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DNA N6-methyladenine (6mA) is an important epigenetic modification, which is involved 
in many biology regulation processes. An accurate and reliable method for 6mA 
identification can help us gain a better insight into the regulatory mechanism of the 
modification. Although many experimental techniques have been proposed to identify 
6mA sites genome-wide, these techniques are time consuming and laborious. Recently, 
several machine learning methods have been developed to identify 6mA sites genome-
wide. However, there is room for the improvement on their performance for predicting 
6mA sites in rice genome. In this paper, we developed a simple and lightweight deep 
learning model to identify DNA 6mA sites in rice genome. Our model needs no prior 
knowledge of 6mA or manually crafted sequence feature. We built our model based on 
two rice 6mA benchmark datasets. Our method got an average prediction accuracy of 
~93% and ~92% on the two datasets we used. We compared our method with existing 
6mA prediction tools. The comparison results show that our model outperforms the 
state-of-the-art methods.
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INTRODUCTION

DNA N6-methyladenine (6mA) is one important DNA epigenetic modification, which has been 
found in bacteria, eukaryote, and archaea (O’brown and Greer, 2016). It was reported that 6mA is 
involved in many biological processes. For example, in bacteria, 6mA plays roles in DNA replication 
(Campbell and Kleckner, 1990), DNA repair (Au et al., 1992), transcription (Robbins-Manke et al., 
2005), and gene expression regulation (Low et al., 2001). But for eukaryote, the study of DNA 6mA”” 
is still insufficient (Koziol et al., 2016). Studying the distribution of DNA 6mA can provide a deeper 
understanding of the epigenetic modification process. 

Recently, the development of experimental techniques contributes to studying DNA 6mA 
modification. Pormraning et al. developed a protocol using bisulfite sequencing and methyl-DNA 
immunoprecipitation technique to analyze genome-wide DNA methylation in eukaryotes (Pomraning 
et al., 2009). Krais et al. reported a fast and sensitive method for the quantification of global adenine 
methylation in DNA, using laser-induced fluorescence and capillary electrophoresis (Krais et al., 2010). 
Flusberg et al. applied single-molecule, real-time sequencing technique to detect DNA methyladenine 
directly (Flusberg et al., 2010). Greer et al. used ultra-high performance liquid chromatography coupled 
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with mass spectrometry technique to access DNA 6mA levels in 
Caenorhabditis elegans (Greer et al., 2015). 

Due to the large cost of experiment-based approach, 
researchers have used machine learning technology to identify 
and predict DNA 6mA sites. Feng et al. proposed a SVM-
based tool (called iDNA6mA-PseKNC) to predict 6mA sites in 
Mus musculus genome (Feng et al., 2019). Feng et al. validated 
iDNA6mA-PseKNC on the M. musculus dataset and other 
6mA datasets of eight microbe species. It was reported that 
iDNA6mA-PseKNC achieved very high prediction accuracy on 
all the nine datasets, revealing that this method is reliable and 
can identify genome-wide 6mA sites in many species. Recently, 
Chen et al. provided a benchmark 6mA dataset containing 880 
6mA sites and 880 non-6mA sites in rice genome (Chen et al., 
2019), which was denoted as 6mA-rice-Chen in this study. By 
using many manually crafted DNA sequence features, they built 
a support vector machine (SVM) based tool (called i6mA-Pred) 
to identify 6mA sites in rice genome. It was reported that i6mA-
Pred got an accuracy of ~83% on the rice genome dataset. Pian 
et al. proposed a tool, called MM-6mAPred, based on the markov 
model for 6mA sites prediction (Pian et al., 2019). Pian et al. 
built and evaluated their MM-6mAPred based on the 6mA-rice-
Chen benchmark dataset. It was reported that MM-6mAPred 
outperformed i6mA-Pred in prediction of 6mA sites. Tahir 
et  al. proposed another computational tool, called iDNA6mA, 
for 6mA identification in rice genome (Tahir et al., 2019). Tahir 
et  al. trained and evaluated their iDNA6mA on the 6mA-rice-
Chen dataset, and they found that iDNA6mA outperformed 
i6mA-Pred in prediction performance. Basith et al. proposed 
a tool, named SDM6A, for predicting 6mA sites in the rice 
genome (Basith et al., 2019). SDM6A is an ensemble approach 
using several features encoding methods and machine learning 
classifiers. Basith et al. trained and evaluated their SDM6A 
based on the 6mA-rice-Chen benchmark dataset, and they 
found that SDM6A outperformed i6mA-Pred and iDNA6mA on 
the 6mA-rice-Chen benchmark dataset. Very recently, Lv et al. 
proposed a computational tool, iDNA6mA-rice, for prediction 
of 6mA sites in rice genome (Lv et al., 2019). Lv et al. proposed 
another 6mA benchmark dataset for rice genome, and we 
denoted such dataset as 6mA-rice-Lv. The 6mA-rice-Lv contains 
154,000 6mA sites-contained sequences as the positive samples 
and the same number of negative samples. Lv et al. trained and 
evaluated iDNA6mA-rice on 6mA-rice-Lv dataset by five-fold 
cross-validation, and they found that iDNA6mA-rice achieved 
good prediction performance. For the purpose of the comparison 
with i6mA-Pred, Lv et al. also trained and evaluated iDNA6mA-
rice on the 6mA-rice-Chen dataset and found that iDNA6mA-
rice outperformed i6mA-Pred on the 6mA-rice-Chen dataset.

