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Review Review

Every year, millions of human beings suffer from a bone loss 
caused by trauma and illnesses. The standard treatment of care 
consists in filling the bone defect with a material to support new 
bone formation. In most cases, autologous bone transplant is 
used.1,2 Unfortunately, extracting this material requires a second 
surgery and may lead to complications such as infections or long-
lasting pains.3-5 In fact, most studies report a complication rate 
close to 20%. So, the scientific community has made large efforts 
over the past 40 years to find suitable bone graft substitutes.6-8 
All types of materials have been considered and tested such as 
polymers,9,10 ceramic-polymer composites,9 metals,11,12 glasses,8 
or ceramics.2 However, since human bone consists of 65% car-
bonated apatite, most research efforts have been focused on 
calcium phosphates (CaPs), in particular hydroxyapatite [HA; 
Ca

5
(PO

4
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], 
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Calcium phosphate materials have been used increasingly in 
the past 40 years as bone graft substitutes in the dental and 
orthopedic fields. Accordingly, numerous fabrication methods 
have been proposed and used. However, the controlled 
production of spherical calcium phosphate particles remains 
a challenge. Since such particles are essential for the synthesis 
of pastes and cements delivered into the host bone by 
minimally-invasive approaches, the aim of the present 
document is to review their synthesis and applications. For 
that purpose, production methods were classified according 
to the used reagents (solutions, slurries, pastes, powders), 
dispersion media (gas, liquid, solid), dispersion tools (nozzle, 
propeller, sieve, mold), particle diameters of the end product 
(from 10 nm to 10 mm), and calcium phosphate phases. Low-
temperature calcium phosphates such as monetite, brushite or 
octacalcium phosphate, as well as high-temperature calcium 
phosphates, such as hydroxyapatite, β-tricalcium phosphate or 
tetracalcium phosphate, were considered. More than a dozen 
production methods and over hundred scientific publications 
were discussed.
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and their composites called biphasic calcium phosphates 
(BCP)2,13 (Table 1). These materials have an excellent biocom-
patibility, osteoconductivity, and osteotransductivity.14,15 Also, 
recent reports have demonstrated an osteoinductive potential.16-19

CaP based bone graft substitutes are available in different 
forms such as granules, porous blocks, cements, “putties” (= non-
setting slurries or pastes), sponges/foams, or strips/membranes.2,20 
Granules are by far the most frequently used materials due to 
their relatively low cost,20 broad availability, and good biologi-
cal properties. Indeed, the inter-granular space is rapidly invaded 
by newly-formed bone and ceramic resorption can proceed fast 
and throughout the defect.21 So, the use of non-granular materi-
als remains fairly marginal and is often limited to very specific 
indications. For example, porous blocks are particularly adequate 
when the bone defect has a geometrically well-defined shape, 
such as in open-wedge tibia osteotomy22 or after bone extraction 
with a trephine system.23 Porous blocks are also extensively used 
in tissue engineering as scaffolds for cells.24 In the 1990s, the 
so-called CaP cements (CPCs) raised hopes to eventually replace 
metals as raw materials for internal fixators.25 Unfortunately, 
CPCs have several important drawbacks such as their high 
cost,20 brittleness,26 and slow resorption rate.27 Nevertheless, 
they can be implanted by minimally invasive techniques,25 and 
provide mechanical support.27 Also, they have been considered 
for the treatment of vertebral bone fractures, especially in young 
patients.28,29 The three other forms of CaP bone substitutes men-
tioned herein (putties, sponge, membrane) are generally in the 
form of a polymer matrix filled with CaP particles. Among these 
three forms, putties have perhaps the best commercial potential, 
because they often have biological properties as good as those 
of CaP granules,21 but a much better handling. However, put-
ties have such a broad range of compositions, rheological prop-
erties, and biological responses30 that it is difficult to describe 
their properties succinctly. On one hand, putties may consist of 
nanoparticles dispersed in an aqueous solution.31-35 After implan-
tation, the paste is seen as a dense solid by cells. Cell invasion 
is possible but requires material displacement or removal.35 On 
the other hand, putties may consist of granules held together by 
a hydrogel, hence allowing rapid bone ingrowth into the space 
filled with the hydrogel and ceramic resorption throughout the 
defect.21,36 Even though the first CaP putties were proposed in the 
1990s37 and appeared only a decade ago in Western countries,33,34 
numerous CaP putties have been launched in recent years.30 This 
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and controlling the design of CaP particles is of paramount 
importance to control the handling properties of putties such 
as cohesion39 and injectability.40-42 Several approaches can be 
used to optimize both properties. For example, an increase of 
the viscosity of the liquid phase improves the paste cohesion39 
and reduces the phase separation between liquid and solid, 
hence resulting in a better injectability.40 Another strategy is to 
decrease the mean particle size, as it is known that pastes made 
of nanoparticles combine a good injectability40 and a good cohe-
sion.39 Unfortunately, a reduction of the mean particle size is not 
always possible. For instance, α-TCP and β-TCP powders which 
are generally obtained by high-temperature solid-state reactions 
and milling, do not become smaller during prolonged milling 
but amorphous.43,44 Also, most granular CaP bone graft substi-
tutes have a diameter in the range of 0.5 to 5 mm because they 
should allow blood vessel in-growth in the intergranular space, 
hence providing rapid ceramic resorption and bone in-growth. 
A third strategy to improve injectability is to use spherical par-
ticles. Indeed, Ishikawa et al.45,46 showed that the injectability 
of a CPC paste can be enhanced using spherical tetracalcium 
phosphate particles. Unfortunately, manufacturing spherical 
CaP particles is not easy and despite a rapid increase in papers 
devoted to spherical CaP particles (Fig. 1), it is often difficult to 
know which method to select. Therefore, the aim of the present 
document is 2-fold: (1) the main emphasis is set on the review 
of methods used to produce spherical CaP particles, from nano- 
to milliparticles, and from low-temperature to high-temperature 
CaP phases; (2) a minor emphasis is set on the review of studies 

evolution is certainly driven by the two-digit yearly increase of 
the bone graft substitute market size38 but also by a trend toward 
simplified pre-operative and/or operative handling properties.

