which performs the regular motion. In
this work, the amplitude control is extended with reflex reactions
to motion disturbances triggered by mistiming detection. The
mistiming detector is an extension of the sensory CPG layer
utilizing the provided sensory phase estimation.

4.1. Central Pattern Generator as Phase
Estimator
The CPG provides a stable periodic rhythm that can be
synchronized with an input signal. In the gait motion context,
the periodic stability sustains the motion periodicity while the
synchronization is utilized for the sensory phase estimation. The
synchronization is a property of CPGs modeled as a dynamic
system with a limit-cycle attractor (Pikovsky et al., 2001). The
employed CPG can be formalized as follows.

Let ẏ = f (y, c(t)) ∈ R
D be the CPG dynamics in the

D-dimensional space with the input signal c(t). The limit-
cycle Y ⊂ R

D is a closed trajectory in the phase space to
which the unperturbed dynamic system y(t) converges. After the
convergence, the unperturbed CPG produces a stable periodic
signal with the natural frequency ωcpg. If the CPG is entrained
by the periodic signal c(t) with a frequency close to the natural
frequency ω ≈ ωcpg, the CPG synchronizes the input signal. The
synchronization is a phase relation, where the phase difference
between the CPG output and the entraining signal 1φyc =

φy(t)−φc(t) becomes stable. Note that the stable phase difference
implies that the entrained CPG frequency becomes the same as
the entraining signal frequency ωcpg = ω, and if the phase of the
input signal shifts, the phase of the CPG shifts as well. Hence, the
phase of the synchronized CPG continuously estimates the phase
of the entraining signal: φ̂c(t) = φy(t) − 1φyc. However, since
neither the phase difference1φyc, nor the function that maps the
CPG state y ∈ Y onto the CPG phase φy(t) are known in general,
the explicit value of the CPG phase φy(t) cannot be directly used
in practice. Instead, we exploit the fact that there exists one-to-
one mapping between the CPG phase φy(t) ∈ [0, 2π) and the

limit-cycle points Y(φy) = y. Thus, since Y(φy −1φyc) = Y(φ̂c)
is one-to-one mapping, each point on the limit-cycle y ∈ Y

represents the phase of the entraining signal φ̂c. This limit-cycle
representation of the input signal phase is the essential CPG
property in the proposed approach.

We employ Matsuoka’s neural oscillator (Matsuoka, 1987) as
the CPG

ẏ = f (y, c(t)) =









τ ẏ1
τ ẏ2
γ ẏ3
γ ẏ4









=









h(y3)− y1
h(y4)− y2

−y3 − h(y4)α − y1β + 1
−y4 − h(y3)α − y2β + 1+ c(t)λ









,

(1)

h(z) = max(z, 0), (2)

where the parameters α = 2.5,β = 2.5, τ = 0.5, and γ = 0.25
define the limit-cycle Y ⊂ R

4 to which y converges; and the
parameter λ = 0.5 scales the input signal c(t). The input signal
of the sensory CPG is the sensory signal c(t) = x(t); thus, the
limit-cycle Y represents the sensory phase.

4.2. Sensory Event Mistiming Detection
The mistiming detection module, depicted in Figure 4, is
composed of the CPG estimating the sensory phase, Radial Basis
Function (RBF) neuron estimating the sensory event, and Leaky-
Integrate-and-Fire (LIF) neuron, which fires on the integrated
mistiming error. For each sensory input, the detector is trained to
recognize two types of mistiming error: the sensory event absence
and disruption.

Event mistiming occurs when a sensory event unexpectedly
transpires, or no event happens when the sensory phase estimator
expects it. The phase estimation is provided by the sensory CPG
entrained by its respective sensory signal ẏsensei = f (ysensei , xi(t)).
Assuming the natural CPG frequency and gait frequency are
similar ωcpg ≈ ωgait, the CPG synchronizes to the sensory signal
and thus estimates the phase of the sensory signal continuously.