Previous studies have shown that deep learning is a 
powerful technique for sequences analysis and classification 
in bioinformatics (Zhang et al., 2018; Zou et al., 2019). In this 
paper, we proposed a simple, lightweight, and high-performance 
method to improve prediction accuracy of DNA 6mA sites in 
rice genome (called SNNRice6mA). SNNRice6mA is based on 
convolutional neural network architecture. It needs no manually 
crafted sequence feature and can learn high level abstract 
features, compared with traditional machine learning based 

methods. SNNRice6mA got an accuracy of ~93% and ~92% 
on the 6mA-rice-Chen and 6mA-rice-Lv datasets, respectively. 
SNNRice6mA performed better than previous methods in 
prediction of DNA 6mA sites in rice genome.

METHODS

Dataset
In this study, we considered two 6mA benchmark datasets for 
rice genome. The first dataset is the 6mA-rice-Chen dataset 
(Chen et al., 2019), which was widely used by previous studies 
(Basith et al., 2019; Chen et al., 2019; Pian et al., 2019; Tahir 
et al., 2019). The 6mA-rice-Chen dataset contains 880 positive 
samples and 880 negative samples. The second dataset we used 
is the 6mA-rice-Lv dataset (Lv et al., 2019). The 6mA-rice-Lv 
dataset contains 154,000 positive samples and 154,000 negative 
samples. DNA sequences in both positive samples and negative 
samples are 41 bp long. For each positive sequence, its center 
is the 6mA modification site. For each negative sequence, its 
center contains no 6mA modification site. By using these two 
widely used datasets, we can compare our method with previous 
methods fairly.

The SNNRice6mA Method
Data Representation
The samples in our dataset are DNA sequences, expressed 
in a string form. For example, a sample is like “GTATAT… 
GCCTAA.” Before feeding the sequences to the model, we should 
first convert the sequence into encoding tensor. 

Previous methods, including i6mA-Pred, iDNA6mA-
PseKNC, SDM6A, and iDNA6mA-rice, used manually crafted 
sequences features to represent DNA sample sequences, such 
as nucleotide chemical properties and nucleotide frequency 
(Basith et al., 2019; Feng et al., 2019; Lv et al., 2019). Manually 
crafted sequences features require a large amount of prior 
knowledge of DNA 6mA modification and may be unsuitable 
for large data size. 

Instead of using manually crafted DNA sequences features, we 
used the one-hot encoding method. A, T, C, and G are encoded as 
(1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1), respectively. Each sample 
sequence in our dataset is 41 bp long. After one-hot encoding, each 
sequence is converted to a matrix, which has 41 columns and 4 
rows. Each column of the matrix represents a specific DNA base 
of the sample sequence. In brief, the information fed to our model 
is only the base composition of a sample sequence, without any 
manually crafted DNA sequences feature. 