All CPCs and putties have a common feature: they consist 
of singular solid particles that interact physically and/or chemi-
cally during handling. As such, understanding these interactions 

Figure 1. evolution of the documents listed in “Scopus” (www.scopus.
com) fulfilling the following search criteria: (“spherical” or “sphere” or 
“round”) and (“calcium phosphate” or “apatite” or “calcium hydrogen 
phosphate”) and (“granule” or “bead” or “particle”). Date: March 14, 2013.

Table 1. List of CaP phases

Category Name Symbol Formula Ca/P Mineral

Low-temperature 
CaPs

Monocalcium phosphate monohydrate MCPM Ca(H2PO4)2·H2O 0.50 -

Dicalcium phosphate DCP CaHPO4 1.00 Monetite

Dicalcium phosphate dihydrate DCPD CaHPO4·2H2O 1.00 Brushite

Octocalcium phosphate OCP Ca8H2(PO4)6·5H2O 1.33 -

Precipitated hydroxyapatite PHA Ca10-x(HPO4)x(PO4)6-x(OH)2-x 1.50–1.67 -

x = 1 CDHA Ca9(HPO4)1(PO4)5(OH) 1.50

x = 0 HA Ca10(PO4)6(OH)2 1.67

Amorphous calcium phosphate ACP Ca3(PO4)2·nH2O where n = 3–4.5; 15–20% H2O 1.50 -

High-temperature 
CaPs

Monocalcium phosphate MCP Ca(H2PO4)2* 0.50 -

α-Tricalcium phosphate α-TCP α-Ca3(PO4)2 1.50 -

β-Tricalcium phosphate** β-TCP β-Ca3(PO4)2 1.50 -

Hydroxyapatite HA Ca10(PO4)6(OH)2 1.67 Hydroxyapatite

Oxyapatite*** OXA Ca10(PO4)6O 1.67 -

Tetracalcium phosphate TetCP Ca4(PO4)2O 2.00 Hilgenstockite

The first phases can be obtained at or close to room temperature: they are called “Low-temperature CaPs.” The last 6 phases can only be obtained at 
temperatures above 100°C and hence are called “High-temperature CaPs.” Thermodynamically, hydroxyapatite (HA) is the most stable phase above a 
pH value close to 4.5151 but only readily precipitate above pH 7.0–7.5. interestingly, the Ca/P molar ratio of precipitated HA (PHA) tends to vary accord-
ing to the synthesis conditions, being lower in neutral pH conditions than in basic pH conditions. when the Ca/P molar ratio is equal to 1.50, one refers 
to “calcium-deficient hydroxyapatite” (CDHA). The typical size of PHA crystals is below 100 nm. Since HA is stable at high temperature, HA can also be 
formed by solid state reaction. even though the composition is the same as that of PHA, the crystal size is much bigger. *Could be also classified under 
“low-temperature CaPs” because MCP can be obtained by dehydration of MCPM just above 100°C;152 **Can also be obtained by precipitation in organic 
media;31,56 ***very difficult to synthesize because it is extremely hygroscopic.153
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plasma spraying (= atomization), in which a CaP suspension is 
injected into a high-energy plasma torch and then sprayed at high 
energy through a nozzle to form particles in the range of 10 nm  
to 100 μm.86-88

In all slurry-based methods, the consolidation stage is very 
important because slurries lose their shape under gravity condi-
tions (for more information, see the section devoted to the con-
solidation stage). This is the main difference compared with 
paste-based methods. Indeed the latter methods rely on the 
ability of the pastes to behave like solids. For example, in the 
extrusion-spheronization process, pastes are extruded through 
a die to form rods. These rods are then spun on a horizontal 
plate covered by small truncated pyramids (roughly 1–2 mm in 
height) (Fig. 3). The mechanical interactions between the rods, 
and these truncated pyramids lead to the rupture of the rods into 
small segments, which are then rounded by the rotational move-
ments and the interactions with the truncated pyramids. Since 
all paste-based methods (i.e., spray granulation,89,90 extrusion-
spheronization,89,91 sieve-shaking92) involve fairly viscous pastes, 
the particles obtained by these methods are typically in the mil-
limeter range.

One difficulty in the use of pastes is the adjustment of their 
rheological properties. Generally, the liquid amount has to lie 
just below (spray-granulation,89,90 sieve shaking92) or just above 
(extrusion-spheronization89,91) the plastic limit of the powder (the 
plastic limit is defined as the minimum amount of water that has 
to be added to a powder to get a paste). However, the plastic limit 
may vary and small deviations may provoke drastic changes of 
the paste viscosity, in particular for powders with a fairly large 
mean particle size (> 1–10 μm). Also, the paste has to be viscous 
but not sticky. This is a particularly difficult task for extrusion 
spheronization, and explains why only very few binders can be 
used.93

Among the different reagents, powders are solely used in the 
process called “plasma melting” (also called “combustion flame 
spraying,” and “flame spheronization”) during which particles are 
injected into gas plasma.45,46,94-97 The high temperature melts the 
particles into spherical droplets. Subsequently, these droplets are 
consolidated by freezing. As a result, the particle size distribution 
of the processed particles depends mainly on the initial particle 
size distribution and little can be done to control it during the 
process.

All the methods listed in Table 2 are top-down approaches, 
i.e., a large volume is divided into smaller volumes. In recent 
years, quite a few bottom-up approaches have been proposed, 
the so-called solid free form fabrication (SFFF) methods, in 
which small solid subunits are piled up in a controlled man-
ner to form complex 3D architectures.98 One of these methods, 
called 3D printing, relies on the spatially-controlled reaction of 
a liquid with a solid.99,100 For example, Gbureck et al.100 printed 
CaP porous scaffolds by jetting phosphoric acid onto an α-TCP 
powder bed. Even though SFFF methods are primarily used for 
the synthesis of complex objects, they can also be applied to the 
production of small particles (Fig. 2). However, resolution is rela-
tively limited,101 so the production of CaP spheres smaller than 1 
mm is possible but difficult.

in which spherical CaP particles have been used. The next two 
sections of the present article will address these two aims.