The sensory event phase estimation is utilized by the RBF
neuron, which learns to anticipate the sensory event, when x(t) ≈
1. The RBF neuron activity coupled to the CPG represents a

Frontiers in Neurorobotics | www.frontiersin.org 5 February 2021 | Volume 15 | Article 629652

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Szadkowski et al. Event Mistiming Detector Based on CPG

FIGURE 3 | The proposed gait controller architecture takes the sensory signal x as the input and outputs the control signal u. The gait controller is composed of two

sub-controllers: (i) Phase Control, which detects the mistiming and regulates the phase of the gait, and (ii) Amplitude Control, which maps the motor phase φu and

mistiming detections v into actuator commands u. The phase control is CPG-based, where a coupled ensemble of CPGs estimates the sensory phase φx and

generates the motor phase φu. The mistiming detector compares the sensory phase estimation φx to sensory input x, and self-learns to detect sensory phase errors

v. The mistiming detection v and generated motor phase φu flow into the amplitude control, which transforms the inputs into the control signal u. There are two

modules of the amplitude control: the regular control and the reflex control that modifies the regular control if triggered by mistiming detection.

FIGURE 4 | The architecture of the proposed mistiming detector with the sensory phase estimator. The sensory CPG synchronizes the sensory signal x and thus

estimates the sensory phase φx . The RBF neuron learns the phase during which the event occurs; the RBF neuron is active, a ≈ 1, during the anticipated event. A

difference between the RBF neuron activation and sensory signal gives two types of mistiming error: eabsence and edisruption. Each error excites its respective LIF

neuron, where each LIF neuron learns the activation threshold during the regular motion. If the sensory signal contains disturbances, the LIF activation v exceeds the

threshold and fires. The LIF firing detects the mistiming.

particular phase interval, be it motor phase (Pitchai et al., 2019)
or sensory phase. The RBF neuron uses the activity function

ϕ(y;m) = exp(−ε||y−m||2), (3)

where y is the CPG state and m is the center parameter. Hence,
the RBF neuron is excited if the CPG state is near the RBF center.
The excitation timing is learned to be the same as the timing of
the regular sensory event using the periodic Grossberg learning
rule ṁi = ν(t)xi(t)(yi −mi). The periodic Grosberg rule pushes
the RBF center near the point on the CPG limit cycle Ysense

i that
represents the phase during the signal event xi(t) ≈ 1. Therefore,
the RBF activation ϕ(ysensei (t);msensor

i ) = ai(t) anticipates the
binary sensory event xi(t) ≈ 1.

Motion disturbances can perturb the timing of the sensory
event. Then, the perturbed sensory event does not overlap the
imitated event |ai(t) − xi(t)| > 0 and thus generates the phase
error. Two types of mistiming errors are used to measure the lack
of overlap: the disruption error (4) and absence error (5):

e
disruption
i (t) = h(xi(t)− ai(t)), (4)

eabsencei (t) = h(ai(t)− xi(t)). (5)

The disruption error is non-zero e
disruption
i (t) > 0 when the

RBF neuron does not anticipate the event occurrence, while the

absence error is non-zero eabsencei (t) > 0 when the event is
anticipated but does not occur.

The mistiming errors indicate the phase perturbation;
however, they can also be non-zero during the regular motion in
practice. In particular, since the waveforms of the signals ai(t) and
xi(t) are generally different; thus, there is always some mistiming
error even during the regular motion. Moreover, false sensory
events may occur due to sensory processing or measurement
imperfections. Hence, in practice, the integral of the mistiming
error (i.e., the absence or disruption) over one gait period E(τ ) =
∫ τ

τ−Tgait
e(t)dt might be non-zero even during the regular gait,

E(τ regular) > 0.We assume that if the motion is disturbed during
the gait, the integrated mistiming error is greater than the regular

error E(τdisturbed) > E(τ regular). Therefore it is possible to set

the threshold θ = E(τ regular) which delimits the regular sensory
input error from irregular.

