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Abstract: Although combination therapy using trimethoprim–sulfamethoxazole (TMP–SMX) plus
echinocandins has been reported to reduce the mortality of patients with pneumocystis pneumonia
(PCP), it remains unclear whether it is more effective than TMP–SMX monotherapy, the current
first-line treatment for this disease. Hence, we performed a systematic review and meta-analysis to
compare the efficacies of these treatment options for PCP. The Scopus, EMBASE, PubMed, CINAHL,
and Ichushi databases were searched for studies (up to January 2022) reporting the mortality and
positive response rates (fewer clinical symptoms, improved partial pressure of arterial oxygen, and
resolution of pneumonitis on chest imaging) of PCP patients receiving monotherapy or combination
therapy. Four studies met the inclusion criteria. All four presented mortality data and one had
positive response rates. Compared with the monotherapy, the combination therapy resulted in
significantly lower mortality and higher positive response rates (mortality: odds ratio (OR) 2.20, 95%
confidence interval (CI) 1.46–3.31; positive response rate: OR 2.13, 95%CI 1.41–3.23), suggesting it
to be an effective and promising first-line therapy for PCP. However, further safety evaluations are
needed to establish this as a fact.

Keywords: meta-analysis; pneumocystis pneumonia; trimethoprim–sulfamethoxazole; echinocandin;
combination therapy

1. Introduction

Pneumocystis pneumonia (PCP), a lung disease caused by infection by the opportunis-
tic fungus Pneumocystis jirovecii, occurs mainly in immunocompromised patients, including
individuals infected with the human immunodeficiency virus (HIV) and those receiving
immune suppression treatments [1,2]. The mortality rates associated with PCP remain
as high as 20–48% among HIV-positive patients and 20–60% among non-HIV-infected
patients [3,4]. Therefore, the early selection of appropriate antibiotic agents is particularly
important for combating this disease.

The current use of trimethoprim–sulfamethoxazole (TMP–SMX) as the first-line drugs
for the treatment of PCP has been unchanged for many years [5]. However, serious adverse
events associated with TMP–SMX monotherapy and resistance to the drugs have been
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reported. Approximately 25% of PCP patients are unable to complete the full course of TMP–
SMX monotherapy owing to treatment failure or various side effects, such as bone marrow
suppression, renal damage, and gastrointestinal upset [6]. Moreover, the widespread and
long-term prophylaxis of this disease with TMP–SMX has led to the development of sulfa
drug-resistant P. jirovecii [7].

Alternative agents, including echinocandins, have been investigated for their therapeu-
tic potential in treating PCP. Previous studies conducted with a limited number of patients
have reported divergent findings on echinocandin monotherapy for PCP [8], whereas
combination regimens of TMP–SMX plus echinocandins have improved the prognosis
and reduced the mortality associated with this disease [9,10]. However, it remains unclear
whether TMP–SMX + echinocandin combination therapy is more effective than TMP–SMX
monotherapy for the treatment of PCP.

To date, there is only one case-control study with available clinical data on the effects of
TMP–SMX in combination with echinocandins on PCP [11]. Recently, several retrospective
cohort studies comparing TMP–SMX monotherapy with the combination therapy for PCP
have been published [12–14]. Although each study showed a tendency of the combination
therapy to improve the PCP mortality rate, they did not provide obvious evidence for
its use as the preferred treatment strategy. Hence, we performed a systematic review
and meta-analysis to evaluate the feasibility of using TMP–SMX in combination with an
echinocandin as a first-line treatment option for PCP.

2. Results
2.1. Systematic Review

Five major scholarly databases were searched for articles (up to January 2022) related
to TMP–SMX monotherapy and TMP–SMX + echinocandin combination therapy for PCP.
Of the 848 potentially relevant articles that were retrieved, the titles and abstracts of
659 papers were screened after the removal of duplicates. Subsequently, the full-text review
of 22 articles was performed. Of these, 18 articles were further excluded on the basis of
the exclusion criteria listed in Figure 1, leaving four studies that met eligibility for the
meta-analysis [11–14].