To identify the relevant literature, a search was performed in 
Scopus (www.scopus.com) with the following search criteria: 
(spherical OR sphere OR round) AND (calcium phosphate OR 
apatite OR calcium hydrogen phosphate) AND (granule OR 
bead OR particle). Over 500 documents were found (March 14, 
2013). Additional articles which did not show up in the literature 
search but which are relevant for the present review were also 
considered.

Very often, several names have been given to the same or to 
very similar production methods. For simplicity reasons, similar 
production methods were grouped under one name (e.g., “drip 
casting” instead of “droplet extrusion,” or “plasma melting” 
for “combustion flame spraying” and “flame spheroidization”) 
(Table 2).

Methods to Produce Spherical CaP Particles

More than a dozen different methods have been used to produce 
spherical CaP particles. Considering this large body of informa-
tion, it is difficult to provide a short and clear overview. In an 
attempt to solve this problem, the different production meth-
ods were classified according to various criteria: (1) the types 
of reagents used to produce spherical particles; (2) the media in 
which the spherical aggregates/particles were dispersed or formed; 
(3) the dispersion tools; (4) the consolidation reactions that led to 
solid spherical particles; (5) the typical diameters of the resulting 
particles; and (6) the CaP phases that could be obtained (Table 
2). The next lines are devoted to these various aspects.

Reagents. In principle, there are four types of reagents used 
in the production of spherical CaP particles: solutions, slurries (= 
suspensions), pastes, and powders. Most methods are either based 
on solutions, slurries, and pastes because it is easier to control the 
dispersion of a fluid than that of a solid. In this document, it is 
assumed that a slurry flows under its own weight contrary to a 
paste.

Solution-based methods are the most adequate to pro-
duce nanoparticles (< 100 nm). For example, several authors 
have reported the production of spherical CaP particles with 
a diameter close to 15–20 nm, either by precipitation,47-49 
precipitation-emulsification,50,51 spray-drying,52 and flame-
synthesis (= flame pyrolysis)53-55 (Table 2). The solutions may 
be either aqueous (precipitation, spray-drying), non-aqueous 
(precipitation,56 flame-synthesis57-60) or a mixture thereof 
(precipitation-emulsification50,51,61).

Slurry-based methods have many similarities with solution-
based methods except that the liquid already contains dispersed 
particles. Therefore, the spherical particles produced from slur-
ries generally consist of agglomerates of the primary particles 
dispersed in the slurry, and their diameter is often a few orders 
of magnitude bigger than the diameter of the primary par-
ticles (Table 2). For example, 1 mm particles can be obtained 
by drip-casting (= droplet extrusion),62-71 emulsification,72-82 
hydro-casting,83 and by the lost-wax method84,85 (Fig. 2). The 
main exception to this rule is the method called suspension 
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Table 2. Classification of the methods used to produce spherical CaP particles according to the types of reagents, the dispersion media, the dispersion 
tools, the consolidation methods, the resulting diameters, and the final composition

Reagents Dispersion 
media Dispersion tool Consolidation Method name Diameter Composition

Solution

No dispersion

- Precipitation
Precipitation47-50,56,102,103,110-115, 

118,125,127,129,131,156-161

0.01–1,000 
μm

DCPD50

OCP102,129,131,156,159

ACP47,49,103,112-114,125

b-TCP56

HA47,48,102,110-115,125,127, 

156-158,160,161

Gas (Aerosol)

Nozzle (high 
energy)

Pyrolysing and drying
Flame-synthesis57-60,162-165  
( = spray pyrolysis)

0.01–6 μm MCPM59

DCP59

ACP59,162

b-TCP57

HA57-60,163-165

Nozzle (high 
energy)

Drying Spray-drying52 0.1–5 μm HA52

electrospraying166 1–7 µm b-TCP166

Liquid  
(emulsion)

Propeller Precipitation
Precipitation- 
emulsification50,51,61,148 0.02–20 μm DCPD50

ACP51,61

HA51,61,148

Slurry

Plasma
Nozzle (high 
energy)

Freezing
Suspension Plasma-spraying  
( = atomization)86-88 0.01–100 μm HA86-88

Gas (Aerosol)
Nozzle (high 
energy)

Drying
Spray-drying
75,96,105,107,117,126,132,147,167-171 0.4–240 μm

DCP167

b-TCP105,171

HA75,96,107,117,126,132,147, 

168-171

Gas + liquid

Nozzle (high 
energy)

Freezing Freeze granulation104 0.4–240 μm HA104

Nozzle (low energy)

Gelling62,65-69,172 Drip casting62-71  
= Droplet extrusion

100–400 μm BCP70,71

Freezing63,70,173 HA62,64-68,172

Drying64 b-TCP173

Liquid

Propeller
Precipita-
tion73,75,79-82,106, 174 emulsification72-82,106,108, 174–176 50–6,000 μm DCPD73,106

Gelling72,74,76-78,175 BCP82

HA72,74,75,77-81,108, 174–176

Fluoroapatite175

The column entitled “method name” contains one or several names used to call the production method. The production methods are either based on 
solutions, slurries, pastes, or powders. Here, a difference is made between slurries (low-viscosity, free-flowing) and pastes (high viscosity). Formation of 
spherical particles occurs either in a plasma, a gas, a liquid or a solid using nozzles, propellers, sieves, or templates. A “high energy” dispersion is used 
to describe a highly turbulent dispersion regime, in contrast with a “low energy” dispersion regime occurring in laminar flow conditions. The consolida-
tion steps may involve precipitation, drying, pyrolysis, gelling, or freezing. The diameter may range between 0.01 μm and a few millimeters. Finally, all 
types of CaP phases can be produced, but not all methods can be used to produce one particular CaP phase. This table is only considering published 
methods used to produce CaP particles. Many other methods have been proposed, in particular with pelletizers154,155 and bottom-up approaches98 such 
as 3DP.99,100
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Table 2. Classification of the methods used to produce spherical CaP particles according to the types of reagents, the dispersion media, the dispersion 
tools, the consolidation methods, the resulting diameters, and the final composition