We propose approximating the integration with the LIF
neuron and adapting the firing threshold θ using a learning rule.
The LIF neuron with activation dynamics v̇i = −viγ + ei fires
when the neuron activation vi reaches the threshold θi. Since the
threshold depends on many factors, such as the sensory variance
and the shape of the CPG limit-cycle, the threshold must be
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parameterized for each sensory input xi. A similar LIF threshold
parametrization problem is described in Diehl and Cook (2015),
where authors introduce a learning rule for threshold adaptation.
The adaptation mechanism increases the threshold during LIF
firing and then slowly decays when LIF is at a non-firing activity.
The LIF fire rate is then lower, and it is more likely that LIF
fires at an irregular input. We employ the idea of the threshold
adaptation in the following dynamics:

θ̇i = ν(t)(h(vi + γ − θi)− (θmin − θi)), (6)

where γ adds margin to the threshold and θmin sets the default
threshold value. The threshold is adapted only during learning
ν(t) > 0, when LIF is fed by a regular input; therefore, the LIF
threshold is adapted to regular integrated phase error. For each
i-th signal input, there are two LIF neurons. The first is for the

disruption error v
disruption
i , θ

disruption
i and the second is for the

absence error vabsencei , θabsencei . If a motion irregularity occurs,
the integrated mistiming error (the absence or disruption) in the
LIF neuron exceeds the respective threshold θi, and the neuron
fires. Thus, the firing activity of the LIF neuron vi indicates
the mistiming detection, which can trigger a reflex reaction
modifying the regular motor control.

4.3. Amplitude Motor Control
The amplitude controller generates a control signal combining
the regular gait motion, which produces the tripod gait, and
the reflexive motion triggered by sensory event mistiming. The
regular motion of an actuator is divided into four phases: first,
the (i) early and (ii) late swing phases, and then the (iii) early and
(iv) late stance phases, illustrated in Figure 2. Each phase defines
the joint angle and torque limit set into the actuator during
the motion. If a disturbance is detected, the respective reflex
reaction modifies the joint angle and torque limit for a short
period. Hence, the modification of the regular control causes a
reflex behavior.

4.3.1. Control of Regular Motion
The regular motor phase of the j-th actuator is generated by the
motor CPG

ẏmotor
j (t) = f (ymotor

j , cmotor
j (t)). (7)

Four motor RBF neurons are trained with periodic Grossberg
rule to be excited at the corresponding k-th motor phase 8u

j,k
,

see Figure 5A. For the training, we generate target binary
signals dj,k(t) ∈ [0, 1] for six-legged robot walking a tripod
gait, where two tripplets of legs alternate in stance. Thus,
four motor phases k ∈ {1, 2, 3, 4} and legs of the first group
j ∈ {actuators of the left front/hind and right middle legs}, the
signals are defined as

dj,k(t) =











1 if for any n ∈ N : t ∈ [(n+ (k− 1)/4)Tgait,

(n+ (k− 1)/4+ 0.05)Tgait],

0 else.

The target signals for actuators of the second group j′ are shifted
dj′ ,k(t) = dj,k(t + Tgait/2). The four motor phases on the

limit-cycle Ymotor
j are approximated by four RBF centers learned

with the periodic Grossberg rule ṁmotor
j,k

= ν(t)dj,k(t)(y
motor
j −

mmotor
j,k

). During the learning, the motor CPG is entrained

by the first target signal cmotor
j (t) = dj,1(t) to keep the

limit-cycle consistent through multiple learning episodes; see
Figure 5C. After the learning, the RBF activities amotor

j,k
=

ϕ(ymotor
j ;mmotor

j,k
), see (3), generate peaks, where each peak

indicates the particular motor phase 8u
j,k
.

The regular motor control transforms the motor phase into
regular actuator commands, see Figure 3. Commands of each

j-th actuator are u
angle
j =

∑K=4
k=1 amotor

j,k
u
angle
j,k

and u
torque
j =

∑K=4
k=1 amotor

j,k
u
torque
j,k

for joint angle and maximum torque,

respectively; where u
angle/torque
j,k

are the set parameters. The

motion command parameters are set up so that the leg performs
stance and swing, depicted in Figure 5B. The swing is designed
to be flexible and protracts the leg over the ground. If the leg
hits an obstacle, the leg stops due to its flexibility caused by a
low torque limit. On the other hand, during the stance, the leg
becomes rigid and pushes the body forward by retracting the leg.
Three legs move together during the stance, the ipsilateral front,
hind legs, and the contralateral middle, creating the tripod gait.

