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Abstract
Background

Cardiovascular disease, a progressive manifestation of α-L-iduronidase deficiency or muco-

polysaccharidosis type I, continues in patients both untreated and treated with hematopoietic

stem cell transplantation or intravenous enzyme replacement. Few studies have examined

the effects of α-L-iduronidase deficiency and subsequent glycosaminoglycan storage upon

arterial gene expression to understand the pathogenesis of cardiovascular disease.

Methods

Gene expression in carotid artery, ascending, and descending aortas from four non-toler-

ized, non-enzyme treated 19 month-old mucopolysaccharidosis type I dogs was compared

with expression in corresponding vascular segments from three normal, age-matched

dogs. Data were analyzed using R and whole genome network correlation analysis, a bias-

free method of categorizing expression level and significance into discrete modules. Genes

were further categorized based on module-trait relationships. Expression of clusterin, a pro-

tein implicated in other etiologies of cardiovascular disease, was assessed in canine and

murine mucopolysaccharidosis type I aortas via Western blot and in situ
immunohistochemistry.

Results

Gene families with more than two-fold, significant increased expression involved lysosomal

function, proteasome function, and immune regulation. Significantly downregulated genes

were related to cellular adhesion, cytoskeletal elements, and calcium regulation. Clusterin
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gene overexpression (9-fold) and protein overexpression (1.3 to 1.62-fold) was confirmed

and located specifically in arterial plaques of mucopolysaccharidosis-affected dogs and

mice.

Conclusions

Overexpression of lysosomal and proteasomal-related genes are expected responses to

cellular stress induced by lysosomal storage in mucopolysaccharidosis type I. Upregulation

of immunity-related genes implicates the potential involvement of glycosaminoglycan-

induced inflammation in the pathogenesis of mucopolysaccharidosis-related arterial dis-

ease, for which clusterin represents a potential biomarker.

Introduction
Mucopolysaccharidosis type I (MPS I), caused by a deficiency of the lysosomal enzyme α-L-
iduronidase (IDUA), results in shortened lifespan, multisystemic somatic involvement, and
variable neurocognitive degeneration because of accumulation of heparan sulfate (HS) and der-
matan sulfate (DS) glycosaminoglycan (GAG) substrates in body tissues such as brain, soft tis-
sues, chondrocytes, liver, and spleen [1]. Cardiovascular disease is a cardinal manifestation of
MPS I, characterized by progressive thickening and compromised function of the heart valves,
left ventricular hypertrophy, and diffuse coronary artery stenosis [2–6].

The advent of treatments to replace the missing IDUA enzyme, whether with intravenous
enzyme replacement therapy (ERT) or via hematopoietic stem cell transplant (HSCT), has
enabled MPS I patients to survive into adulthood [7, 8]. Although ERT and HSCT are able to
mitigate many symptoms of MPS I, clinical experience has demonstrated that these treatments
attenuate, but do not cure, the disease. Certain tissues remain resistant to treatment and con-
tinue to manifest GAG storage. Consequently, as MPS I patients survive into adulthood they
face a different set of potentially life-threatening disease complications such as those involving
the cardiovascular system [9, 10]. Cardiac sudden death, left-sided valvular insufficiency, ven-
tricular dysfunction, and coronary intimal proliferation with stenosis all have been reported in
stably treated patients [11–14]. Accumulation of GAG within cardiovascular structures in the
face of ongoing treatment is the likely origin of these symptoms, as well as childhood-onset
carotid intima-media thickening and abnormally reduced elasticity [15–19].

The pathogenesis and etiologies of treatment resistance of cardiovascular disease in MPS I
are not well characterized, but studies in the murine and canine models of the disease indicate
that accumulation of undegraded HS and DS GAG in the heart, valves, and vasculature alone
do not adequately describe the pathophysiology. Both untreated and treated MPS I canines
develop similar cardiovascular findings to human MPS I, with cardiac hypertrophy, nodular
valve thickening, and vascular smooth muscle proliferation of the aorta with luminal stenosis
[20–22]. Detailed histopathology of canine aortic lesions demonstrates vascular smooth muscle
proliferation, activated CD68+ macrophages, and fragmented elastin fibrils in addition to GAG
storage [23]. The murine MPS I model also manifests with cardiac enlargement, valvular thick-
ening and dysfunction, and dilatation of the aorta with vascular wall thickening with elastin
fibril degradation [24, 25].

Gene expression studies are a useful method to identify potential mechanisms of disease
progression, but have not been comprehensively assessed for cardiovascular disease in any
model of MPS I. The primary focus of expression studies for the mucopolysaccharidoses has
been neurodegeneration in the Sanfilippo syndromes (MPS III) and Sly syndrome (MPS VII)
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[26–30]. Assessment of aortic mRNA expression for dogs with MPS I and VII, and mice with
MPS VII has centered on quantification of cytokine, complement, and other inflammation-
related genes [31–34]. Herein, we report alterations in arterial gene and protein expression in
the canine MPS I model system, the identification of a potential marker for MPS I cardiovascu-
lar disease, and data supporting the hypothesis that a GAG-induced inflammatory process is
responsible for the pathogenesis of MPS I cardiovascular disease.

Materials and Methods

Test animals and husbandry
This study was reviewed and approved by the Institutional Animal Care and Use Committees
of both Iowa State University (IACUC #12-04-5791-K) and the Los Angeles Biomedical
Research Institute at Harbor-UCLA (LA BioMed IACUC #20013–01). Studies were conducted
in compliance with both UDSA and NIH guidelines for the use of dogs in research. Four MPS I
(IDUA-/-) canines were produced from artificial insemination breedings of parental stock,
diagnosed via α-L-iduronidase enzyme assay and PCR, and maintained at Iowa State Univer-
sity until 1 year of age, after which they were transported to LA BioMed, an AAALAC accred-
ited facility overseen by a licensed veterinarian. Animals had ad libitum access to food
(standard Teklad canine lab chow) and water, housing with enrichment, and a 12 hour light/
dark cycle. Housing consisted of expanded mesh flooring, and involved housing with compati-
ble conspecifics as required for social species unless medically or behaviorally contraindicated.
Animal care was provided by the Laboratory Animal Resources veterinary staff of the respec-
tive institutions. The dog colony has a null mutation in intron 1 of the canine α-L-iduronidase
gene that results in abnormal mRNA splicing, introduces a premature termination codon, and
completely eliminates IDUA protein expression [35]. The four dogs were neither tolerized nor
treated with IV rhIDUA, and had received six monthly intra-articular rhIDUA injections as
previously reported [36].

Mouse-related protocols were approved by the University of California San Diego IACUC
Animal Subjects Committee (IACUC #S99127). The MPS I (Idua-/-) mouse colony was housed,
maintained, and veterinarian-supervised at The University of California San Diego, an AAA-
LAC accredited facility. The colony, which is on the C57BL/6 background, was originally
obtained from the Jackson Laboratories (B6.129-Iduatm1Clk/J) and was bred locally for 9 genera-
tions. Idua genotyping was performed as per S1 Appendix. Mice utilized for this study were fed
standard chow and were neither tolerized nor treated with any form of rhIDUA.

Tissue collection and euthanasia
At 18 months of age, dogs were euthanized with a 1 cc / 10 lb dose of euthasol and 1 cm rings
from the ascending aorta, descending aorta proximal to the renal arteries, and common carotid
arteries were immediately obtained post-mortem. Arterial rings were processed as follows: 1)
one section from each site was embedded in a cryomold with OCT (Tissue-Tek CRYO-OCT
Compound, ThermoFisher Scientific, Waltham, MA), frozen and stored at -80°C, 2) one sec-
tion placed in TRIzol solution (Life Technologies, Grand Island, NY) for subsequent RNA
extraction, 3) and one section frozen and stored at -80°C for subsequent Western blotting.

At 9–12 months of age, female MPS I (mean age, 9.4 months; n = 8) and age-matched wild-
type (mean age, 10.2 months n = 3) mice were euthanized with a combination of Isoflurane
inhalation (Abbott, North Chicago, IL), cervical dislocation, and exsanguination. Heart and
aorta collection was performed as per Daugherty and Whitman, and summarized as follows:
after exsanguination, the right atrium was incised and the animal was perfused with 20 mL
cold phosphate buffered saline (PBS) through the left ventricle [37]. The abdominal viscera

Arterial Gene Expression in Canine MPS Type I

PLOS ONE | DOI:10.1371/journal.pone.0150850 March 17, 2016 3 / 27



were removed and the heart and aorta were carefully dissected en bloc to the iliac bifurcation.
The heart was cut from the ascending aorta approximately 5 mm from the point of emergence
from the left ventricle, embedded in a cryomold with OCT, and stored frozen at -80°C.