Model Details
We built a deep learning method, called SNNRice6mA, based 
on the rice genome benchmark datasets. The architecture 
of our method is a typical convolutional neural network. 
SNNRice6mA contains eight components, constructed in a 
stacked way. The input vector of SNNRice6mA is a one-hot 
encoding DNA sequence. The first component of SNNRice6mA 
is a one-dimensional convolution layer, which is abbreviated 
as Conv. The layer Conv has 16 filters, whose lengths are all 4. 
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Every filter in the layer Conv functions like a sequence motif 
recognizer of 6mA modification sites in rice genome. For each 
input vector, each filter searches sequence patterns that can 
discriminate true 6mA containing sequences from pseudo 
ones. To avoid overfitting, we used the L2 regularization 
method for the filter weights and bias in Conv layer. And we set 
all regularization rates as 0.0001. The activation function used 
in Conv layer is the exponential linear unit (ELU) activation 
function. The second component of SNNRice6mA is a group 
normalization layer (GN), which aims to reduce the correlation 
of the results produced by each filter in Conv layer. Group 
normalization is suitable for the small size of the training batch 
(Wu and He, 2018). The GN divides the outputs of Conv layer 
into some groups and carries out the normalization in each 
group, respectively. We set the number of groups as four in GN. 
The third component of SNNRice6mA is a one-dimensional 
max pooling layer, reducing the redundancy of the features that 
the previous layer outputs. We set the size of the max pooling 
windows as 4, which is the same as the size of the filter in 
convolution layer. We used the dropout layer after the pooling 
layer. The dropout layer acts like a regularization function to 
prevent overfitting of the model. In each training iteration, 
the dropout layer randomly shuts down some hidden neurons 
units by setting the outputs of these units to zero. So, after the 
dropout process, some intermediate features are discarded, 
which prevents overfitting and can improve the reliability 
and robustness of the model. We set the dropout rate as 0.25. 
After dropout layer, we used a flatten function to integrate the 
intermediate features, which are fed to the fully connected (FC) 
layer. The FC layer has 32 hidden units. To avoid overfitting, 
we used the L2 regularization method for the weights and bias. 
And we set all regularization rates as 0.0001. The activation 
function used in FC layer is ELU activation function. The 
output of FC layer is fed to the last component, sigmoid 
function. The sigmoid function outputs a float value between 0 
and 1, which is considered as the probability of the input DNA 
sequence containing 6mA modification site. If the probability is 
larger than 0.5, the model will classify the input DNA sequence 
as the positive sample, which means the center of input DNA 
sequence is the 6mA site. If the probability is smaller than 0.5, 
the discrimination is the opposite.

We used the optimizer, stochastic gradient descent (SGD) 
with momentum, and the binary cross-entropy loss function. 
We set the learning rate as 0.005 and the momentum rate as 
0.95 in SGD optimizer. We set the maximum training epoch as 
100 and the batch size of training as 32. We used early stopping 
technique in the training process. The early stopping means that 
the training process will stop when the prediction accuracy stops 
improving on the validation set. We set patience of early stopping 
as 30 epochs, which means that the training is stopped when the 
prediction accuracy on validation set does not improve after 30 
training epochs. We also used the model checkpoint technique, 
which saves the model which has the highest prediction accuracy 
on the validation set. During the training process, we reduced 
the learning rate when the value of loss function on validation 
set no longer decreased. We set the reduced factor as 0.1 and 

the patience as 20 epochs, which means that the learning rate is 
reduced when the value of loss function on validation set does 
not improve after 20 training epochs.

We implemented our method based on Keras 2.2.4. We used 
the default values of hyper-parameters in Keras, except those that 
have been mentioned in this paper (see the full list in Table S1). 

Performance Metrics
To be consistent with previous studies (Lv et al., 2019; Pian et al., 
2019), we used the standard 10-fold cross-validation method to 
evaluate our method on the 6mA-rice-Chen dataset and used the 
standard 5-fold cross-validation method to evaluate our method 
on the 6mA-rice-Lv dataset. For example, in 10-fold-cross-
validation, we randomly partitioned the rice genome benchmark 
dataset into 10 folds with equal size. In each cross-validation 
iteration, we used eight folds for training, one fold for validating, 
and the remaining one fold for testing. In each iteration, we saved 
the specific model with highest accuracy on the validation fold 
and evaluated the performance of this model on testing fold. The 
cross-validation iteration was executed 10 times, and the average 
predicted accuracy of 10 iterations was calculated. Our source 
codes are available on https://github.com/yuht4/SNNRice6mA. 