4.3.2. Control During Irregular Motion
The controller provides two mechanisms reacting to the phase
error: sensory-motor phase difference stabilization and reflexes.
The phase difference stabilization (introduced in the base
work Szadkowski and Faigl, 2020) couples the sensory and
motor CPGs using a layer of sensory RBFs. Each motor CPG
is connected to all sensory CPGs through RBF neurons, each
trained by the target signal dj,1(t) to find the corresponding
phase on the sensory CPG. Effectively, each sensory RBF center
encodes the phase difference between the particular sensory CPG
and motor CPG. The averaged sensory RBF activity entrains
the motor CPG, and thus the sensory-motor phase difference
is stabilized.

The sensory-motor phase difference stabilization is used to
handle the long term phase errors. However, reflexes represent
a more suitable tool for critical errors since they affect the
amplitude control by modifying the regular commands; thus,
creating the reflexive behaviors. Two reflexes are implemented in
this work: the search reflex and the elevator reflex. The search
reflex is triggered by the absence of the ground contact event,
and its reaction is the leg’s rapid elevation and protraction.1 The
elevator reflex is triggered by a disruption of the protraction
stop event, where the leg rapidly retracts and elevates, and then
continues the protraction. Both reflexes utilize the presented
sensory eventmistiming detection and demonstrate the proposed
approach in a practical deployment from which results are
reported in the next section.

1It is a simplified version of the search reflex observed in a locust (Pearson and

Franklin, 1984), where the insect searches for the foothold with circular motions.
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FIGURE 5 | The leg motion control and the inter-limb synchronization for the tripod gait. (A) For each j-th joint, the motion is divided into four phases

8u
j,1,8

u
j,2,8

u
j,3,8

u
j,4. (B) At the k-th phase, the j-th joint is controlled by the set control command uj,k that sets the joint angle u

angle
j,k and torque u

torque
j,k . In effect, the

leg performs the motion with the foot-tip trajectory. The leg is rigid (high maximum torque set on joints) during stance so it can propel the body forward, while during

the swing, the leg is flexible (low maximum torque) and stops on the obstacle contact. The contact is detected as the difference between the expected and measured

positions. The ground contact is measured by poking the end of the swing at 8u
j,1 when the flexible leg tries to lower the foot tip below the expected ground. (C) The

relation between motion phases of each leg depends on the gait. During the tripod gait, two groups of legs move together, where the first group is composed of the

left front/hind (L1, L3) and right middle leg (R2), and similarly the second with legs R1, R3, and L2. The phase relations for the tripod gait is trained by the target signal

d. Targets for the l-th leg’s coxas dl,1 representing motor phase 8u
l,1 are shown in the plot. A single gait cycle is 223 steps long.

5. DEPLOYMENT AND EMPIRICAL
VALIDATION

The proposed CPG-based controller has been deployed on the
real hexapod walking robot depicted in Figure 6A. The setup of
the deployment is detailed in section 5.1. The robot controller
learns the motor control for the tripod gait and the mistiming
detector; see the description provided in section 5.2. The trained
controller has been examined in two scenarios. Section 5.3
reports on the first scenario, where the robot encounters two
obstacles, detects mistiming events, and performs the elevator
and search reflexes. The robustness of the proposed controller has
been examined in the second scenario, described in section 5.4, in
which the robot traverses highly unstructured terrain in the Bull
Rock cave system. Further, the found insights are discussed in
section 6.

5.1. Setup and Deployment
The proposed mistiming detector is deployed on the hexapod
walking robot shown in Figure 6 , a six-legged robot where each
leg is formed from three Dynamixel AX-12 servomotors (Faigl
and Čížek, 2019). In this work, we control two servo motors
per leg: the body-coxa and coxa-femur joint servomotors; the
third servomotor, femur-tibia joint, is set to a static angle. The
servomotors provide the joint angle measurements processed
into sensory signals for leg protraction stops and ground contact
events. Both events occur during the swing when the leg is

flexible. The stop of the l-th leg protraction x
stop
l

occurs at8u
4 (see

Figure 5B), where the body-coxa servomotor position change
is near zero. If the leg encounters an obstacle, the body-coxa
stops sooner due to low torque. The ground contact of the l-
th leg xcontact

l
occurs at the end of 8u

1 , where the coxa-femur
servomotor cannot lower the leg anymore because of the ground,
and the position error therefore grows. On the other hand, if

there is a depression in the ground, the coxa-femur servomotor
continues to lower the leg, and the contact event occurs later than
usual, or not at all if the leg does not reach a foothold. Each leg

generates a pair of sensory signals, x
stop
l

and xcontact
l

, fed into the
controller during both phases: the learning and deployment.