RNA isolation, amplification, and labeling
RNA isolation from canine aortic specimens was performed using the TRIzol RNA Purification
System (Life Technologies, Grand Island, NY). RNA concentration and quality, as well as dye
incorporation efficiency, was checked with an ND-1000 spectrophotometer (NanoDrop Tech-
nologies, Rockland, DE, USA) and the Agilent Bioanalyzer 2100. A total of 100 ng RNA was
used as initial starting template, which was labeled with Cy-3 or Cy-5 cytidine 5’-triphosphate
using the low input fluorescent linear amplification kit (Agilent, Santa Clara, CA).

Microarray hybridizations and data analysis
Comparisons of canine arterial gene expression between control and untreated MPS animals
were conducted with a canine-specific microarray covering 43,803 probes (Agilent G2519F
4x44k, Santa Clara, CA), for a total of four comparison groups: MPS ascending aorta vs. con-
trol ascending aorta, MPS descending aorta vs. control descending aorta, MPS carotid artery
vs. control carotid artery, and finally pooled MPS artery (ascending aorta, descending aorta,
carotid artery) vs. pooled control artery. Each comparison used four pairs of MPS vs corre-
sponding age- and gender- matched animals to produce four biologic replicates.

Bioinformatic analysis
The data was analyzed by the WGCNA package in R 3.0.2, a package we have used previously
to analyze large datasets and identify novel genomic targets [38–41]. Co-expression networks
were formed on genes with similar behavior. Trait information (e.g. ascending aorta, carotid
artery, and descending aorta) and Pearson correlation data were obtained.

Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 was used
to functionally annotate the genes that clustered together [42,43]. DAVID’s functional annota-
tion tool allows for pathway analysis using the Kyoto Encyclopedia of Genes and Genomes
(KEGG), gene ontology annotation for biological processes, molecular function, and cellular
components, assessment of transcription factor binding sites, and identification of tissues
matching the gene clusters. All relationships determined had corresponding statistics within
DAVID. The functional annotations presented here had a p-value� 0.05 with Bonferroni
correction.

Network analysis was performed using two methods. The first was WGCNA to identify net-
works without any prior knowledge. This enabled discovery of novel nodes and edges that
could be visualized using Cytoscape version 3.1.1 [44]. The second was with GeneMania (a
plugin available in Cytoscape) to examine connections based on prior evidence including co-
expression, shared protein domains, pathway, physical interactions, genetic interactions, and
co-localization [39, 45].

Western blotting
Flash frozen sections of harvested ascending and descending aorta that had been harvested
from homozygous MPS I and heterozygous carrier dogs and stored at -80°C were thawed on
ice. Sections of approximately 30 to 50 mg of each tissue sample were cut and mixed in a 1:3
weight to volume ratio with lysis buffer containing 4% SDS, EDTA, a protease inhibitor cock-
tail (P8340, Sigma-Aldrich, St. Louis, MO) and phosphatase inhibitor cocktails (P0044 and
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P5726, Sigma-Aldrich, St. Louis, MO). Standard Dounce homogenization was performed while
each tissue sample was kept on ice in a 4°C room. After homogenization, each sample was soni-
cated in a 4°C water bath for 1 hour and then centrifuged at 10,000 rpm for 10 minutes. The
supernatant was collected and centrifuged again at 10,000 rpm for 10 minutes. This superna-
tant was collected and total protein content of each sample was determined with a standard
colorimetric assay (Bio-Rad, Philadelphia, PA) converting absorbance measured as optical
density units at 595 nm (Shimadzu BioSpec 1601 Double Beam UV-Visible Spectrophotome-
ter, Shimadzu Scientific Instruments, Columbia, MD) to protein concentration using bovine
serum albumin as a standard.

Samples were diluted to a final concentration of 4 μg/μL by addition of the appropriate vol-
ume of a standard Laemmli loading buffer. These were then heated to 95°C for 20 minutes
prior to loading onto a gel (Novex Tris-Glycine 4–20% Mini Protein Gel, Life Technologies,
Grand Island, NY). Each well was loaded with 20 μg of total protein and a protein ladder cover-
ing the size range from 10 to 180 kDa (PageRuler Prestained Protein Ladder, Life Technologies,
Grand Island, NY) was loaded in one well of each gel for reference. Separation was performed
via 4–20% Tris-Glycine SDS-PAGE followed by transfer to a nitrocellulose membrane (Bio-
Trace NT nitrocellulose transfer membrane, Pall Corp., Port Washington, NY).

Standard immunoblotting was then performed with mouse monoclonal anti-human clus-
terin alpha chain (1:1,000 or 1 ng/μL; EMDMillipore, Billerica, MA) diluted in 2.5% nonfat
milk and incubated overnight at 4°C. After washing, the membrane was incubated for one
hour at room temperature with goat anti-mouse IgG HRP conjugated secondary antibody
(1:50,000; Southern Biotechnology, Birmingham, AL, USA) diluted in 2.5% nonfat milk, and
then detected with Immobilon Chemiluminescent HRP Substrate (EMDMillipore, Billerica,
MA). Membranes were then stripped, washed and re-probed with mouse monoclonal anti-
human smooth muscle alpha-actin (1:10,000; Dako North America, Inc., Carpinteria, CA)
diluted in 2.5% nonfat milk. After washing, the membrane was incubated for one hour at room
temperature with goat anti-mouse IgG HRP conjugated secondary antibody (1:100,000; South-
ern Biotechnology, Birmingham, AL) diluted in 2.5% nonfat milk, and then detected with
Immobilon Chemiluminescent HRP Substrate (EMDMillipore, Billerica, MA).

Western blot band intensities were quantified using ImageJ. After conversion of Western
blot images to black and white and subtraction of background, the signal intensities of clusterin
bands were subsequently measured and normalized to signal intensities of corresponding α-
actin bands. The ratio of mean normalized MPS I clusterin intensity to mean heterozygote clus-
terin intensity was calculated to determine fold-change expression in ascending and descend-
ing aorta homogenates.

Canine aorta immunohistochemistry
Transverse cuts through each OCT-embedded tissue sample were taken with a cryostat at
-20°C to produce 12 micron-thick cross-sectional slices that were mounted on glass slides.
Slide mounted tissue sections were covered with neutral PBS at room temperature for twenty
minutes, rinsed, and then fixed with 4% paraformaldehyde in PBS for 20 minutes. Slides were
washed in PBS and then each tissue section was blocked with hydrogen peroxide for 20 min-
utes. After washing in PBS each tissue section was then blocked with 5% normal goat serum in
PBS for one hour at room temperature. Tissue sections were then incubated overnight at 4°C
with mouse monoclonal anti-human clusterin alpha chain antibody (1:2,500 or 0.4 ng/μl; EMD
Millipore, Billerica, MA) diluted in 3% BSA in neutral PBS, mouse monoclonal anti-human
smooth muscle alpha actin antibody (1:2,500; Dako North America, Inc., Carpinteria, CA)
diluted in 3% BSA in neutral PBS, or 3% BSA in neutral PBS alone. Detection of specific
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staining was performed with an anti-mouse HRP-conjugated secondary antibody and diami-
nobenzidine (DAB) substrate-chromogen (EXPOSE Mouse and Rabbit HRP/DAB Detection
Kit, Abcam, Cambridge, MA) according to manufacturer’s protocol. Tissue sections were
counterstained with hematoxylin prior to visualization. Cover slips were applied to each slide
and standard bright field optical microscopy was performed. In the transverse aorta sections
positive (DAB) signal appears brown while the counterstain appears blue.

Murine aorta preparation and immunohistochemistry
6 micron-thick cross-sections of heart and aorta were obtained from OCT-embedded samples
with a cryostat at -20°C, mounted on glass slides, dried at room temperature for 30 minutes
and then fixed in fresh 10% neutral buffered formalin (Fisher #SF94-4, Waltham, MA) for 15
minutes. Slides were washed 3 times in PBS with Tween-201 (PBST). Endogenous peroxidases
were blocked with a 0.03% solution of hydrogen peroxide in PBST, then washed another 3
times in PBST. Slides were overlaid with 1% BSA in PBST (Sigma #A4503, St Louis, MO) for
10 minutes, endogenous biotin blocked with Vector Labs #SP-2001 kit, and washed another 3
times in PBST. Slides were then overlaid with 1% BSA in PBST and polyclonal goat anti-mouse
clusterin alpha chain (1:100; Santa Cruz #SC-6420, Dallas, TX), incubated at room temperature
for 1 hour, and washed 3 times in PBST. Secondary staining was accomplished with biotiny-
lated donkey anti-goat antibody (1:500; Jackson ImmunoResearch Laboratories #805-065-180,
West Grove, PA) incubated 30 minutes at room temperature, then washed 3 times in PBST.
Slides were then incubated with streptavidin-HRP (1:500; Jackson ImmunoResearch Laborato-
ries #016-030-084, West Grove, PA) for 30 minutes, rinsed, then developed with 3-amino-
9-ethylcarbazole chromogen (Vector Labs #SK-4200, Burlingame, CA) for 10 minutes. Slides
were counterstained in Mayer’s Hematoxylin (Sigma #MHS16, St Louis, MO) for 1 minute,
washed in PBST, air dried, and cover slips applied with aqueous mounting media (Vector Labs
#H-5501, Burlingame, CA).