For the evaluation metrics, we used the same metrics as those 
in a previous study (Chen et al., 2019). Totally, five metrics have 
been used, including accuracy, sensitivity, specificity, Matthews 
correlation coefficient (MCC), and area under the curve (AUC).

The metric accuracy means the ratio of correct predictions on 
the testing data. The accuracy is defined as below:

 
accuracy TP TN

TP TN FP FN
= +

+ + +  

True positive (TP) is the number of predictions that classify 
the TP samples correctly. True negative (TN) is the number of 
predictions that classify the TN samples correctly. False positive (FP) 
is the number of predictions that misclassify the negative samples as 
the positive ones. False negative (FN) is the number of predictions 
that misclassify the positive samples as the negative ones. The 
positive means the samples containing the 6mA sites, and vice versa.

The metric sensitivity is the ratio of correctly identified 
positive samples in all actual positive data. The sensitivity is 
defined as below:

sensitivity TP
TP FN

=
+

The metric specificity is the ratio of correctly identified 
negative samples in all actual negative data. The specificity is 
defined as below:

specificity TN
TN FP

=
+

MCC is a measure of the quality of binary classification 
model (Matthews, 1975). MCC takes TP, TN, FP, and FN into 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://github.com/yuht4/SNNRice6mA


Predicting DNA N6-Methyladenine SitesYu and Dai

4 October 2019 | Volume 10 | Article 1071Frontiers in Genetics | www.frontiersin.org

account. MCC is generally regarded as a balanced measure that 
can be used even if the samples are unbalanced in two classes 
(Boughorbel et al., 2017). 

The MCC measures the correlation between the real and 
predicted binary classifications. MCC is a coefficient value 
between −1 and +1. A value of +1 represents a perfect binary 
classification model, 0 means the same as random prediction, 
and −1 indicates total disagreement between predicted labels and 
real labels.

MCC is defined as below:

 
MCC TP TN FP FN

(TP FP)(TP+FN)(TN+FP)(TN+FN)
= × − ×

+  

AUC is the area value under the receiver operating characteristic 
curve. AUC is also an important indicator to measure the 
performance of a binary classification model. The larger the AUC 
value, the better the performance of model. AUC is a float value 
between 0 and 1; 1 means the model is perfect in prediction, while 
0.5 means the model is similar with random predictions.

RESULTS

We evaluated the performance of our method SNNRice6mA 
on two DNA 6mA benchmark datasets (i.e., 6mA-rice-Chen 
and 6mA-rice-Lv) for rice genome. SNNRice6mA showed 
good performance on these two datasets in terms of different 
evaluation metrics (Figures 1, S1, S2 and Tables S2, S3). We 
compared SNNRice6mA with state-of-the-art tools. Results 
showed that SNNRice6mA performed better than these tools.

Performance Comparison on Rice 6mA 
Benchmark Datasets
To the best of our knowledge, there are six existing tools for 
identifying DNA 6mA sites, including i6mA-Pred (Chen 
et  al., 2019), iDNA6mA-PseKNC (Feng et al., 2019), SDM6A 

(Basith et al., 2019), iDNA6mA (Tahir et al., 2019), MM-6mAPred 
(Pian et al., 2019), and iDNA6mA-rice (Lv et al., 2019). Among 
them, i6mA-Pred, SDM6A, iDNA6mA, MM-6mAPred, and 
iDNA6mA-rice were all built based on the 6mA sites data in rice 
genome, which could predict the 6mA sites in rice genome. In 
addition, iDNA6mA-PseKNC is a tool built based on M. musculus 
dataset and can be applied in many other species (Feng et al., 
2019). We examined whether iDNA6mA-PseKNC can predict 
6mA sites in rice genome. We used the rice benchmark 6mA-rice-
Chen dataset to test the performance of iDNA6mA-PseKNC and 
found that the error rate of iDNA6mA-PseKNC prediction is 
relatively high (~58%). In this study, we thus just compared our 
method SNNRice6mA with the remaining five existing tools, 
including i6mA-Pred, SDM6A, iDNA6mA, MM-6mAPred, and 
iDNA6mA-rice. To be consistent with the evaluation metrics 
used in these studies, we used five metrics, including accuracy, 
sensitivity, specificity, MCC, and AUC.