Reagents Dispersion 
media Dispersion tool Consolidation Method name Diameter Composition

Slurry

Liquid + liquid Nozzle (low energy) Gelling Hydro-casting83 > 1,000 μm a-TCP83

Solid
Template or mold Drying Lost wax84,85,121 300–3,000 

μm
BCP121

HA84,85

Paste Gas

Propeller Drying
Spray-granulation89,90  
(high-shear mixing)

100–8,000 
μm

DCPD89

HA90

Sieve Drying extrusion-spheronization89,91 500–2000 μm DCPD89

HA91

Sieve Drying Sieve-shaking92 > 500 μm HA92

Powder Plasma
Nozzle Freezing Plasma melting45,46,94-97 5-125 μm TetCP45,46

(= Combustion flame spraying 
= Flame spherodization)

The column entitled “method name” contains one or several names used to call the production method. The production methods are either based on 
solutions, slurries, pastes, or powders. Here, a difference is made between slurries (low-viscosity, free-flowing) and pastes (high viscosity). Formation of 
spherical particles occurs either in a plasma, a gas, a liquid or a solid using nozzles, propellers, sieves, or templates. A “high energy” dispersion is used 
to describe a highly turbulent dispersion regime, in contrast with a “low energy” dispersion regime occurring in laminar flow conditions. The consolida-
tion steps may involve precipitation, drying, pyrolysis, gelling, or freezing. The diameter may range between 0.01 μm and a few millimeters. Finally, all 
types of CaP phases can be produced, but not all methods can be used to produce one particular CaP phase. This table is only considering published 
methods used to produce CaP particles. Many other methods have been proposed, in particular with pelletizers154,155 and bottom-up approaches98 such 
as 3DP.99,100

Before ending this section, it is worth mentioning that spheri-
cal particles can also be obtained by the so-called double diffu-
sion method in which a calcium-rich solution is separated from 
a phosphate-rich solution by a permeable membrane such as a 
gel.102,103 It can be considered as a type of precipitation reaction.

Dispersion media. With the exception of precipitation reac-
tions, all production methods rely on the dispersion of the reagent 
(solution, slurry, paste, or solid) into another phase: a gas to form 
an aerosol, a liquid to form an emulsion, or a solid acting as a 
mold (lost-wax method84,85). Whereas slurries have been used in 
all three dispersion approaches, solid reagents have only been dis-
persed in a gas (plasma melting45,46,94-97). Due to their relatively 
low concentrations, solutions have not been used in the lost-wax 
method because it would only coat the walls of the template (or 
mold) instead of filling the template.

Interestingly, some methods combine different approaches. 
For example, Liu et al.64 used a drip casting approach to deposit 
with a syringe a slurry into hemispherical molds (= “lost-wax” 
method). Also, some production methods rely on two dispersion 
media: a gas and a liquid (e.g., for freeze-granulation104 and drip 
casting62-71), or two immiscible liquids such as in hydro-casting.83

Dispersion tools. Generally, three dispersion tools are used for 
the production of spherical CaP particles (Fig. 3): (1) nozzles to 
disperse solutions and slurries into a gas, (2) sieves to granulate 
pastes, and (3) propellers to produce emulsions and to granu-
late wet powders. Depending on the dispersion energy, strong 
changes of the final particle diameter can be achieved. This is 

particularly true for nozzle-based dispersion methods. In laminar 
conditions (e.g., in drip casting62-71), the mean diameter of the 
produced droplets is equal to 2–5 times the nozzle diameter69 
(Fig. 3). Also, there is a good control of the particle diameter 
and the particle size distribution is narrow. For example, Ribeiro 
et al.67,68 reported the synthesis of HA particles with a diameter 
close to 500 μm and a size dispersion lower than 10% (the size 
dispersion is defined by the ratio between standard deviation and 
mean of the particle size distribution). Even better results were 
obtained by Teraoka and Kato by hydro-casting, a method simi-
lar to drop-casting but with two small distinctions: the slurry is 
injected into a liquid instead of a gas and the injected amount is 
controlled with a micropipette.83 Specifically, these authors pro-
duced 1.3 mm α-TCP particles with a dispersity of 1.4% and a 
sphericity of 1.01 (ratio between long and short axis). On the 
negative side, it is difficult to obtain diameters below 100 μm due 
to nozzle plugging. Interestingly, the same problem restricts the 
performance of sieve-based production methods such as extru-
sion-spheronization89,91 or sieve-shaking92 (Table 2).

At high dispersion energy (turbulent flow), the droplet diam-
eters can be much smaller than the nozzle diameters. So, it is 
possible to obtain much smaller particles than by low-energy 
approaches. However, the particle size distribution is broad. For 
example, Andrianjatovo et al.105 spray-dried β-TCP particles with 
a diameter in the range of 0.4 to 237 μm.

Many propeller types and sizes can be used for the emul-
sification method but propellers play only a minor role in the 

(continued)
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non-agglomerated, well defined spheres. Therefore, consolidation 
methods such as drying, freezing, gelling, and crystallization are 
of paramount importance (Fig. 4).

Drying is by far the most popular approach due to its simplic-
ity. However, there is a size reduction associated with it which may 
cause density gradients and lead to heterogeneities (e.g., hollow 
particles during spray-drying107). This problem does not occur 
by freezing the particles in liquid nitrogen, but frozen particles 
have to be freeze-dried, which is a rather lengthy and expensive 
process. Also, the impact of the droplets into liquid nitrogen may 
impair the particle sphericity. Finally, the absence of shrinkage 
during freeze-drying is detrimental for the mechanical properties 
of the granules.

When a liquid is dispersed into another liquid without tem-
perature change, it is not possible to rely on drying or freezing 
to consolidate the particles. In that case, two approaches can be 
used: (1) gelling and (2) crystallization. For example, Tuyen et 

achievement of a given droplet size. Other factors such as the 
stirring rate, the emulsifier type and concentration, or the viscos-
ity of the two immiscible liquids are much more important.73,106

In the “lost-wax” method, spherical particles can be pro-
duced with a mold or a template (the mold or template has to 
be removed after CaP particle synthesis). In the latter case, the 
particles are either hollow (after template removal) or biphasic. 
To the best of our knowledge, there is currently no commercial 
application requiring such features.