Results
Microarray was performed on IDUA-/- and control (IDUA+/-) canine arterial samples obtained
from common carotid artery, ascending aorta, and descending aorta. Data was initially ana-
lyzed using principal component analysis (PCA). Two clusters were visualized, clearly differen-
tiating the IDUA-/- arterial expression patterns from the control patterns (Fig 1A).
Dendrograms and trait heatmaps were also made using the adjacency matrix technique (S1
Fig). Using both of these dimension reduction methods, it can easily be determined if the sam-
ples cluster together or if there are outliers. Again, two main clusters were observed, one for
IDUA-/- and the other for control. In addition, expression patterns from different animals at
the same arterial sites demonstrated clustering according to IDUA genotype. In other words,
carotid artery expression in the MPS I animals clustered together and was distinct from both
MPS I ascending aorta expression and descending aorta expression patterns.

Data was subsequently analyzed using whole genome correlation network analysis
(WGCNA) to identify specific modules that related back to the MPS I trait. Use of this method
loosens the stringency in the analysis, since groups of genes are examined together allows a sig-
nificance matrix to be made based on the networks formed [46]. Genes were further catego-
rized based on fold-change and additional statistical tests within each module. The lists of
probes/genes 2-fold or more upregulated or downregulated compared to control across mod-
ules can be found in Tables 1 and 2, respectively; full listings are included in S1 and S2 Tables.
Subsequently, a dendrogram was made to represent the modules formed with the Pearson cor-
relations for each trait shown (Fig 1B). There were ten total modules that formed (S2 Fig).
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Specific attention was paid to the turquoise and blue modules because those were the most sta-
tistically significant modules representing genes consistently upregulated in all three sampled
vascular segments of the IDUA-/- dogs (upper panel, Fig 1C), or genes consistently downregu-
lated in all three sampled vascular segments of the IDUA-/- dogs (lower panel, Fig 1C). Further
downstream analysis with a volcano plot to identify the top targets within the turquoise and
blue modules is seen in S3 Fig.

The pathways significantly implicated by the upregulated gene module (turquoise; Fig 1 D)
include antigen processing and presentation, graft-versus-host disease, proteasome, and the

Fig 1. Microarray Results From IDUA-/- Canine Arterial Samples. A. Principal component analysis of
IDUA-/- canine arteries compared to control canine arteries clearly shows the formation of two sample
clusters separating IDUA-/- and control expression. B. WGCNA dendrogram on the microarray samples
showing different modules related to the Pearson correlation of the IDUA-/- and control samples. C.
Heatmaps of the two major modules (turquoise and blue) formed byWGCNA showing genes upregulated
(top panel) or downregulated (bottom panel) by IDUA deficiency. D. Genes significantly upregulated in
IDUA-/- canine arteries include those related to immunity / inflammation (KEGG pathways: antigen processing
and presentation, graft-versus-host disease), proteasomal function, and lysosomal function. E. Genes
significantly downregulated in IDUA-/- canine arteries are primarily related to cellular adhesion and the
cytoskeleton (placed into the dilated cardiomyopathy, focal adhesion, arrhythmogenic right ventricular
cardiomyopathy KEGG pathways).

doi:10.1371/journal.pone.0150850.g001
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Table 1. Upregulated Genes in IDUA-/- Canine Arteries. The 50 upregulated genes with significant (p-value� 0.05) and greater than 2-fold level of upre-
gulation in IDUA-/- canine arteries, compared to controls. Note that some genes are represented more than once due to existence of multiple mRNA probes
per gene. For the full list of significantly upregulated genes, please refer to S1 Table.

Fold
Change

Gene Symbol Systematic Name Description

27.126 GPNMB XM_858105 PREDICTED: Canis familiaris similar to glycoprotein (transmembrane) nmb isoform b
precursor, transcript variant 3 (LOC482355), mRNA [XM_858105]

20.245 GPNMB XM_858105 PREDICTED: Canis familiaris similar to glycoprotein (transmembrane) nmb isoform b
precursor, transcript variant 3 (LOC482355), mRNA [XM_858105]

12.432 ENSCAFT00000039657 ENSCAFT00000039657 Osteopontin (Fragment)

11.926 CSTB XM_535601 PREDICTED: Canis familiaris similar to Cystatin B

11.566 ENSCAFT00000039661 ENSCAFT00000039661 Osteopontin (Fragment)

10.506 DLA-DRA1 ENSCAFT00000001254 MHC class II DR alpha chain

10.220 CLU NM_001003370 Canis lupus familiaris clusterin (CLU)

9.595 CLU NM_001003370 Canis lupus familiaris clusterin (CLU)

9.464 CTSK ENSCAFT00000035613 Cathepsin K precursor

8.985 TC71707 TC71707 Q49RE5_CANFA (Q49RE5) Cytochrome b, partial (35%)

7.766 CSTB XM_535601 PREDICTED: Canis familiaris similar to Cystatin B

7.587 LOC479746 XM_536874 PREDICTED: Canis familiaris similar to Ferritin light chain 2

7.022 TC57368 TC57368 HUMLPLSTN2 L-plastin {Homo sapiens}

6.975 GPNMB XM_858105 PREDICTED: Canis familiaris similar to glycoprotein (transmembrane) nmb isoform b
precursor, transcript variant 3 (LOC482355), mRNA [XM_858105]

6.968 CLU NM_001003370 Canis lupus familiaris clusterin (CLU)

6.947 CD86 NM_001003146 Canis lupus familiaris CD86 molecule (CD86)

6.769 DR104862 DR104862 Canine cardiovascular system biased cDNA

6.738 FTL NM_001024636 Canis lupus familiaris ferritin, light polypeptide

6.718 CTSS NM_001002938 Canis lupus familiaris cathepsin S (CTSS)

6.704 CLU NM_001003370 Canis lupus familiaris clusterin (CLU)

6.677 APOE XM_847504 PREDICTED: Canis familiaris apolipoprotein E, transcript variant 2 (APOE)

6.666 CTSK NM_001033996 Canis lupus familiaris cathepsin K (CTSK)

6.655 CTSK NM_001033996 Canis lupus familiaris cathepsin K (CTSK)

6.605 LGMN XM_537355 PREDICTED: Canis familiaris similar to Legumain precursor

6.453 CTSK NM_001033996 Canis lupus familiaris cathepsin K (CTSK)

6.423 DLA-DRB1 NM_001014768 Canis lupus familiaris MHC class II DLA DRB1 beta chain (DLA-DRB1)

6.193 FTL NM_001024636 Canis lupus familiaris ferritin, light polypeptide (FTL)

6.178 CTSK NM_001033996 Canis lupus familiaris cathepsin K (CTSK)

6.055 TYRP1 XM_859450 PREDICTED: Canis familiaris tyrosinase-related protein 1 (TYRP1)

6.026 CTSK NM_001033996 Canis lupus familiaris cathepsin K (CTSK)

6.013 BPI XM_534417 PREDICTED: Canis familiaris similar to Bactericidal permeability-increasing protein
precursor (BPI)

6.006 CTSB XM_543203 PREDICTED: Canis familiaris similar to cathepsin B preproprotein

5.833 TC50899 TC50899 Q9N2I5_FELCA (Q9N2I5) CD16

5.828 TC62836 TC62836 FCU92795 fusin {Felis catus}

5.727 LGMN XM_537355 PREDICTED: Canis familiaris similar to Legumain precursor

5.680 DLA-DQB1 NM_001014381 Canis lupus familiaris MHC class II, DQ beta 1 (DLA-DQB1)

5.660 CSGALNACT1 XM_539946 PREDICTED: Canis familiaris similar to chondroitin beta1,4 N-
acetylgalactosaminyltransferase

5.651 MT2A NM_001003149 Canis lupus familiaris metallothionein 2A (MT2A)

5.493 TC51307 TC51307 Unknown

5.331 TGM2 XM_542991 PREDICTED: Canis familiaris similar to Protein-glutamine gamma-glutamyltransferase

5.306 SMOC2 XM_858080 PREDICTED: Canis familiaris similar to secreted modular calcium-binding protein 2

(Continued)
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lysosome. Specific genes from each upregulated pathway are detailed in Table 3. The pathways
significantly implicated by the downregulated gene module (blue; Fig 1 E) include dilated car-
diomyopathy, focal adhesion, and arrhythmogenic right ventricular cardiomyopathy and are
detailed in Table 4. These identified pathways are consistent with pathways identified from
prior expression arrays fromMPS IIIb mouse brain [26, 30], MPS VII mouse brain [29] and
liver [47].