The dynamics of the proposed controller described by the
differential equations are numerically solved by the Euler method
with the step size of 0.01. The execution of 100 steps was
measured to be 5.15s long (Tgait = 223 steps ≈ 11.5s).

5.2. Tripod Gait Training and Mistiming
Detection Learning
The controller has been learned in two parts with the hexapod
walking robot on flat ground. First, the robot is trained to
generate the motor phase. In the second part, the robot learns
to detect sensory mistiming. The reflexive behavior is turned off
during the learning. The individual training parts are detailed
as follows.

5.2.1. Tripod Gait Training
The motor phase generation has been trained for 30,000 steps on
a flat terrain by the given target signal d for each joint, as shown
in Figure 5C. Four motor RBFs are trained to be active during
their respective motion phases, which determine the hand-tuned
configuration of the control commands, see Figure 7A. The

regular control signal uregular for body-coxa and coxa-femur
joint angles, shown in Figure 7B, follows the general foot-tip
trajectory depicted in Figure 5B. The maximum torque utorque

is set to 1.25Nm (rigid) during stance and 0.5Nm (flexible)

during swing. The reflex control signal ureflex is hand-tuned to
perform the elevator and search reflexes, plotted in Figures 7C,D,
respectively. The example of joint angle evolution is shown
in Figure 7E, where both reflexes occur within five gait-cycles.
During any reflex, the coxa-femur servomotor, affecting the leg
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FIGURE 6 | (A) Photo of the hexapod walking robot in the laboratory test track. The robot has six legs, each comprising three Dynamixel AX-12 servomotors;

however, only the body-coxa and coxa-femur servomotors are controlled in experiments presented in this work. The servomotors also provide the joint angle

measurement, which is further processed into swing stop and ground contact events for each leg. (B) Leg schema.

elevation, is rigid, while the body-coxa servomotor is flexible. The
inter-leg phase relations given by the target d(t) are learned by
the motor phase generator, and the hexapod robot walked the
tripod at the end of the gait training. The walking hexapod robot
interacts with the environment that generates the regular sensory
signal, which trains the mistiming detector.

5.2.2. Mistiming Detection Self-Learning
The mistiming detection is learned during 13000 steps of
walking tripod gait in the regular environment, as shown in
Supplementary Video 1.

We first let the robot learn to anticipate the sensory events
for 8,000 steps with the learning rate ν(t) linearly decreasing
from one to zero. As can be seen in Figure 8, the event RBF
neurons find their respective phase represented by a limit-cycle
Ysense. At the end of the anticipation learning, the event RBF
neurons anticipate the sensory events with high accuracy, as
shown in Figure 8D.

After the event anticipation learning, the robot adapts the
LIF thresholds during 5,000 steps, where the learning rate ν(t)
linearly decreases from one to zero. At the start, mistiming
error causes LIF to fire, as it is shown in Figures 9A,B, which
increases the threshold with dynamics (6). Then, the threshold
slowly decays. On some occasions, the threshold descends too
close to the regular LIF activity and fires again, increasing the
threshold. However, since the learning rate ν(t) converges to zero,
the threshold increments are smaller as the learning progresses.

At the end of the learning, the thresholds are adapted so LIFs
do not fire in the regular environment, see Figures 9C,D. The
thresholds are also close to the LIF activity maxima; therefore,
LIF fires and detects the phase mistiming if there is more error
accumulated due to the motion disturbances.