Firstly, we compared SNNRice6mA with previous tools on the 
6mA-rice-Chen dataset. The performance results of i6mA-Pred, 
SDM6A, iDNA6mA, MM-6mAPred, and iDNA6mA-rice were 
directly quoted from previous studies (Basith et al., 2019; Chen 
et al., 2019; Lv et al., 2019; Pian et al., 2019; Tahir et al., 2019). 
Note that the AUC value of MM-6mAPred was not calculated in 
the original study (Pian et al., 2019). We found that SNNRice6mA 
outperformed 6mA-Pred, SDM6A, iDNA6mA, MM-6mAPred, 
and iDNA6mA-rice in terms of sensitivity, specificity, accuracy, 
MCC, and AUC (Table 1).

Secondly, we compared SNNRice6mA with iDNA6mA-rice 
on the 6mA-rice-Lv dataset. During the peer reviews of our 
manuscript, Lv et al. proposed iDNA6mA-rice and released 
the 6mA-rice-Lv dataset (Lv et al., 2019). We used 5-fold cross-
validation in training SNNRice6mA on the 6mA-rice-Lv dataset, 
which is the same validation strategy as that of iDNA6mA-rice 
(Lv et al., 2019). The performance of iDNA6mA-rice on the 
6mA-rice-Lv dataset was directly quoted from the original study 
(Lv et al., 2019). We found that SNNRice6mA outperformed 
iDNA6mA-rice in only one of the five evaluation metrics 

FIGURE 1 | Receiver operating characteristic curves of SNNRice6mA on testing sets of 6mA-rice-Chen dataset and 6mA-rice-Lv dataset. (A) Performance on the 
6mA-rice-Chen dataset. (B) Performance on the 6mA-rice-Lv dataset.
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TABLE 1 | Performance comparison between SNNRice6mA and several 
previous methods on 6mA-Rice-Chen dataset.

Method Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

MCC AUC

SNNRice6mA 92.16 94.32 93.24 0.87 0.97
SNNRice6mA
-feature

90.34 92.95 91.65 0.83 0.98

i6mA-Pred 82.95 83.30 83.13 0.66 0.89
MM-6mAPred 89.32 90.11 89.72 0.79 /
iDNA6mA 86.70 86.59 86.64 0.73 0.93
SDM6A 85.20 90.90 88.10 0.76 0.94
iDNA6mA-rice 83.86 83.41 83.63 0.67 0.91

6mA, N6-methyladenine; AUC, area under the curve; MCC, Matthews correlation 
coefficient.

(i.e., prediction sensitivity) (Table 2). Considering that the 
6mA-rice-Lv dataset contains much more sample sequences 
than 6mA-rice-Chen dataset (308,000 vs. 1,760), we sought to 
examine whether increasing the model complexity can improve 
the prediction performance of SNNRice6mA on 6mA-rice-Lv 
dataset. We changed the number of filters to 32 and the number 
of hidden units in FC layer to 64. We denoted this complex 
version of SNNRice6mA as SNNRice6mA-large. We retrained 
SNNRice6mA-large on the 6mA-rice-Lv dataset. We found 
that SNNRice6mA-large outperformed original SNNRice6mA 
in all the five evaluation metrics, and SNNRice6mA-large 
outperformed iDNA6mA-rice in three of the five evaluation 
metrics (Table 2). 

Comparison With Feature-Based 
Sequence Encoding Strategy
To examine the effect of sequence encoding scheme, we built 
another model, SNNRice6mA-feature, the same as SNNRice6mA 
except that SNNRice6mA-feature is built based on feature-based 
sequence encoding. The feature-based sequence encoding we 
used is the same as that in a previous study (Chen et al., 2019). 
Two sequence features have been considered, nucleotide chemical 
property and nucleotide frequency. The four DNA bases, adenine 
(A), thymine (T), cytosine (C), and guanine (G), have different 
chemical properties. (1) C and G can from hydrogen bonds 
strongly, while A and T form hydrogen bonds weakly. (2) A and 
G are purines, while T and C are pyrimidines. (3) A and C are 
amino groups, while T and G are keto groups. We can distinguish 
four DNA bases in three ways, including hydrogen bond strength, 
base type, and amino/keto group category. 