Consolidation Methods

All production methods of spherical CaP particles involve fluids. 
This is necessary to provide the spherical shape. Immediately 
after their formation, the particles are still soft and their shape 
and size are still subject to change. The transition from a soft 
to a hard state (= consolidation) is critical in order to obtain 

Figure 2. Spherical CaP particles obtained using some of the methods mentioned in Table 2 (A) Precipitation, dicalcium phosphate (scale bar: 2 μm), 
(B) spray drying; monocalcium phosphate monohydrate (50 μm), (C) freeze granulation; calcium sulfate dihydrate (100 μm), (D) emulsification; dical-
cium phosphate dehydrate (500 μm), (E) drip casting; β-tricalcium phosphate (1,000 μm), (F) extrusion-spheronization; β-tricalcium phosphate (500 
μm), (G) suspension plasma spraying; mixture of high-temperature calcium phosphates (300 nm), (H) 3D printing; α-tricalcium phosphate-dicalcium 
phosphate mixtures (3,000 μm); (I) precipitation in ethylene glycol; β-tricalcium phosphate (500 nm).
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be used. Specifically, several methods are particularly adapted to 
obtain narrow size distribution: (1) precipitation methods charac-
terized by burst nucleation and diffusion-controlled growth,32 (2) 
drip casting,62-71 (3) hydro-casting,83 and (4) 3D printing (Fig. 
2). For example, Mateus et al.65 who used drip casting to produce 
HA particles reported the synthesis of HA particles with a diam-
eter in the range of 0.5 to 0.9 mm and size dispersion lower than 
10%. Nevertheless, the narrowest size distributions are obtained 
by machining approaches, such as hydro-casting and 3D print-
ing, because with these techniques, the size and sometimes also 
the shape of each particle is controlled individually. However, 
these methods are currently limited to fairly large particles, typi-
cally in the millimeter range. For example, Teraoka and Kato83 

al.71 drop-casted slurries made of BCP-acetone-polycaprolactone 
(PCL) in deionized water. As PCL is insoluble in water, PCL pre-
cipitation occurred. Similarly, Paul and Sharma72 emulsified slur-
ries containing hydroxyapatite particles, chitosan, and acetic acid 
in paraffin oil. After five minutes of stirring, glutaraldehyde was 
added to crosslink chitosan and hence to harden the spheres. A 
slightly different approach was proposed by Bohner73 using the 
so-called CaP emulsions: the slurry was a hydraulic cement paste 
that hardened over time. In such a case, polymer additives are not 
required, but timing becomes critical.

The present section was devoted to consolidation methods 
applied during the synthesis process. Consolidation methods 
applied after the synthesis process can also be applied (and are 
applied), in particular sintering. This will be discussed in a later 
section of the manuscript.

Particle diameters. Spherical particles can be obtained over a 
very broad size range, spanning from 10 nm to a few millimeters. 
Generally, the smallest particles are obtained by solution-based 
methods (e.g., precipitation, flame synthesis) whereas the biggest 
particles are produced by paste-based methods (e.g., extrusion-
spheronization, spray granulation). Even though all particle sizes 
can be obtained using several methods, particles in the range of 
100 to 300 μm are difficult to produce with high yield and good 
shape control. Indeed, a diameter of 100 μm is at the upper range 
of what spray-drying, freeze granulation or plasma melting can 
successfully achieve whereas 300 μm is at the bottom range of 
what is feasible with drip casting, extrusion spheronization, 3D 
printing or the lost wax method (Table 2).

Not all methods can be used to produce spherical CaP par-
ticles with a narrow size distribution. Generally, high-energy dis-
persion tools lead to broad size distributions. For example, Jiao et 
al.107 reported a diameter in the range of 0.1 to 60 μm for their 
spray-dried hydroxyapatite particles. Similarly, Andrianjatovo et 
al.105 reported diameters between 0.4 and 237 μm for β-TCP par-
ticles. So, low-energy dispersion methods or SFFF methods must 

Figure 3. Schematic description of the dispersion tools: nozzles, propellers, sieves, templates and molds. The propeller scheme shows the disper-
sion of a slurry into a liquid (emulsification). in the sieve-shaking method, the thick paste is pushed through a sieve with a pestle. in the extrusion-
spheronization method, long rods are produced by paste extrusion through a sieve and then rounded in a spheronizer (see bottom of the figure). in 
the “lost-wax” method, spherical particles can be produced with a template or a mold. in the latter case, the particles are either hollow (after template 
removal) or biphasic.

Figure 4. Scheme of the four consolidation methods. The particles are 
in gray, the aqueous solution is in blue, polymer chains are in red, and 
the bonds between polymer chains are in white. in the crystallization 
scheme, only a cement (= dissolution-precipitation) reaction is shown. 
During drying, there is a size reduction. During crystallization, there is a 
change of the microstructure.
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microcrystalline cellulose89,91), and emulsifiers for emulsions (e.g., 
polyethoxylated castor oil73). In some cases, the use of these addi-
tives is essential (e.g., microcrystalline cellulose for extrusion-
spheronization89,91), but in most cases, additives are only used 
to improve the properties of the final product. Since additives 
should be removed prior to the clinical use of the CaP particles, 
the advantages related to their use should be balanced with the 
troubles generated by their removal. Normally, organic remnants 
are pyrolyzed.72,84,91 The latter strategy is obviously not applicable 
for hydrated CaP phases such as DCPD and OCP, because these 
phases decompose well below 500°C. Another possibility is to 
dissolve them in an appropriate solvent.50,79 However, it is often 
difficult to get rid of all additives, in particular when dealing with 
HA. Indeed, precipitated HA crystals are generally very small and 
hence present very large specific surface areas (typically above 50 
m2/g110-115). Moreover, HA has excellent adsorption properties, 
which explains its use in chromatography.116-118

So far, it has been assumed that spherical particles have a 
homogeneous composition. However, CaP particles obtained at 
high-temperature are prone to heterogeneities.58 For example, 
Carayon et al.119 postulated that plasma-sprayed particles are 
made of three layers: (1) an apatite core, (2) an intermediate layer 
of calcium oxide, TetCP and tricalcium phosphate, and (3) an 
outer layer consisting of amorphous calcium phosphate. CaP par-
ticles obtained at low temperatures can also present local hetero-
geneities: Jäger et al.120 showed that precipitated HA nanocrystals 
consisted of a crystalline core with a calcium to phosphate ratio 
of 1.67 and an amorphous layer with a calcium to phosphate ratio 
of 1.00.