5.3. Walking Over Obstacles
The proposed mistiming detection is demonstrated in the
deployment of the robot on track depicted in Figure 6A, where
the mistiming detector triggers reflexes. The robot’s left legs must
negotiate one obstacle and one depression to continue its gait.
The obstacle is 7 cm high and 4 cm long, which is higher than
the maximum elevation during the regular swing. Hence, the leg
is stopped by the swing, and the event disruption is detected,
which triggers the elevator reflex, see Figure 10A. After avoiding
the obstacle, the leg encounters a depression 10 cm deep, and

5 cm long, which is further than the leg reaches during regular
motion. Since the leg is not stopped by the ground as anticipated,
an absence of the ground collision is detected, which triggers the
search reflex, see Figure 10B. The searching leg grasps the far
away support, and the motion continues. In Figure 10C, we can
see the right legs moving regularly as no obstacle was detected.
The record of the robot walking over obstacles is provided in
Supplementary Video 2.

5.4. Irregular Locomotion in Bull Rock Cave
Limits of the proposed controller have been tested during
the field deployment in Bull Rock cave, where the robot
crawled over highly unstructured terrain with a wet slippery
surface and cracks, see Figure 1A. In such an environment,
multiple reflexes are triggered at once; see Figure 11C and
Supplementary Video 3, which changes the locomotion of the
whole body and, in some cases, detects event mistiming when
there is seemingly none. For example, the combination of
triggered reflexes toggles the robot on the left side, and thus when
the right leg enters the stance, it touches the ground later, which
triggers the search reflex. On the other hand, the elevator reflex
works in unintended situations, that have been observed for a leg
is stuck in a crack, which is documented in Figures 11A,B. In
such a situation, the leg does not move during the swing, and
thus the elevator reflex is triggered, which frees the leg. Overall,
the hexapod walking robot with the proposed locomotion control
traversed the highly irregular terrain multiple times and detected
parallelly multiple phase mistiming, supporting the expected
advantage of the mistiming detector in a real cave environment.

6. DISCUSSION

The proposed controller has been trained to perform the tripod
gait. During the tripod gait on flat terrain, the hexapod walking
robot learned to anticipate the ground contact and swing stop
with accuracy shown in Figure 8. LIFs then adapt the regular
difference between sensory anticipation and measurement. The
thresholds are upper-bound of the regular LIF activity, see
Figure 9; therefore, LIFs are at rest during regular motion. The
benefit of mistiming detection is further demonstrated in two
deployment scenarios where mistiming detection triggers the
designed reflex reactions. The reflexes allowed the robot to
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FIGURE 7 | The regular and reflex motions of the left front leg during late swing 8motor
1 (in the yellow), early stance 8motor

2 (in the blue), late stance 8motor
3 (in

the red), and early swing 8motor
4 (in the green). (A) The limit cycle Ymotor generated by the motor CPG of the front left body-coxa joint. The duration of each motor

phase 8motor
i is projected on the limit cycle, which trajectory direction is indicated by black arrows. The motion phases determine the joint angle control. (B) The

regular triangular leg trajectory. At the end of the late swing 8motor
1 , the leg pokes the ground. (C) The search reflex triggered at the end of the late swing. The leg

tries to grasp for support in the protraction direction. (D) The elevator reflex triggered shortly after early swing 8motor
4 . The leg avoids the obstacle from above. (E)

Five gait-cycles of body-coxa (black curve) and coxa-tibia (red curve) joint angles during regular motion and the search and elevator reflexes. Both reflexes are

highlighted by the gray area, where the search reflex starts at 222 step, and the elevator reflex starts at step 832.

locomote through terrains that are otherwise untraversable with
the regular gait. From this perspective, the expected advantage of
the proposed idea has been fulfilled.

On the other hand, in some cases, the reflexes were triggered
even though there was no obstacle nor depression. In the testbed
scenario visualized in Figure 10C, the middle left leg performs
the elevator reflex at step 1100, albeit the leg already cleared
the obstacle at step 900. The elevator reflex at step 1,100 has
been triggered by detected early swing stop, which has not been
caused by an obstacle, but by the search reflex of the front left
leg triggered at step 1,050. Such behavior can also be observed
in Figure 11C, where the search reflex of the front legs causes
the elevator reflex of the middle legs. The search reflex leaves the
robot body slightly tilted, which causes the adjacent middle leg
to stop the swing earlier. Thus, the middle left leg detects the
search reflex of the adjacent leg. It is a cautionary tale that the
interpretation of mistiming detection, or generally any sensory
error, is dependent on the context in which the robot is. The
direct interpretation of the situation in which an obstacle stops
the swing is correct only if the robot’s current state is close to the
state of the regular motion. Sustaining the regular gait motion
improves not only the locomotion but also the interpretability
of the sensory input. Therefore, improving the gait control, e.g.,
adding balancing reflex, is one strategy preventing incorrect
interpretation of the sensory input. Another strategy can be based

on fusingmultiple sensory inputs as it is less likely that each of the
sensory input provides incorrect interpretation at the same time.