We used a triad to encode the chemical properties of four 
DNA bases. The first element of the triad indicates the base type; 
1 means purines, and 0 means pyrimidines. The second element 
of the triad indicates the hydrogen bond strength; 1 means weak, 
while 0 means strong. The third element of the triad indicates the 
amino/keto group category; 1 means amino, and 0 means keto. 
So, we encoded A, T, C, and G as (1, 1, 1), (0, 1, 0), (0, 0, 1) and 
(1, 0, 0), respectively.

We used the same way as Chen et al. to calculate nucleotide 
frequency of every position in a sequence. The calculation 
formula is defined as below:

d
L

f N f Nj j
j

1
1

1 1
= =( ), ( )

, if N is the nucleotide conncerned

otherwise01 ,





=
∑

j

i

where di is the nucleotide frequency of position i in a DNA 
sequence. Li is the length of the subsequence from the first 
position to the position i of the sequence. Ni stands for the 
base in position i of a DNA sequence (i.e., one of the A, T, 
C, and G).

Combining the nucleotide chemical properties and 
nucleotide frequency together, each DNA sequence can be 
represented as a matrix, with 41 columns and 4 rows. Each 
column of the matrix represents a specific DNA base. For 
each column, the first three elements represent the nucleotide 
chemical properties, and the last element represents its 
nucleotide frequency.

We trained SNNRice6mA-feature on the 6mA-rice-
Chen dataset by using the feature-based sequence encoding 
method above. SNNRice6mA-feature was trained and tested 
in the same way as SNNRice6mA. SNNRice6mA-feature 
outperformed SNNRice6mA in only one of the five evaluation 
metrics (Table 1). 

Cross-Species Evaluation
We next tested whether model trained on rice datasets can be 
used to predict DNA 6mA sites in other species. We used the 
M. musculus 6mA dataset proposed in a previous study (Feng 
et al., 2019) and denoted this dataset as 6mA-mouse-Feng. 
6mA-mouse-Feng dataset contains 1,934 6mA site containing 
sequences and 1,934 non-6mA site containing sequences. 
We used this independent dataset as test data. We evaluated 
the performance of SNNRice6mA, which was trained on rice 
6mA-rice-Lv dataset, on the M. musculus test data. We also 
performed similar evaluation for three of the five rice 6mA 
prediction methods, including i6mA-Pred (Chen et al., 2019), 
iDNA6mA (Tahir et al., 2019), and MM-6mAPred (Pian et al., 
2019). For the remaining two rice 6mA prediction methods, 
SDM6A (Basith et al., 2019) and iDNA6mA-rice (Lv et al., 
2019), we encountered errors when using these two tools 
(Figures S3, S4). We thus excluded these two methods for 
evaluation. We found that SNNRice6mA achieved predicted 
accuracy of 61.81%, which was higher than those of the other 
three methods (52.43% for i6mA-Pred, 41.93% for iDNA6mA, 
44.11% for MM-6mAPred). 

TABLE 2 | Performance comparison between SNNRice6mA and iDNA6mA-Rice 
on 6mA-Rice-Lv dataset.

Method Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%)

MCC AUC

SNNRice6mA 93.67 86.74 90.20 0.81 0.96
SNNRice6mA-large 94.33 89.75 92.04 0.84 0.97
iDNA6mA-rice 93.00 90.50 91.70 0.84 0.96

6mA, N6-methyladenine; AUC, area under the curve; MCC, Matthews correlation 
coefficient.
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CONCLUSIONS

In this study, we proposed a deep learning model SNNRice6mA 
to identify DNA 6mA sites in rice genome. SNNRice6mA got 
similar predicted accuracies on the two rice datasets (~93% and 
~92%). SNNRice6mA performed better than previous methods 
in prediction of 6mA sites. Though the limited size of available 
training dataset might bias the generalization of the model, we used 
some techniques (e.g., regularization) to minimize this artifact. We 
expect that our method can facilitate the analysis of DNA 6mA 
sites in the rice genome. However, there are some limitations for 
our method. First, the feature ranking is not possible in the current 
version. Second, there is room for improvement on the performance 
of rice data-trained SNNRice6mA on M. musculus dataset.
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