Next, gene networks were constructed, utilizing two methods to identify any potential inter-
actions between genes with perturbed expression. The first was de novo using WGCNA, and
the second utilized GeneMania. Signed networks were constructed in WGCNA using an adja-
cency function that incorporates gene correlation and connectivity across the dataset. GeneMa-
nia networks were constructed based on known interactions such as co-expression, shared
protein domains, signaling pathways, physical interactions, genetic interactions, and co-locali-
zation. The results of the GeneMania-generated network analysis are shown in Fig 2, with cor-
related upregulated genes in the MPS I dogs in Fig 2A: notable genes exceeding 2-fold
expression change in the upregulated network include lysosomal proteases (CTSB, CTSK,
CTSS, LGMN); RRAGD, a GTPase involved with lysosomal energy sensing; immunity-related
genes such as CD86, a macrophage-related signaling protein; BPI, a protein that binds bacterial
lipopolysaccharide; and CLU, a marker previously identified in inflammatory processes and
atherosclerosis. Fig 2B shows the correlated downregulated (reduced 2-fold) gene network in
the MPS I dogs. Many of the downregulated genes are smooth muscle cytoskeletal elements,
including TCAP (titin-cap), TPN1 (tropomyosin), DMD (dystrophin), SMTN (smoothelin),
TAGLN (transgelin), MYH11 (smooth muscle myosin heavy chain 11), and CNN1 (smooth
muscle calponin 1).

We further examined the expression pattern of clusterin, which was present in the upregu-
lated gene network and the most significantly overexpressed gene (S3 Fig). The clusterin over-
expression especially interested us, as it has been shown to be is involved in morphologic
transformation of vascular smooth muscle cells [48] and present in human atherosclerotic pla-
ques [49]. The MPS I dog aortas contained multiple eccentric plaques that intruded into the
lumen, consistent with previous reports of vascular pathology in the model [23]. Importantly,
we confirmed that clusterin protein is overexpressed in MPS I ascending (1.3-fold) and
descending aortas (1.62-fold) compared to unaffected heterozygous dogs (Fig 3). The clusterin
protein is localized primarily within the plaques of the MPS I aortas; little to no clusterin signal
was seen in the control aortas (Fig 4). These results provide protein-level confirmation of

Table 1. (Continued)

Fold
Change

Gene Symbol Systematic Name Description

5.190 ASAH1 XM_540012 PREDICTED: Canis familiaris similar to N-acylsphingosine amidohydrolase (acid
ceramidase)

5.152 APOE ENSCAFT00000007432 Apolipoprotein E (Apo-E)

5.104 TC54889 TC54889 Unknown

5.069 DLA-DRA1 NM_001011723 Canis lupus familiaris MHC class II DR alpha chain (DLA-DRA1)

4.984 RRAGD XM_532231 PREDICTED: Canis familiaris similar to Ras-related GTP binding D

4.921 E02824 E02824 Canis familiaris cDNA clone LIB30321_005_G04

4.912 RRAGD XM_532231 PREDICTED: Canis familiaris similar to Ras-related GTP binding D

4.902 TYROBP XM_533687 PREDICTED: Canis familiaris similar to TYRO protein tyrosine kinase binding protein
isoform 2 precursor

4.882 FTH1 ENSCAFT00000025200 Ferritin heavy chain (EC 1.16.3.1) (Ferritin H subunit)

doi:10.1371/journal.pone.0150850.t001
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Table 2. Down-regulated Genes in IDUA-/- Canine Arteries. The 50 down-regulated genes with significant (p-value� 0.05) and greater than 2-fold level of
down-regulation in IDUA-/- canine arteries, compared to controls. Again, some genes are represented more than once due to existence of multiple mRNA
probes per gene. For the full list of significantly down-regulated genes, please refer to S2 Table.

Fold
Change

Gene Symbol Systematic Name Description

4.948 TC67209 TC67209 HUMRPS17A S17 ribosomal protein {Homo sapiens}

3.970 LRRK2 XM_543734 PREDICTED: Canis familiaris similar to leucine-rich repeat kinase 2

3.666 CNN1 XM_862565 PREDICTED: Canis familiaris similar to calponin 1, basic, smooth muscle, transcript
variant 4

3.392 CO611926 CO611926 DG9-109j22 DG9-ovary Canis familiaris cDNA 3'

3.309 SMTN XM_860837 PREDICTED: Canis familiaris similar to smoothelin isoform c

3.218 NRGN XM_536537 PREDICTED: Canis familiaris similar to neurogranin (LOC479401)

3.212 CSRP1 XM_843516 PREDICTED: Canis familiaris similar to Cysteine and glycine-rich protein 1

3.157 TCAP XM_858636 PREDICTED: Canis familiaris similar to Telethonin (Titin cap protein)

3.109 PPP1R12B XM_843384 PREDICTED: Canis familiaris similar to Protein phosphatase 1 regulatory subunit 12B
(Myosin phosphatase targeting subunit 2)

3.018 DN756599 DN756599 GL-Cf-13395 GLGC-LIB0001-cf Canis familiaris Normalized Mixed Tissue cDNA

2.949 LOC488984 XM_843847 PREDICTED: Canis familiaris similar to Actin, alpha skeletal muscle

2.865 AB012223 AB012223 Canis familiaris LINE-1 element ORF2 mRNA

2.855 ENSCAFT00000034839 ENSCAFT00000034839 NADH-ubiquinone oxidoreductase chain 3

2.836 PPP1R12B XM_843384 PREDICTED: Canis familiaris similar to Protein phosphatase 1 regulatory subunit 12B
(Myosin phosphatase targeting subunit 2)

2.812 ENSCAFT00000034824 ENSCAFT00000034824 NADH-ubiquinone oxidoreductase chain 2 (EC 1.6.5.3) (NADH dehydrogenase
subunit 2)

2.812 BM538907 BM538907 hb02c06.g1 Canis cDNA from testes cells Canis familiaris cDNA clone

2.782 LOC488984 XM_843847 PREDICTED: Canis familiaris similar to Actin, alpha skeletal muscle

2.764 TC55776 TC55776 Unknown

2.761 TAGLN XM_856022 PREDICTED: Canis familiaris similar to transgelin, transcript variant 3

2.734 FHL1 XM_549282 PREDICTED: Canis familiaris similar to four and a half LIM domains 1

2.712 LOC488984 XM_843847 PREDICTED: Canis familiaris similar to Actin, alpha skeletal muscle

2.705 OGN XM_848247 PREDICTED: Canis familiaris similar to Mimecan precursor (Osteoglycin)

2.692 DMD NM_001003343 Canis lupus familiaris dystrophin (muscular dystrophy, Duchenne and Becker types)

2.673 TC68286 TC68286 Unknown

2.630 ENSCAFT00000022802 ENSCAFT00000022802 Fibronectin (FN) (Fragment)

2.626 SLC22A3 XM_533467 PREDICTED: Canis familiaris similar to solute carrier family 22 member 3

2.617 LOC488984 XM_843847 PREDICTED: Canis familiaris similar to Actin, alpha skeletal muscle

2.598 DN879822 DN879822 nae29h08.y1 Dog eye eye minus lens and cornea. Unnormalized (nae)

2.594 PTGS1 NM_001003023 Canis lupus familiaris prostaglandin-endoperoxide synthase 1

2.586 LOC491592 XM_548713 PREDICTED: Canis familiaris similar to ankyrin repeat domain 26

2.567 PPAP2B XM_536696 PREDICTED: Canis familiaris similar to phosphatidic acid phosphatase type 2B

2.526 PPAP2B XM_536696 PREDICTED: Canis familiaris similar to phosphatidic acid phosphatase type 2B

2.489 C1QTNF1 XM_843609 PREDICTED: Canis familiaris similar to C1q and tumor necrosis factor related protein
1

2.481 TPM1 ENSCAFT00000026876 Tropomyosin (Fragment)

2.460 MYH11 XM_857511 PREDICTED: Canis familiaris similar to smooth muscle myosin heavy chain 11
isoform SM1

2.459 ADCY5 M88649 Canis familiaris adenylyl cyclase type V

2.458 LOC480803 XM_537918 PREDICTED: Canis familiaris similar to ankyrin repeat domain 26

2.429 TC48376 TC48376 MALAT_HUMAN (Q9UHZ2) Metastasis-associated lung adenocarcinoma transcript 1

2.407 CF412534 CF412534 Canine heart normalized cDNA Library, pBluescript Canis familiaris cDNA clone
CH3#080_C09 5'

(Continued)
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clusterin gene overexpression within MPS I arterial vasculature. Additionally, Toll-like recep-
tor 4 (TLR4) protein overexpression and increased phosphorylated STAT1 protein were seen
only in canine MPS I arteries (S4 Fig).