The proposed mistiming detector relies on the CPG
providing the sensory phase estimation; thus, the mistiming
detector inherits the robustness of the CPG dynamics but
also its drawbacks. While short-term changes of sensory signal
properties have little effect on the CPG, if the change is lasting,
then the CPG behavior changes as well. Consider that the sensory
signal changes in phase or frequency. If the sensory signal
changes in phase, the sensory CPG shifts its phase and maintains
the stable phase difference between the signal and the CPG.
However, there are more possible outcomes if the sensory signal
frequency of ωc changes. The CPG has a range of detuning
1ω = ωc − ωcpg where the CPG can synchronize with the input
signal (Pikovsky et al., 2001). Outside the synchronization range,
the phases of the CPG and input signal evolve with different
speeds; therefore, if the detuning is too high 2, the sensory CPG
does not estimate the sensory phase.

2 In particular, the synchronization range depends on the input signal strength,

which is set to λ = 0.5 in this work. The range gets smaller with lesser input

strength creating a structure in the λ-1ω plane called the Arnold tongue. In

general, the Arnold tongue cannot be found analytically, yet there must be some

small synchronization region around 1ω = 0 for high enough λ.

Frontiers in Neurorobotics | www.frontiersin.org 10 February 2021 | Volume 15 | Article 629652

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Szadkowski et al. Event Mistiming Detector Based on CPG

FIGURE 8 | Detail of learning the left leg’s contact event anticipation and the overall anticipation accuracy. (A) Projected CPG limit-cycle Ysense (in the gray) and the

event RBF weight msensor trajectory (in the magenta) of the front left leg’s contact event. During the learning, the RBF weight approaches the limit-cycle segment,

during which the left leg senses contact x > 0 (in the blue). At the end of the learning, the RBF weight (the magenta dot) is close to the limit-cycle segment; therefore,

the RBF activity a spikes during the phase segment can be seen in the following plots. (B) At the start of the learning, the RBF activity a (in the magenta) is low and

peaks outside of the left leg contact event x > 0 (in the blue). (C) However, at the end of the learning, the RBF activity peaks are close to the maximum possible

activity (one), and the peaks overlap with the events. Ideally, the total number of such overlaps during one gait-cycle is twelve, one per each sensory input. (D) The

plotted sum of the anticipation-event overlaps over a sliding window of the size Tgait = 223 divided by the number of sensory inputs (12). At step 4, 000, all RBF

neuron anticipations overlap with the measured sensory events.

FIGURE 9 | Adaptation of the firing threshold θ . (A) Detail of the LIF threshold θdisruption (visualized as the red dashed line) adaptation for the left leg’s early swing

stop. Initially, the threshold is set to zero, thus LIF fires (in the green) at the first non-zero error edisruption (in the black), where the error is rectified difference between

the early stop event x (in the blue) and RBF anticipation a (in the magenta), h(x − a). During the LIF firing, the threshold rapidly grows; therefore, the next LIF non-zero

activity at step 400 is below the threshold, and LIF does not fire. The threshold slowly decays (not observable in plots). (B) The LIF detector (in the yellow) for the left

leg’s contact absence behaves similarly. The last thousand steps of the LIF neuron activations are aggregated in histograms, where it is shown that the respective

thresholds are upper-bound of the regular activations. (C) The swing stop perception is precise during the regular motion; thus, the LIF activity (in the green) is similar

for all legs, and so are the thresholds (showed as the red dashed line). (D) However, the ground contact perception differs for each leg (probably due to different loads