The characteristics of these four studies, all of which were conducted at single centers,
are summarized in Table 1. One was a case-control study conducted in Taiwan [11], and
the other three were cohort studies undertaken in China [12–14]. The participants reported
by Lu et al. [11] were heart transplant recipients, whereas those in the cohort studied by
Jin et al. [12] were non-HIV-infected patients. By contrast, the participants reported by
Wang et al. [13] and Tian et al. [14] were all HIV-infected patients. All the patients in all four
studies were adults [11–14]. In total, 301 received TMP–SMX monotherapy and 235 received
TMP–SMX + echinocandin combination therapy. The following TMP–SMX dosage regimens
were used in the respective studies: TMP 5.5–20 mg/kg/day [11]; dosage recommended
by international guidelines [12]; TMP 80 mg/day and SMX 400 mg/day [13]; and TMP
15–20 mg/kg/day and SMX 75–100 mg/kg/day [14]. The echinocandins administered
were caspofungin (50 mg/day, 70 mg on day 1) or anidulafungin (100 mg/day, 200 mg
on day 1) in the study by Lu et al. [11] and caspofungin (50 mg/day, 70 mg on day 1) in
the other three studies [12–14]. The risk-of-bias assessment scores based on the Newcastle–
Ottawa Quality Assessment Scale are presented in Table 1. The median score was 7, and
the range was 5–8.

2.2. Meta-Analysis
2.2.1. Mortality

All four studies reported mortality data [11–14]. The rates were 35.2% (106/301)
for the monotherapy groups and 20.9% (49/235) for the combination therapy groups
of all studies combined. As indicated by the meta-analysis, the combination therapy
appeared to have resulted in significantly improved mortality outcomes relative to the
effects of the monotherapy (odds ratio (OR) = 2.20, 95% confidence interval (CI) = 1.46–
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3.31, I2 = 0%; Figure 2A). When stratified by HIV infection status, this positive effect of
the combination therapy on mortality outcomes was true for the HIV-infected patients
(OR = 2.27, 95% CI = 1.43–3.61, I2 = 0%; Figure 2B) [13,14] but not for the non-HIV-infected
participants (OR = 1.98, 95% CI = 0.84−4.65, I2 = 0%; Figure 2C) [11,12]. However, the
combination therapy significantly improved the mortality outcomes for non-HIV-infected
patients with severe PCP (OR = 5.07, 95% CI = 1.40–18.37) [12].
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2.2.2. Positive Response Rates

Data regarding positive response rates were reported in two studies. The overall rates
were 46.5% (105/226) for the monotherapy group and 61.2% (109/178) for the combination
therapy group [12,14]. Compared with the monotherapy, the combination therapy resulted
in significantly better positive response rates (OR = 2.13, 95% CI = 1.41–3.23, I2 = 0%;
Figure 3).
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Table 1. Characteristics of the studies included in the meta-analysis.

Study Study
Design Setting Period

Country
of

Study

Drug Regimen
TMP-SMX Echinocandin

No. of Eligible
Patients

(Echinocandin
− vs.

Echinocandin +)

Age (Year)
Median

(Minimum–
Maximum)

Population Clinical
Outcome

Risk-of-Bias
Score

Lu. Y.,
2017 [11]

Retrospective
case

control study
Single-center

July 1988
to

December
2015

Taiwan TMP
5.5–20 mg/kg/day

Caspofungin 50 mg/day,
70 mg on day 1;
anidulafungin
100 mg/day,

200 mg on day 1

5 vs. 5 Overall 56
(34–76)

Heart
transplant
recipients

Mortality 5

Jin, F.,
2019 [12]

Retrospective
cohort study Single-center

January
2012

to
June 2018

China

Dosage
recommended by

international
guidelines

Caspofungin 50 mg/day,
70 mg on day 1 91 vs. 35 Overall 57

Patients
without HIV

infection

Mortality;
Positive
response

rate

7

Wang, M.,
2019 [13]

Retrospective
cohort study Single-center

January
2013

to
June 2018

China TMP 80 mg/day;
SMX 400 mg/day Caspofungin 50 mg/day 70 vs. 52

Mean (SD)
43 (15) vs. 41

(13)

Patients
with HIV
infection

Mortality 7

Tian, Q.,
2021 [14]

Retrospective
cohort study Single-center

January
2017

to
December

2019

China

TMP
15–20 mg/kg/day;

SMX
75–100 mg/kg/day

Caspofungin 50 mg/day,
70 mg on day 1 135 vs. 143 Overall 34

(19–65)