Next, we assessed whether adult C57/Bl6 Idua-/- mice had similar cardiovascular findings to
the IDUA-/- dogs, especially with regards to aortic histopathology. The mice had grossly evi-
dent hypertrophic cardiomyopathy compared to Idua+/- control mice, which is consistent with
other assessments of cardiovascular phenotype [23]. While not as prominent as the canine
MPS I model, the Idua-/- mice also demonstrated eccentric, sclerotic plaques and thickened
proximal aortas compared to control mice. These plaques were visible only near the sinuses of
Valsalva, a distribution different from the canine plaques, which were present throughout the
ascending and descending aorta. Clusterin protein was absent in the control mice (Fig 5A), and
prominently visible in the aortic plaques of the Idua-/- mice (Fig 5B). The full clusterin and
smooth muscle actin blots can be viewed in S5 Fig.

Discussion
We performed microarray analyses comparing arterial gene expression of untreated MPS I
canines to unaffected heterozygous canines to gain insights into the gene perturbations caused
by α-L-iduronidase deficiency and subsequent arterial glycosaminoglycan storage. Our study
represents a comprehensive assessment of gene expression in the vasculature of any MPS
model system, and identified upregulation of genes related to lysosomes, proteasomes, macro-
phages, and innate immunity. We also identified downregulation of cytoskeletal genes and cal-
cium channel subunits. Our findings are consistent with results of gene expression studies
from non-vascular tissues in differing MPS subtypes. This indicates the possibility that com-
mon mechanisms may be responsible for pathogenesis of MPS disease in multiple organ sys-
tems. We also identified evidence linking the innate immune system to pathogenesis of MPS I
cardiovascular disease, as well as a biomarker for potentially following disease progression and
treatment efficacy.

Overexpression of lysosomal hydrolases and housekeeping genes is consistent with the
hypothesis that accumulation of primary substrate in lysosomal storage disorders results in a
“traffic jam” with secondarily impaired degradation of other lysosomal substrates, and

Table 2. (Continued)

Fold
Change

Gene Symbol Systematic Name Description

2.405 DN368051 DN368051 LIB3731-002-Q6-K7-H5 LIB3731 Canis familiaris cDNA clone CLN2470649

2.393 CN005552 CN005552 ip32c07.g1 Brain—Cerebellum Library (DOGEST8) Canis familiaris cDNA clone
ip32c07

2.363 CO586466 CO586466 DG2-130p9 DG2-brain Canis familiaris

2.346 ENSCAFT00000022799 ENSCAFT00000022799 Fibronectin (FN) (Fragment)

2.331 TCAP XM_858636 PREDICTED: Canis familiaris similar to Telethonin (Titin cap protein)

2.322 LOC488991 XM_843985 PREDICTED: Canis familiaris similar to Protein FAM13C1

2.309 PDZRN4 XM_543731 PREDICTED: Canis familiaris similar to PDZ domain containing RING finger protein 4
(Ligand of Numb-protein X 4)

2.301 LOC607572 XM_844308 PREDICTED: Canis familiaris similar to ankyrin repeat domain 26

2.286 PPP1R12A XM_859971 PREDICTED: Canis familiaris similar to Protein phosphatase 1 regulatory subunit 12A
(Myosin phosphatase targeting subunit 1)

2.286 TC73854 TC73854 Unknown

2.280 A_11_P0000024197 Unknown TC47203

doi:10.1371/journal.pone.0150850.t002
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Table 3. Upregulated Canine Arterial IDUA-/- Genes Sorted by Category. Upregulated arterial genes in IDUA-/- canines fall into categories associated
with lysosomal function, proteasomal function, and the immune system (graft-versus-host disease and antigen processing).

Ontology Category

"LYSOSOMAL FUNCTION"

Gene Symbol Gene Name Entrez Gene ID

ATP6V0C ATPase, H+ transporting, lysosomal 16kDa, V0 subunit c 479877

ATP6V0B ATPase, H+ transporting, lysosomal 21kDa, V0 subunit b 482528

ATP6V0D1 ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1 479685

ATP6V1H ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H 486953

ATP6V0A1 ATPase, H+ transporting, lysosomal V0 subunit a1 607705

ATP6AP1 ATPase, H+ transporting, lysosomal accessory protein 1 610922

CD63 CD63 molecule 474391

GM2A GM2 ganglioside activator 479324

NAGA N-acetylgalactosaminidase, alpha 481226

GNPTAB N-acetylglucosamine-1-phosphate transferase, alpha and beta subunits 475443

NAGPA N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase 490019

NAGLU N-acetylglucosaminidase, alpha- 490965

ASAH1 N-acylsphingosine amidohydrolase (acid ceramidase) 1 482897

SGSH N-sulfoglucosamine sulfohydrolase 403707

NPC1 Niemann-Pick disease, type C1 403698

TCIRG1 T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 subunit A3 483691

AP3B2 adaptor-related protein complex 3, beta 2 subunit 479053

AP3M1 adaptor-related protein complex 3, mu 1 subunit 489052

AP3S2 adaptor-related protein complex 3, sigma 2 subunit 479042

AP4B1 adaptor-related protein complex 4, beta 1 subunit 483125

ARSA arylsulfatase A 474457

AGA aspartylglucosaminidase 475638

CTSA cathepsin A 611146

CTSB cathepsin B 486077

CTSC cathepsin C 403458; 478608

CTSD cathepsin D 483662

CTSG cathepsin G 608543

CTSH cathepsin H 479065

CTSK cathepsin K 608843

CTSL2 cathepsin L2 403708

CTSS cathepsin S 403400

CTSZ cathepsin Z 611983

CLTA clathrin, light chain (Lca) 474765

CTNS cystinosis, nephropathic 491220

DNASE2 deoxyribonuclease II, lysosomal 476697

GLB1 galactosidase, beta 1 403873

GBA glucosidase, beta; acid (includes glucosylceramidase) 612206

GUSB glucuronidase, beta 403831

GGA2 golgi associated, gamma adaptin ear containing, ARF binding protein 2 608555

HGSNAT heparan-alpha-glucosaminide N-acetyltransferase 482833

HEXA hexosaminidase A (alpha polypeptide) 487633

HEXB hexosaminidase B (beta polypeptide) 478100

LGMN legumain 480232

LIPA lipase A, lysosomal acid, cholesterol esterase 610650

(Continued)
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Table 3. (Continued)

Ontology Category

LAPTM5 lysosomal multispanning membrane protein 5 487324

LAPTM4A lysosomal protein transmembrane 4 alpha 475678

LAMP1 lysosomal-associated membrane protein 1 476995

LAMP2 lysosomal-associated membrane protein 2 481037

M6PR mannose-6-phosphate receptor (cation dependent) 477700

MAN2B1 mannosidase, alpha, class 2B, member 1; similar to UPF0139 protein CGI-140 476703; 484932

MANBA mannosidase, beta A, lysosomal 487883

PPT1 palmitoyl-protein thioesterase 1 475316

PPT2 palmitoyl-protein thioesterase 2 474856

PSAP prosaposin 479240

SCARB2 scavenger receptor class B, member 2 478435

NEU1 sialidase 1 (lysosomal sialidase) 481717

AP1S2 similar to Adapter-related protein complex 1 sigma 1B subunit (Sigma-adaptin 1B) 611468

SLC11A1 solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1 478909

SLC17A5 solute carrier family 17 (anion/sugar transporter), member 5 474969

SORT1 sortilin 1 479915

TPP1 tripeptidyl peptidase I 485337

"PROTEASOMAL FUNCTION"