on the legs during the stance) and is less precise (the leg sometimes did not detect the ground contact). It resulted in the increased variance of the ground contact

absence thresholds across the legs. Note that the contra-lateral legs (e.g., cL1 and cR1) have similar thresholds.
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FIGURE 10 | Walking over obstacles deployment scenario. (A) At step 300, the front left leg (L1) encounters an obstacle, which stops the swing sooner, and thus the

xstop event starts sooner, creating a high error edisruption (in the black). The error excites the LIF neuron activity (in the green) over the threshold (visualized as the

dashed red line), thus the LIF fires triggering the elevator reflex on the L1 leg. (B) At step 1,000, the RBF neuron anticipates ground contact, which does not happen.

The absence of the error excites the LIF neuron (in the yellow) and triggers the search reflex. (C) An overview of the triggered elevator (in the green) and search (in the

yellow) reflexes for each leg. The black events show early and late stance phases. The left legs of the hexapod walking robot gradually detect and avoid the obstacle.

At step 1,050, the front left leg steps into the depression, and the search reflex is triggered. Since there are no obstacles on the robot’s right side, no reflexes are

triggered for the right legs.

In the gait control context, the sensory inputs for the
mistiming detector are a consequence of the interaction between
the environment and periodic motor activity. A persistent change
in motor activity can induce a change in the sensory signal,
influencing the sensory CPGs, as described above. The terrain
in Bull Rock cave is a source of such persistent change, see
Figure 11, where the rough terrain caused a change in the motor
activity by triggering one reflex after another. Although it was not
observed during the short span of the Bull Rock cave deployment,
the change of the sensory CPG properties (phase or frequency)
influences the motor phase generation (see Figure 3), which
may compromise the gait pattern. Therefore, the presented gait
controller can generate a disturbed motion pattern if it operates
in a highly unstructured environment. Such disturbances can be
prevented by adding more reflexes, which would stabilize the
regular motion, or the controller can react to an unstructured
environment by a switch to a different gait. For both cases, the
mistiming detector provides the means to recognize a highly
irregular environment.

The mistiming detection adds an alternative to usual
amplitude error detection, where the measured sensory
value rises above some threshold. Notice, from a practical

point of view, the ground contact absence and the swing
stop detections are implemented simply from reading
the position from the Dynamixel AX-12 servomotors,
without the need for any additional sensory equipment.
Generally, the proposed mistiming error augments the
information gained from the measured sensory input, and
further utilization of the augmentation is a subject of our
future work.

7. CONCLUSION

In this paper, we present a novel learnable CPG-based event
mistiming detection. We propose to combine CPG with the
RBF neuron into a sensory event estimator and compare the
estimation with measurement to assess the phase error. The
phase error is integrated by the LIF neuron, which detects the
irregularity in the timing of event occurrence. The proposed
mistiming detection is self-learned with dynamic Hebb-like
learning rules by the robot on which the system is deployed.
We integrated the mistiming detection with the CPG-based gait
controller, where the detection triggers reflexive behavior. An
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FIGURE 11 | The hexapod walking robot deployed in the Bull Rock cave. (A) During the traversal, the front left (L1) leg got stuck in a crack for two gait-cycles. At step

1,850, the leg detects the swing stop disruption and performs the elevator reflex. (B) The elevator reflex worked well in this context and successfully freed L1. (C) An

overview of the triggered reflexes. In the examined unstructured environment, the motion was highly irregular, which resulted in many triggered reflexes.

absence of the ground contact triggers the search reflex, while
the elevator reflex is triggered by detecting an obstacle during the
swing. The CPG-based controller is deployed on a real hexapod
walking robot, which is trained to walk using a tripod gait
and learns the properties of twelve sensory signals. The learned
controller has been examined in two deployment scenarios. In
the laboratory testbed, the robot encounters a depression and an
obstacle on flat terrain, where each leg reacts independently with
corresponding reflexes. In the second scenario, we demonstrate
the robustness of the proposed controller in Bull Rock cave,
where the robot traverses slippery and highly unstructured
terrain. The proposed plastic CPG-based mistiming detection
enhances the information gained from the periodic sensory
signal, which can be utilized not only for reflex control but also
can serve as an input for other control centers.
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