Other aspects. Beside the aspects described in Table 2, many 
other aspects might be relevant for a particular clinical indication, 
such as the mechanical stability or the specific surface area of the 
spherical particles. A few of these aspects are discussed in the next 
few lines.

Since this review focused on spherical CaP particles for 
clinical use, it is relevant to look at their mechanical stability. 
Unfortunately, the determination of the mechanical properties of 
spherical particles, particularly of such small diameters, is very 
difficult and hence hardly performed.90,121 The few attempts of 
mechanical characterization found in the literature hence still 
leave room for speculation. It is likely that high-temperature syn-
thesis methods, such as flame-synthesis and plasma melting, pro-
vide the mechanically most stable CaP spherical particles because 
sintering and/or crystallization occurs. Contrarily, consolida-
tion by freeze-drying is expected to produce the most unstable 
particles.

If the mechanical stability of the spherical particles is too 
low, three main approaches can be used to reinforce them. First, 
a binder can be added into the raw materials. Generally, a few 
weight percents of a polymer are able to give enough stability for 
handling purposes.84 Second, the particles can be sintered. For 
example, Paul and Sharma72 sintered chitosan-bonded HA par-
ticles at 1100°C for 1 h to obtain organic-free phase pure HA 
particles. Depending on the conditions of sintering, linear shrink-
age can easily reach 20–25% and the particle composition may 
change. The third consolidation method involves the hydraulic 

used hydro-casting to produce 1.3 mm α-TCP particles with a 
dispersity of 1.4%, and a sphericity of 1.01 (ratio between long 
and short axis).

Even though certain production methods provide particle 
populations with a narrow size distribution, such populations are 
generally classified, for example by sieving.90 This is not only a 
way to remove too small or too large particles, but also to control 
their sizes.

In this section, the diameter of the particles formed by various 
production processes was discussed. However, there is always a 
risk of agglomeration that could potentially ruin the efforts to 
produce a narrow particle size distribution. In general, small par-
ticles (< 1–10 μm) are much more prone to agglomeration due to 
van der Waals forces than larger particles. Also, drying processes, 
particularly in the presence of water, are very critical because they 
can promote compaction and agglomeration of previously loose 
particles.

Composition. Not all production methods can be used to pro-
duce one particular CaP phase (Table 2). As a result, the choice of 
a particular production method has to be related to the phase that 
has to be produced. Generally, high-temperature processes, e.g., 
plasma melting and flame-synthesis, cannot be used to produce 
hydrated phases such as DCPD and OCP. Similarly, low-tem-
perature processes, such as precipitation, are not adequate for the 
production of α-TCP and TetCP which are only thermodynami-
cally stable above 1100–1200°C. However, there are exceptions. 
For example, Mohn et al.59 showed recently that MCPM, DCP 
and DCPD were present in flame-synthesized CaP nanoparticles. 
The authors assumed that hydration occurred during cooling. 
Also Tao et al.31,56 synthesized nanosized β-TCP octahedral and 
hexagonal crystals by precipitation in a non-aqueous medium. 
β-TCP is generally considered to be a high-temperature phase that 
can only be obtained by thermal treatments above 700–800°C. 
Another approach to obtain low-temperature CaP phases from 
high-temperature CaP phases is to apply post-treatments. Indeed, 
Gonda et al.77 demonstrated that α-TCP beads placed into an 
autoclave at 160°C converted to CDHA. Similarly, Nomura et 
al.108 converted calcium sulfate dihydrate particles into HA parti-
cles. Finally, DCP particles can be obtained by incubating α-TCP 
particles in phosphoric acid.109

Obviously, high-temperature phases can be obtained from 
low-temperature phases by a simple thermal treatment. In fact, 
this strategy is widely used because the application of a thermal 
treatment on e.g., spray-dried or drip-casted particles cannot only 
remove organic additives used during the manufacturing process, 
but also consolidate the particles by sintering. Nevertheless, post-
treatments may lead to aggregation or even deterioration of the 
particles. Thus, the use of post-treatments has to be considered 
carefully.

As hinted in the previous paragraph, many production meth-
ods listed in Table 2 require the use of additives. The additives 
can have different functions, such as growth inhibitors for pre-
cipitations (e.g., proteins47), gelling agents for drip casting (e.g., 
alginates62,65-69), dispersants for the lost wax method, emulsions, 
and freeze casting (e.g., ammonium polyacrylates73,84,104), bind-
ers for spray-granulation and extrusion spheronization (e.g., 
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particles. They came to the conclusion that values close to 1 to 2 
mm are ideal for orthopedic and dental applications.

Use of Spherical CaP Particles

Beside orthopedics and dentistry (Table 3), spherical CaP par-
ticles are used in very diverse fields of application such as food 
industry, pharmaceutics, or agriculture (Table 4). For the latter 
applications, very large volumes are produced and sold. So, in 
terms of the production volume, the use of CaPs in the medical 
industry can be considered as a niche application. However, the 
sale prices are much higher than in other applications and the 
market is rapidly growing.20 Also, the types of CaPs used in ortho-
pedics and dentistry are much more diverse than those used in 
other fields. Indeed, not only low-temperature but also high tem-
perature phases such as β-TCP, α-TCP or TetCP are used, either 
as raw materials for hydraulic cements or as bone substitutes.134

So far, the number of commercial products based on spheri-
cal CaP particles and used in orthopedics and dentistry is still 
limited (Table 5). However, this number is increasing. Moreover, 
the rapid increase in scientific publications in this field of research 
(Fig. 1) suggests that new commercial products will be launched 
soon. From the list of medical products given in Table 5, only 
three products are applied in an injectable form. For example, 
“Radiance,” a product used in aesthetic surgery, contains 30% 
volume HA in a CMC gel.135,136 Similarly, the orthopedic cement 
called “chronOS Inject” contains roughly 20% volume β-TCP 
beads in its paste. Finally, no information about the ceramic vol-
ume fraction could be found for another injectable bone substi-
tute called “MBCP Gel.”