Gene Symbol Gene Name Entrez Gene ID

PSMC1 proteasome (prosome, macropain) 26S subunit, ATPase, 1 478703

PSMC2 proteasome (prosome, macropain) 26S subunit, ATPase, 2 475896

PSMC3 proteasome (prosome, macropain) 26S subunit, ATPase, 3 475980

PSMC5 proteasome (prosome, macropain) 26S subunit, ATPase, 5 480478

PSMD11 proteasome (prosome, macropain) 26S subunit, non-ATPase, 11 480610

PSMD14 proteasome (prosome, macropain) 26S subunit, non-ATPase, 14 478765

PSMD2 proteasome (prosome, macropain) 26S subunit, non-ATPase, 2 478654

PSMD3 proteasome (prosome, macropain) 26S subunit, non-ATPase, 3 491018

PSMD6 proteasome (prosome, macropain) 26S subunit, non-ATPase, 6 484700

PSMD8 proteasome (prosome, macropain) 26S subunit, non-ATPase, 8 476470

PSME1 proteasome (prosome, macropain) activator subunit 1 (PA28 alpha) 480256

PSME2 proteasome (prosome, macropain) activator subunit 2 (PA28 beta) 480258

PSME4 proteasome (prosome, macropain) activator subunit 4 474594

PSMA4 proteasome (prosome, macropain) subunit, alpha type, 4 475132

PSMA5 proteasome (prosome, macropain) subunit, alpha type, 5 490123

PSMA6 proteasome (prosome, macropain) subunit, alpha type, 6 480290

PSMA7 proteasome (prosome, macropain) subunit, alpha type, 7 404305

PSMB1 proteasome (prosome, macropain) subunit, beta type, 1 475040

PSMB10 proteasome (prosome, macropain) subunit, beta type, 10 489749

PSMB2 proteasome (prosome, macropain) subunit, beta type, 2 475338

PSMB3 proteasome (prosome, macropain) subunit, beta type, 3 474987; 480537

PSMB4 proteasome (prosome, macropain) subunit, beta type, 4 475848

PSMB5 proteasome (prosome, macropain) subunit, beta type, 5 480246

PSMB8 proteasome (prosome, macropain) subunit, beta type, 8 474865

PSMB9 proteasome (prosome, macropain) subunit, beta type, 9 474867

POMP proteasome maturation protein 477325

PSMA1 similar to Proteasome subunit alpha type 1 (Proteasome component C2) 476867; 608388; 610188;
612667; 613000

(Continued)
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Table 3. (Continued)

Ontology Category

PSMA3 similar to Proteasome subunit alpha type 3 (Proteasome component C8) 480338; 607261

"GRAFT-VS-HOST"

Gene Symbol Gene Name Entrez Gene ID

CD80 CD80 molecule 403765

CD86 CD86 molecule 403764

DLA-12 / DLA-64 MHC class I DLA-12; MHC class I DLA-64 474838; 541592

DLA88 MHC class I DLA-88 474836

DLA-DRB1 MHC class II DLA DRB1 beta chain 474860

DLA-DRA1 MHC class II DR alpha chain 481731

DLA-79 MHC class Ib 483594

IL1A interleukin 1, alpha 403782

IL1B interleukin 1, beta 403974

IL2 interleukin 2 403989

IL6 interleukin 6 (interferon, beta 2) 403985

HLA-DMA major histocompatibility complex, class II, DM alpha 481732

HLA-DOB major histocompatibility complex, class II, DO beta 607786

DLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 474861

DLA-DQB1 major histocompatibility complex, class II, DQ beta 1 474862

"ANTIGEN PROCESSING"

Gene Symbol Gene Name Entrez Gene ID

DLA-12 / DLA-64 MHC class I DLA-12; MHC class I DLA-64 474838; 541592

DLA88 MHC class I DLA-88 474836

DLA-DRB1 MHC class II DLA DRB1 beta chain 474860

DLA-DRA1 MHC class II DR alpha chain 481731

DLA-79 MHC class Ib 483594

TAPBP TAP binding protein (tapasin) 481740

B2M beta-2-microglobulin 478284

CANX calnexin 403908

CTSB cathepsin B 486077

CTSS cathepsin S 403400

HSPA1L heat shock 70kDa protein 1-like 474850

HSP70 heat shock protein 70 403612

HSPA4 heat shock protein Apg-2 474680

KLRD1 killer cell lectin-like receptor subfamily D, member 1 611360

LGMN legumain 480232

HLA-DMA major histocompatibility complex, class II, DM alpha 481732

HLA-DOB major histocompatibility complex, class II, DO beta 607786

DLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 474861

DLA-DQB1 major histocompatibility complex, class II, DQ beta 1 474862

NFYB nuclear transcription factor Y, beta 475450

NFYC nuclear transcription factor Y, gamma 475312

PSME1 proteasome (prosome, macropain) activator subunit 1 (PA28 alpha) 480256

PSME2 proteasome (prosome, macropain) activator subunit 2 (PA28 beta) 480258

RFXANK regulatory factor X-associated ankyrin-containing protein 476662

LOC480726 similar to 78 kDa glucose-regulated protein precursor (Endoplasmic reticulum lumenal Ca(2+)
binding protein grp78)

480726

(Continued)

Arterial Gene Expression in Canine MPS Type I

PLOS ONE | DOI:10.1371/journal.pone.0150850 March 17, 2016 14 / 27



subsequent efforts by the cell to alleviate the secondary storage [50]. Our findings of cathepsin
protease overexpression are consistent with aortic cathepsin B, D, L, and S overexpression
from the mouse and canine models of MPS I and VII [31, 33, 34]. In addition, overexpression
of lysosomal membrane proteins and enzymes has been observed in murine MPS VII liver [47]
and brain [29]. An additional effect of the lysosomal traffic jam is impairment in organelle and
protein degradation via a lysosome-dependent pathway known as autophagy [51]. Since the
ubiquitin-proteasome system (UPS) is another prominent mechanism for recycling of accumu-
lated proteins, the observed upregulation of proteasomal genes may indicate diversion of pro-
tein catabolism towards the UPS.

Downregulation of cellular adhesion and cytoskeletal genes (labeled as “Dilated Cardiomy-
opathy,” “Focal Adhesion,” and “Arrhythmogenic Right Ventricular Cardiomyopathy" in our
study) has also been seen in MPS IIIb mouse brains [30]. These results support data suggesting
that excess HS oligosaccharides impair function of cellular adhesion molecules and disrupt
normal polarization and orientation of cultured MPSIIIB mouse astrocytes or neural stem cells
[52].

The generalized upregulation of macrophage and immunity-related genes observed in the
MPS I arteries indicate that inflammation may play a prominent role in the pathogenesis of
MPS I cardiovascular disease. This immune-associated gene overexpression was also seen in
several expression studies in MPS IIIb mice brains [26, 30] and is consistent with neuroinflam-
mation observed in murine MPS IIIb and other neuropathic lysosomal storage disorders,
including Sandhoff Disease and MPS I [53, 54]. While exploring potential etiologies of MPS I
cardiovascular disease, significant overexpression of the Toll-like receptor 4 gene, in addition
to numerous cathepsin proteases and matrix metalloproteinases was observed [34]. When
MPS VII / cathepsin S and MPS VII / MMP-12 double knockout mice continued to develop
arterial elastin degradation and aortic root dilatation, it was concluded that other proteases or
inflammatory signals transduced by TLR4 activation could be responsible for the MPS VII car-
diovascular phenotype [31].

TLR4 is a transmembrane protein that belongs to a family of proteins known as Pattern
Recognition Receptors (PRRs). PRRs are expressed by cells of the innate immune system, bind
foreign molecules that are typically associated with infections (pathogen-associated molecular
patterns or PAMPs) or molecules released by damaged cells (damage-associated molecular pat-
terns or DAMPs), and activate an immune response [55]. Lipopolysaccharide, the canonical
PAMP for bacteria, activates TLR4 signaling. Acting via the MyD88 adaptor and STAT1

Table 3. (Continued)

Ontology Category

LOC476669 similar to Gamma-interferon inducible lysosomal thiol reductase precursor (Gamma-interferon-
inducible protein IP-30)

476669

LOC479329 similar to HLA class II histocompatibility antigen, gamma chain (HLA-DR antigens associated
invariant chain) (Ia antigen-associated invariant chain)

479329

LOC607470 similar to Heat shock protein HSP 90-alpha (HSP 86) 607470

LOC490008 similar to MHC class II transactivator 490008

HSPA8 similar to heat shock 70kDa protein 8 isoform 2; heat shock 70kDa protein 8; similar to Heat shock
cognate 71 kDa protein (Heat shock 70 kDa protein 8); similar to heat shock protein 8

479406; 607182; 608802

LOC480438 similar to heat shock protein 1, alpha 480438

LOC608885 similar to heat shock protein 8 608885

doi:10.1371/journal.pone.0150850.t003
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Table 4. Down-regulated Canine Arterial IDUA-/- Genes Sorted by Category. Down-regulated arterial
genes in IDUA-/- dogs fall into categories associated with cytoskeletal proteins, cellular adhesion, and ion
channels (termed arrhythmogenic right ventricular cardiomyopathy, focal adhesion, and dilated
cardiomyopathy).