Patients
with HIV
infection

Mortality;
Positive
response

rate

8

echinocandin −, TMP–SMX monotherapy; echinocandin +, TMP–SMX + echinocandin combination therapy; HIV, human immunodeficiency virus; SD, standard deviation; SMX
sulfamethoxazole; TMP, trimethoprim.
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Figure 2. Forest plot of odds ratios for the comparisons of mortality outcomes between patients
with pneumocystis pneumonia who received TMP–SMX + echinocandin combination therapy and
those who received TMP–SMX monotherapy. (A) Overall results for all patients with pneumocystis
pneumonia; (B) HIV-infected patients with pneumocystis pneumonia; (C) Non-HIV-infected patients
with pneumocystis pneumonia. echinocandin −, TMP–SMX monotherapy; echinocandin +, TMP–
SMX + echinocandin combination therapy; M–H, Mantel–Haenszel; CI, confidence interval; HIV,
human immunodeficiency virus; OR, odds ratio; SMX, sulfamethoxazole; TMP, trimethoprim.
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Figure 3. Forest plot of odds ratios for the comparisons of positive response rates between patients
with pneumocystis pneumonia who received TMP–SMX + echinocandin combination therapy and
those who received TMP–SMX monotherapy. echinocandin −, TMP–SMX monotherapy; echinocan-
din +, TMP–SMX + echinocandin combination therapy; M–H, Mantel–Haenszel; CI, confidence
interval; OR, odds ratio; SMX, sulfamethoxazole; TMP, trimethoprim.

3. Discussion

The present study demonstrated that TMP–SMX in combination with an echinocandin
was associated with improved mortality outcomes for patients with PCP compared with
the results from TMP–SMX monotherapy. In the group of HIV-infected patients with PCP,
the combination therapy resulted in significantly better mortality outcomes and positive
response rates than those obtained with the monotherapy. In the groups of non-HIV-
infected patients, the combination therapy tended to provide better mortality outcomes
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than those from the monotherapy, and it significantly reduced the mortality rate in the
patients with severe PCP.

Although originally classified as a protozoan, P. jirovecii is now considered to have
fungal characteristics. Drugs typically used for the treatment of fungal infections target
ergosterol and beta-(1,3)-D-glucan in the cell membrane of the fungus. However, because
the sterol in the cell membrane of P. jirovecii is cholesterol and not fungal ergosterol [15,16],
azoles and polyenes are considered ineffective against this pathogen. In fact, to the best of
our knowledge, there are no known studies in which these fungal agents were used for the
treatment of PCP. By contrast, echinocandins that target beta-(1,3)-D-glucan have attracted
increased attention for the treatment of PCP. The feasibility of combining TMP–SMX with
echinocandin for PCP therapy has been demonstrated in animal models of the disease and
in vitro experiments [17–19], reinforcing our findings that the combination therapy is a
promising regimen.

The principal behind the therapeutic effect of TMP-SMX + echinocandin on PCP has
been demonstrated using animal models of the disease and in vitro experiments [20–22].
Although echinocandins can block the formation of P. jirovecii cysts by interfering with
the synthesis of beta-(1,3)-D-glucan, they have low efficacy against trophozoite forms [23].
These findings indicate that echinocandins can reduce pathogen reservoirs. By contrast,
TMP–SMX inhibits trophozoites by inhibiting their metabolism of folate [20]. Moreover,
the echinocandins act quickly, whereas the onset of the therapeutic effects of TMP–SMX
occurs only after 5–8 days [24]. The present study indicated that the combination therapy
significantly improved the mortality outcomes of overall patients with PCP relative to
the results obtained with TMP–SMX monotherapy. Therefore, in the treatment of patients
with PCP, the combination therapy is expected to execute its synergistic effects earlier by
inhibiting the entire life cycle of P. jirovecii.

A previous study has reported that HIV-infected patients carried a significantly greater
burden of P. jirovecii in lung lavages compared with non-HIV-infected patients [25]. More-
over, the trophic forms are generally more abundant during pneumocystis pneumonia
(PCP), but there are no data to show the percentage of trophic and cystic forms during
PCP [26]. Therefore, the combination therapy may not be so effective, since the number of
cystic forms which echinocandins target is relatively low in non-HIV-infected patients.

The incidence of adverse events from echinocandins is very low [27]. A review of
clinical trials showed that less than 3% of patients experienced severe adverse events or
discontinued treatment as a result of echinocandin-related adverse events [28]. In fact, there
were no serious events caused by TMP–SMX + echinocandin combination therapy, and no
patients discontinued the combination therapy because of clinical or laboratory adverse
events [12]. Therefore, the combination therapy may not have any higher risk than the
monotherapy. However, because only one study reported on the safety of the combination
therapy, further validation studies are needed to verify its risk–benefit profile [12].