The type of application in which CaPs are used depends on the 
CaPs properties, mainly solubility, acidity, and nanostructure.134 
MCP and MCPM are the most soluble and most acidic CaPs. 
So, MCP/MCPM are used for example as fertilizers in agricul-
ture,137,138 as food additives (e.g., in combination with sodium 
bicarbonate to make a leavening agent139), and as raw material 
for hydraulic cements in orthopedics.140,141 DCP and DCPD are 
neutral and have an intermediate solubility (the human serum 

or hydrothermal conversion of a CaP phase into another phase. 
For example, Tas92 converted α-TCP spherical agglomerates 
into apatite particles by incubation in distilled water for 48 h at 
room temperature. Similarly Gonda et al.77 autoclaved α-TCP 
spherical particles for 20 h at 160°C to convert α-TCP grains 
into interlocked CDHA rods. Very often, several approaches are 
combined: Takahashai et al.122 produced α-TCP spherical beads 
with an emulsion route. They used gelatin as a binder, removed 
it by sintering at 1200°C, and then transformed hydrothermally 
the α-TCP phase into HA. Here, it is also worth mentioning the 
work of Day et al.123,124 who first produced spherical glass micro-
spheres and then converted them into hollow apatite spheres by 
incubation in a phosphate solution.

A large number of studies have been devoted to the synthe-
sis of spherical particles for drug delivery.67,70,74,80,104,125-127 As a 
result, the internal structure of the particles, such as the poros-
ity, the pore size distribution, or the size distribution of the pore 
interconnections, is of particular relevance. Various authors have 
attempted to control it: Descamps et al.84 showed that macro-
porous CaP spheres could be produced with a controlled fenes-
tration size between the macropores (Fig. 5). Unfortunately, this 
approach can only work with fairly large spheres (several millime-
ters in diameter) and CaP phases stable at high temperature (e.g., 
β-TCP, HA). Similar granule sizes and macropore dimensions 
were obtained by Lee and Park76 using double emulsions and by 
Yang et al.78 using drip casting. At a much lower scale, ≈100 nm 
hollow apatite particles can be obtained by precipitation either 
without112-114,125 or with templates.118,128 Finally, hollow particles 
can also be produced in an intermediate size range (100–1000 
μm) using emulsions,81,82 and precipitations.129-131

Drug loading is often achieved during67,80,125,132 or after particle 
production70,74,104,127 depending on the drug and the production 
method. When drug loading is performed during particle pro-
duction, it is more difficult to control the production and purity 
of the particles because the system contains more components. 
When drug loading is performed after particle production, drug 
absorption into the particle core might be difficult, in particular if 
the particles are designed for prolonged drug release (small pores).

Drug release is generally controlled by dissolution, diffusion, 
or surface interactions. In the latter two cases, HA is the most 
interesting CaP phase because it has often very high specific sur-
face areas, typically above 50 m2/g.110-115 However, this implies 
that the spherical particles must be produced at or close to room 
temperature, e.g., by precipitation.110-115 Indeed, high temperature 
processes, e.g., plasma melting or sintering, would strongly reduce 
the specific surface area of the HA.

As described in the previous paragraphs, the pore size distribu-
tion of spherical particles is of prime importance for drug deliv-
ery. For orthopedic and dental applications, the focus is set on 
the space between the particles. Indeed, blood vessels and cells 
should be able to invade the inter-particular network to promote 
ceramic resorption and bone formation throughout the particle-
filled defect. So, particles should be big enough to promote an 
easy blood vessel/bone ingrowth but not too large to keep an 
acceptable resorption time.133 Zhang et al.90 tried to estimate the 
size of the intergranular space based on the size of the spherical 

Figure 5. hierarchical structures obtained using different methods: (A) 
emulsification (Scale bar: 300 μm),81 (B) drip-casting (50 μm);70 (C) lost-
wax method (3 mm);84 (D) precipitation (50 μm);129 and (E) emulsifica-
tion (sphere diameter ≈1.5 mm).78 with the exception of (D) (OCP), all 
particles consist of an apatite (images reproduced with the permission 
of the authors).
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a product is often related to its ease of handling. In orthopedics 
and dentistry, spherical particles are generally mixed with a liq-
uid and then injected. It is therefore crucial to understand the 
rheological properties of such mixtures, and in particular prevent 
phase separation. The injectability of CaP-based pastes has been 
addressed in many articles.40 However, most studies have been 
devoted to CPCs which are characterized by a mean particle size 
in the low micrometer range (typically below 10 μm), whereas 
most CaP particles used for bone graft substitution are much big-
ger, typically above 100 μm (“milliparticles”). Since many put-
ties and some CPCs consists of CaP milliparticles embedded in 
a paste, it is essential to better understand the role of millipar-
ticles on the injectability of such pastes. Questions that can be 
raised are: (1) Beyond what volume fraction of milliparticles is 
injectability impaired? (2) What is the importance of millipar-
ticle size on injectability? (3) Are the lessons drawn from CPCs 
valid for pastes made of milliparticles? Tadier et al.42 tried to 
address some of these questions in a recent study using a model 
paste consisting of β-TCP microparticles (mean size ≈10 μm), 
water and glass milliparticles (mean size in the range of 100 to 
400 μm). The results confirmed most previous findings made 