Ontology Category

"ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHY"

Systematic Name Gene Name Entrez Gene ID

ACTB actin, beta 610787

ACTN1 actinin, alpha 1 480369

ACTN2 actinin, alpha 2 479191

ACTN4 actinin, alpha 4 484526

LOC442937 beta-actin 442937

CACNA1S calcium channel, voltage-dependent, L type, alpha 1S
subunit

490244

CACNB1 calcium channel, voltage-dependent, beta 1 subunit 491030

CACNB2 calcium channel, voltage-dependent, beta 2 subunit 487113

CACNB4 calcium channel, voltage-dependent, beta 4 subunit 609361

CTNNA1 catenin (cadherin-associated protein), alpha 2 483088

CTNNA3 catenin (cadherin-associated protein), alpha 3 489008

DES desmin 497091

DSC2 desmocollin 2 403860

DMD dystrophin (muscular dystrophy, Duchenne and Becker
types)

606758

GJA1 gap junction protein, alpha 1, 43kDa 403418

ITGA5 integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 486493

ITGA6 integrin, alpha 6 478800

ITGA8 integrin, alpha 8 487119

ITGA9 integrin, alpha 9 477021

ITGB4 integrin, beta 4 483318

ITGB8 integrin, beta 8 475253

RYR2 ryanodine receptor 2 (cardiac) 403615

SGCG sarcoglycan, gamma (35kDa dystrophin-associated
glycoprotein)

486043

LOC492249 similar to Emerin 492249

"DILATED CARDIOMYOPATHY"

Systematic Name Gene Name Entrez Gene ID

GNAS GNAS complex locus 403943

ACTB actin, beta 610787

ADCY2 adenylate cyclase 2 (brain) 478624

ADCY5 adenylate cyclase 5 403859

ADCY9 adenylate cyclase 9 490031

LOC442937 beta-actin 442937

CACNA1S calcium channel, voltage-dependent, L type, alpha 1S
subunit

490244

CACNB1 calcium channel, voltage-dependent, beta 1 subunit 491030

CACNB2 calcium channel, voltage-dependent, beta 2 subunit 487113

CACNB4 calcium channel, voltage-dependent, beta 4 subunit 609361

DES desmin 497091

DMD dystrophin (muscular dystrophy, Duchenne and Becker
types)

606758

ITGA5 integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 486493

(Continued)
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Table 4. (Continued)

Ontology Category

ITGA6 integrin, alpha 6 478800

ITGA8 integrin, alpha 8 487119

ITGA9 integrin, alpha 9 477021

ITGB4 integrin, beta 4 483318

ITGB8 integrin, beta 8 475253

PLN phospholamban 414755

RYR2 ryanodine receptor 2 (cardiac) 403615

SGCG sarcoglycan, gamma (35kDa dystrophin-associated
glycoprotein)

486043

LOC492249 similar to Emerin 492249

TTN titin 478819

TPM3 tropomyosin 3; tropomyosin 1 (alpha); similar to
tropomyosin 1 alpha chain isoform 4

478332; 480137;
484695; 491970

TNF tumor necrosis factor (TNF superfamily, member 2) 403922

"FOCAL
ADHESION"

Systematic Name Gene Name Entrez Gene ID

RAP1A RAP1A, member of RAS oncogene family 483225

RAPGEF1 Rap guanine nucleotide exchange factor (GEF) 1 491286

ARHGAP5 Rho GTPase activating protein 5 490642

ROCK1 Rho-associated, coiled-coil containing protein kinase 1 480181

ACTB actin, beta 610787

ACTN1 actinin, alpha 1 480369

ACTN2 actinin, alpha 2 479191

ACTN4 actinin, alpha 4 484526

LOC442937 beta-actin 442937

CAV1 caveolin 1, caveolae protein, 22kDa 403980

CAV2 caveolin 2 403611; 475294

COL1A1 collagen, type I, alpha 1 403651

COL1A2 collagen, type I, alpha 2 403824

COL2A1 collagen, type II, alpha 1 403826

COL4A1 collagen, type IV, alpha 1 403496

COL5A1 collagen, type V, alpha 1 480684

COL6A3 collagen, type VI, alpha 3 403582

FLNC filamin C, gamma (actin binding protein 280) 482266

ITGA5 integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 486493

ITGA6 integrin, alpha 6 478800

ITGA8 integrin, alpha 8 487119

ITGA9 integrin, alpha 9 477021

ITGB4 integrin, beta 4 483318

ITGB8 integrin, beta 8 475253

LAMA3 laminin, alpha 3 480173

LAMB2 laminin, beta 2 (laminin S) 476626

MET met proto-oncogene (hepatocyte growth factor receptor) 403438

MAPK8 mitogen-activated protein kinase 8 477746

MYLK myosin light chain kinase 488012

MYLK2 myosin light chain kinase 2 477187

(Continued)

Arterial Gene Expression in Canine MPS Type I

PLOS ONE | DOI:10.1371/journal.pone.0150850 March 17, 2016 17 / 27



protein phosphorylation, activated TLR4 results in nuclear translocation of the transcription
factor NF-κB and subsequent mRNA expression of proinflammatory cytokines.

Following the discovery that heparan sulfate, but neither chondroitin sulfate nor heparin,
activates TLR4 signaling in dendritic cells and macrophages, evidence has been accumulating
that heparan sulfate may play a role in the pathogenesis of MPS neurologic and orthopedic dis-
ease via TLR4-induced inflammation [56–58]. Wild-type mouse microglia respond in a dose-
dependent fashion to HS-oligosaccharides isolated fromMPS IIIB patients with overexpression
of macrophage inflammatory protein 1α (Mip1a or Ccl3) and interleukin 1βmRNAs. There
was significantly reduced cytokine mRNA expression when the same HS-oligosaccharides were
administered to Tlr4-/- orMyD88-/- mouse microglia. MPS IIIb (Naglu-/-) mouse brains overex-
pressMip1amRNA as early as postnatal day 10 with concomitant microglial activation and
neuroinflammation. Naglu / Tlr4 and Naglu /MyD88 double knockout mice did not overex-
pressMip1a and demonstrated delayed neuroinflammation [33]. Similar neuroinflammatory
findings have been reported in MPS IIIa, IIIb, and IIIc mice, all of which accumulate HS [28].

Our results suggest that HS–TLR4 mediated, monocyte/macrophage-induced inflammation
contributes to the pathogenesis of cardiovascular disease in MPS I. Among the genes with high-
est overexpression in MPS I arteries was CD86 which, in conjunction with another overex-
pressed gene CD80, encode proteins found on the cell surface of activated monocytes. Other
immunity-related genes with observed overexpression were members of the major histocom-
patibility complex II families, which are involved in antigen presentation and are found pri-
marily on monocytes, macrophages, and dendritic cells. In addition, overexpression of the
inflammatory cytokines interleukin-1α, interleukin-1β, interleukin 2, and interleukin 6 were
observed. We also identified MPS I arterial overexpression of TLR4 protein and evidence of its
activation via increased levels of phosphorylated STAT1.