To the best of our knowledge, this is the first meta-analysis of the efficacy of TMP–SMX
+ echinocandin combination therapy as a first-line treatment for PCP patients. However, our
meta-analysis has several limitations. First, the number of studies included was relatively
small, despite that subgroup analyses on patient background and disease severity were
performed. Moreover, because only single-center, retrospective studies were included, three
of which were conducted in China, the likelihoods of reporting and selection biases may
have been increased, although there was no heterogeneity (I2 = 0%) in our results. Second,
results of drug resistance in the PCP patients were not reported. In fact, the culturing of
P. jirovecii has not yet been established.

4. Materials and Methods
4.1. Study Design and Data Sources

This study was conducted according to PRISMA guidelines, except for the protocol
registration for reporting systematic reviews and meta-analyses (File S1) [29,30]. The
following PICO criteria were used for selecting relevant studies: population (P), patients
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with PCP, intervention (I), patients receiving TMP–SMX monotherapy, comparison (C),
patients receiving TMP–SMX + echinocandin combination therapy, outcome (O), mortality,
and positive response rate. All studies up to 7 January 2022 were identified through a
systematic review of publications on the Scopus, EMBASE, PubMed, CINAHL, and Ichushi
databases. The search keywords used were “Pneumocystis jirovecii”, “anidulafungin”,
“caspofungin”, “micafungin”, and “echinocandin”. Language was restricted to English and
Japanese. Additional searches were conducted by analyzing the references from retrieved
papers and reviews to minimize the chance of omissions.

4.2. Study Selection

To avoid bias, the literature search based on titles and abstracts was performed inde-
pendently by two of the authors, and then the full-text articles were reviewed to extract
appropriate studies for this meta-analysis. A third author (H.M.) resolved any disagree-
ments by discussion. Studies that met the following criteria were extracted: (i) randomized
controlled trial, retrospective observational, or cohort studies; (ii) having patients diagnosed
with pneumocystis pneumonia; and (iii) having patients receiving TMP–SMX monother-
apy or TMP–SMX + echinocandin combination therapy. No restriction was placed on the
regimen and duration of antibiotic treatment. Non-clinical studies and review publications
were excluded, as were case reports with sample sizes of less than 5 patients. Exclusion of
studies with relatively small sample sizes was intended to minimize selection and reporting
bias. Subgroup analyses were performed with the following populations: non-HIV-infected
patients, non-HIV-infected patients with severe PCP, and HIV-infected patients. Severe
PCP was defined as a partial pressure of arterial oxygen (PaO2)/fraction of inspired oxygen
(FiO2) of less than 60 mmHg or an alveolar–arterial oxygen difference (D(A − a)O2) of greater
than 45 mmHg, and a beta-D-glucan concentration of over 800 pg/mL.

4.3. Data Extraction and Risk-of-Bias Assessment

The following data were extracted independently from each study: study design,
setting, and period; country of study; drug regimen; number of eligible patients; ages of
patients; population; and clinical outcomes. The primary outcome was all-cause mortality.
The secondary outcome was a positive response rate, which was defined as fewer clinical
symptoms, an improved PaO2 value, and resolution of the pneumonitis on chest imaging
after treatment. The Newcastle–Ottawa Quality Assessment tool was used to evaluate
the risk-of-bias of retrospective studies [31]. The tool consists of three domains: selection,
comparability, and exposure.

4.4. Statistical Analysis

Data analysis was performed using Review Manager software (RevMan, version 5.4;
Cochrane Collaboration, Oxford, UK) according to a previous study [32]. The degree and
proportion of statistical heterogeneity were evaluated using the chi-squared test and the I2

measure, respectively. The heterogeneity was defined as being significant when the p value
was less than 0.1 or the I2 value was greater than 50%. The random-effects model was
applied for heterogeneous data and the fixed-effects model for homogeneous data. The
pooled OR and 95% CIs were calculated.

5. Conclusions

In conclusion, our meta-analysis showed that TMP–SMX in combination with an
echinocandin significantly reduced the mortality rates of HIV-infected patients with PCP
and non-HIV-infected patients with severe PCP. Our findings indicate that TMP–SMX +
echinocandin combination therapy is an effective and promising first-line treatment option
for severe PCP, especially if initiated in the early stage of the disease.
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