is in equilibrium with DCP142). Accordingly, DCP and DCPD 
are used as excipients for tablets,58,93 as food additives (for 
example as phosphorus or calcium source143), and as bone sub-
stitutes.44,109,144,145 CaP materials with slightly larger Ca/P molar 
ratios (1.33 to 1.67) have been the most extensively used CaPs due 
to two features: (1) first, their composition and properties are very 
close to those of bone mineral; (2) second, these materials easily 
precipitate in the form of nanocrystals. As a result, their specific 
surface area is very large (typically above 50 m2/g), which is of 
great interest for chromatography,52,110,113,114,116,117,146,147 drug deliv-
ery,79,104,126,127 or heavy ion capture.110,148 Also, nanocrystals have 
strong van der Waals interactions, hence leading to the formation 
of very cohesive and viscous aqueous pastes.39 This can be used to 
thicken soups and yoghurts. TetCP is the most basic and also one 
of the most soluble CaP (behind MCP and MCPM). Therefore, 
it is a very good raw material for hydraulic CaP cements.149 To the 
best of our knowledge, it is not used in other applications than 
orthopedics and dentistry.

So far, the manuscript has been focused on the synthesis and 
use of spherical CaP particles. The next paragraphs will address 
the delivery of the particles. Indeed, the commercial success of 

Table 3. Applications of spherical calcium phosphate particles in orthopedic and dental surgery

Application Size Phase

Raw material for calcium phosphate cements45,46,53,54,59,105,177-181 0.01–500 µm

DCP59

DCPD59

ACP53,54,59

α-TCP53,54,59

β-TCP105,177-181

TetCP45,46

Raw material for 3D printing169 5–50 µm HA

Raw material for calcium phosphate putties182 > 50 µm β-TCP

Raw material for composite materials183 < 0.2 µm HA

Raw material for isostatic pressing163 0.1–5.8 µm HA

Powder feedstock for plasma spray52,61,94-96 0.5–200 µm HA

Bone graft substitute57,62-64,67,68,71,77,83-85,90-92,97,106,118,121,157,168,184,185 > 50 µm

DCPD106

ACP97,118

BCP57,71,121,185

HA62-64,67,68,77,83-85,90-92,97,157,168,184

whilockite (Mg substituted β-TCP)184

Drug carrier for bone applications (e.g., infections, non-unions, osteoporosis) > 50 µm

Calcium pyrophosphate/ACP113,114

DCPD106

ACP80,118,125

OCP129,130

β-TCP166

BCP70,71,82

HA49,65,67,68,78,79,85,92,104,107,122,124,132,170,176,186-188

Fluoroapatite72,175

Model particles to induce metalloproteinase and mitogenesis (osteoarthritis)189 17–106 µm HA

Cell transfection (gene delivery)189 17–106 µm HA

Cell carrier (Tissue engineering)51,66,81,82,97,107,172,173 0.1–850 µm ACP,97 β-TCP,173 HA51,66,81,82,97,107,172
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solid), the dispersion tools (nozzles, propellers, sieves, molds), and 
the consolidation methods (drying, precipitation, gelling, freez-
ing). As a result of this diversity, a broad range of properties can 
be obtained, for example in terms of particle diameters (10 nm to 
10 millimeters), particle size distributions (very narrow to broad), 
porosities (low to high), or compositions (all known CaP phases). 
This review also revealed that there has been a very rapid increase 
in the number of research articles since 2003. This has resulted in 
new approaches to better control the production of spherical CaP 
particles, for example with hierarchical structures or with very 
narrow particle size distributions.
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with microparticles. For example, injectability dropped beyond 
35–40% milliparticle volume fraction.40 Also, the latter volume 
fraction threshold decreased with an increase in particle size. 
Furthermore, the β-TCP and water phases separated at a con-
stant rate during injection.150 Moreover, phase separation was 
reduced with the replacement of water with a viscous aqueous 
gel.40 However, a surprising result was observed: the glass mil-
liparticles were extruded faster than the β-TCP microparticles. 
In other words, not all lessons learned from CPC pastes can be 
translated to pastes containing milliparticles.

Conclusion

The aim of this article was to review the methods used to produce 
spherical CaP particles and to look at the use of such particles 
in the orthopedic and dental fields. Over a dozen of produc-
tion methods were identified and described. The various meth-
ods were classified according to the starting materials (solutions, 
slurries, pastes, and solids), the dispersion phases (gas, solution, 

Table 5. Non exhaustive list of commercial products containing spherical calcium phosphate particles

Product name and company Description Application

Calcibon® Granules (Biomet) Spherical CDHA particles (company website and92) Orthopedics

Calc-i-oss™ (Degradable Solutions) Spherical β-TCP particles (company website) Dentistry

Cerasorb® (Curasan) Spherical β-TCP particles193 Dentistry

chronOS inject (DePuySpine) Brushite calcium phosphate cement loaded with spherical β-TCP particles177,178 Orthopedics

Hydros (Biomatlante) Rounded BCP particles in water194 Orthopedics

MBCP Gel (Biomatlante) Rounded BCP particles in an HPMC gel Orthopedics

Radiance (BioForm) HA particles dispersed in a CMC gel135,136 Aesthetic Surgery

Table 4. Some selected applications of spherical calcium phosphate particles in other fields than orthopedic and dental applications

Application Typical size Phase

Aesthetic surgery (e.g., skin filling,135,136,190 eye substitute) 25–40 µm
BCP190

HA135,136

Nerve Regeneration191 30–45 µm β-TCP

Food (suspension stabilizer, mineral enrichment, baking agent)

MCPM

DCP

DCPD

HA

Pharmaceutics (e.g., pellets/tablets,58,93 Ca or Phosphate source) 1–4 µm58
DCP93

HA58

Chromatography52,110,113,114,116,117,146,147 0.2–16 µm

β-Ca2P2O7
114

ACP114,117

HA52,110,113,114,116,117,146,147

immuno-adsorbent192 200–400 µm HA

ion conductor156 14 µm
OCP

HA

environment–heavy ion capture, ion exchanger110,148 10 µm HA110,148

Catalyst carrier128 1 µm HA

Agriculture/fertilizer137,138 MCP137,138
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