Heparan sulfate-mediated inflammation cannot be the sole etiology of MPS cardiovascular
disease pathogenesis. Patients who have MPS type VI store only DS GAG but often develop
mitral or aortic valve dysfunction severe enough to necessitate surgical valve replacement, and

Table 4. (Continued)

Ontology Category

PAK4 p21 protein (Cdc42/Rac)-activated kinase 4 484513

PIK3CA phosphoinositide-3-kinase, catalytic, alpha polypeptide 488084

PIK3R2 phosphoinositide-3-kinase, regulatory subunit 2 (beta) 609956

PGF placental growth factor 611916

PDGFD platelet derived growth factor D 479460

PDGFRB platelet-derived growth factor receptor, beta polypeptide 442985

PPP1CB protein phosphatase 1, catalytic subunit, beta isoform 403558

PPP1CC protein phosphatase 1, catalytic subunit, gamma isoform 403557

PPP1R12A protein phosphatase 1, regulatory (inhibitor) subunit 12A 475411

RHOA ras homolog gene family, member A 403954

LOC479252 similar to Vinculin (Metavinculin) 479252

LOC479790 similar to mitogen activated protein kinase 3 479790

TLN1 talin 1 474759

TNC tenascin C 481689

AKT2 v-akt murine thymoma viral oncogene homolog 2 449021

CRKL v-crk sarcoma virus CT10 oncogene homolog (avian)-like 608125

doi:10.1371/journal.pone.0150850.t004
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also demonstrate coronary artery intimal thickening with arterial stiffness [2, 19,59]. Although
the effects of DS GAG on TLR4 in MPS have not been directly investigated, there are studies
that indicate it may also serve as a PAMP for TLR4 and promote inflammation like HS GAGs
[60, 61]. Post-mortem studies of several MPS IVa patients, who store neither HS nor DS but

Fig 2. Up- and Downregulated Gene Networks in IDUA-/- Canine Arteries.Gene networks formed using
GeneMania using the top related genes and at most 20 attributes. Interactions observed include co-
expression, co-localization, genetic interactions, pathway, and physical interactions. A. Network of the
upregulated genes. Notable genes in the upregulated network include lysosomal proteases (CTSB, CTSK,
CTSS, LGMN); RRAGD, a GTPase involved in lysosomal energy sensing; immunity-related genes such as
CD86 and BPI; and clusterin, a protein associated with atherosclerotic cardiovascular disease. B. Network of
the downregulated genes. The notable genes in the downregulated network are primarily smooth muscle
cytoskeletal elements (CNN1, DMD, MYH11, SMTH, TAGLN, TCAP, and TPN1).

doi:10.1371/journal.pone.0150850.g002
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accumulate keratan and chondroitin sulfate GAGs, have also demonstrated coronary sclerosis
or aortic intimal thickening with macrophage infiltration and elastin fibril disruption [62, 63].

Fig 3. Western Blot of Clusterin and Smooth Muscle Actin in Canine Aortas.Clusterin is predicted to
appear as a thicker band between 35–39 kDa owing to differential glycosylation. Alpha smooth muscle actin
is predicted to appear at approximately 42 kDa. 20 μg of total protein was loaded in each lane. The upper set
is from ascending aorta and the lower set is from descending aorta. Normalized mean clusterin band
intensities from descending and ascending aortas are 1.62 and 1.3 fold greater in MPS I animals compared to
unaffected animals.

doi:10.1371/journal.pone.0150850.g003

Fig 4. Canine Arterial Clusterin Immunohistochemistry. The MPS I aorta (right panel) has an overall increase in clusterin signal compared to unaffected
aorta (left panel), and also contains an eccentric plaque (arrowhead) that stains strongly for clusterin.

doi:10.1371/journal.pone.0150850.g004
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As our primary focus was canine MPS I arterial disease, mRNA and protein quantification of
murine aorta clusterin or pSTAT1 were not performed. Despite this limitation, our study pro-
vides evidence from both canine and murine models confirming clusterin protein overexpression
within MPS I arterial lesions. We believe that clusterin may have utility as an in vivo biomarker
of MPS I cardiovascular disease for several reasons. First, overexpression of clusterin has been
observed in many inflammatory conditions, including human atheromatous atherosclerosis,
where it is observed only in vascular smooth muscle cells and stroma of atheromas and not in
normal aorta [64, 65]. Second, while the effects of clusterin overexpression on human cardiovas-
cular disease are unclear and may be pro-atherosclerotic [66] or protective [67, 68], clusterin
serum levels correlate with severity of coronary artery stenosis and are highest during active myo-
cardial infarction [69, 70]. Although lipid-mediated atheroma formation and atherosclerosis
appear to proceed via pathways distinct from what occurs in MPS I, the roles of macrophages,
inflammation, and Toll-like receptors in promoting atherosclerosis are well known [71]. Further
studies are required to determine if circulating clusterin levels are indeed elevated in humanMPS
I patients, and if those levels correlate with severity of their cardiovascular disease.

Because GAGs are naturally present in healthy aortas [72], it will be important in the design of
MPS cardiovascular disease therapeutics to determine if the arterial inflammation is caused solely
by a quantitative increase of GAGs, or if the GAGs stored in MPS possess additional qualitative
pro-inflammatory effects. The presence of storage-induced inflammation withinMPS I canine
arteries suggests several possible therapeutic strategies. Modified IDUA enzymes are being devel-
oped that have the potential to permeate deeper into the vascular parenchyma to alleviate GAG
storage. An alternative strategy is the development of small molecule therapies that diffuse into
arterial parenchyma and block the inflammatory response leading to MPS cardiovascular disease
via inhibition of TLR4 signaling or pro-inflammatory cytokines. In fact, preclinical studies have
been performed to investigate each of these modalities [73–76], and human clinical trials are in
progress (European Union Clinical Trials Register # 2014-000350-11). Clusterin represents a
promising biomarker to monitor efficacy of these therapeutic candidates in both preclinical and
clinical studies for MPS I cardiovascular disease. The murine MPS I model system can be utilized
to test efficacy of potential therapeutics targeted towards MPS cardiovascular disease.

Supporting Information
S1 Appendix. Protocol for murine Idua genotyping. This protocol was utilized for identify-
ing the Idua genotype of the mice utilized in this study.
(PDF)

Fig 5. Murine Aortic Clusterin Immunohistochemistry. Taken at the level of the sinuses of Valsalva, the
MPS I mouse aorta (right panel) is thicker than the wild-type mouse (left panel) and also contains an eccentric
plaque (arrowhead) staining strongly for clusterin.

doi:10.1371/journal.pone.0150850.g005
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S1 Fig. Dendrogram and trait heatmap of the IDUA-/- and control canine aorta samples.
The control samples cluster together and the IDUA-/- canine aorta samples cluster together.
The same results are found if data from each tissue type is analyzed separately for up- and
down-regulated genes, respectively.
(TIF)

S2 Fig. Module trait-relationship table.Modules are designated on the left and the trait rela-
tionship is on the bottom (A for ascending aorta, C for carotid artery, and D for descending
aorta). The table shows the correlation (top value) and the significance (bottom value) for each
module-trait relationship. The turquoise and blue modules show the highest significance and
thus were used for further analysis.
(TIF)

S3 Fig. Identity of top perturbed genes within modules. In the turquoise and blue modules,
further assessment identified the top genes based on fold- change and p-value using Student’s
t-test. A. Volcano plot of the–log10 of the p-value vs. log2 of fold change. B. Top up- and down-
regulated genes in the module are represented in a bar graph with a log2 scale.
(TIF)

S4 Fig. TLR4 and pSTAT1 immunohistochemistry. Immunohistochemistry for demonstrates
overexpression of TLR4 in canine MPS I aorta, but not in unaffected canine aorta. The pres-
ence of increased pSTAT1 in canine MPS I aorta compared to unaffected canine aorta is evi-
dence for TLR4 activation.
(TIF)

S5 Fig. Clusterin Western blotting. Scan of raw radiograph (Thermo Scientific CL-XPosure
Film, ThermoFisher Scientific, Waltham, MA) exposure depicting enhanced chemilumines-
cence detection of canine aorta WB probed with anti-human clusterin alpha chain (EMDMilli-
pore, Billerica, MA) and with anti-human smooth muscle alpha-actin (Dako North America,
Inc., Carpinteria, CA). Hand written annotations refer to specific animal identifiers marking
the lanes. Samples from descending or ascending aorta are grouped together and labeled as
IDUA+/- (carrier) or IDUA-/- (MPS I). Handwritten markings indicate size and position of
color coded protein ladder size markers (PageRuler Prestained Protein Ladder, Life Technolo-
gies, Grand Island, NY) traced by overlaying the film onto the transfer membrane. Clusterin is
predicted to appear as a band between 35–39 kDa owing to differential glycosylation, while
alpha smooth muscle actin is predicted to appear at approximately 42 kDa.
(TIF)

S1 Table. Significantly upregulated genes within IDUA-/- canine aorta. The full list of
mRNA probes showing significant (p-value� 0.05) and greater than 2-fold level of upregula-
tion in IDUA-/- canine arteries, compared to controls. Note that some genes are represented
more than once due to existence of multiple mRNA probes per gene.
(XLSX)

S2 Table. Significantly down-regulated genes within IDUA-/- canine aorta. The full list of
mRNA probes showing significant (p-value� 0.05) and greater than 2-fold level of down-regu-
lation in IDUA-/- canine arteries, compared to controls. Again, some genes are represented
more than once due to existence of multiple mRNA probes per gene.
(XLSX)
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