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Tree pests affect millions of hectares of natural and managed land annually, but we
often lack a strong understanding of the factors limiting pest distributions and the driv-
ers that facilitate the expansion of pests outside their hosts’ native ranges. Here, we use
hierarchical Bayesian regression models to identify the key determinants of pest distri-
butions from a global dataset of >310,000 pest presences/absences across 206 countries
and an additional >120,000 pest occurrences outside the native host ranges to validate
the model. Our results show there are strong, generalizable controls on pest ranges,
including effects of host richness and phylogeny, geography, and climate. Remarkably,
our model fit to pest distributions in native host ranges was able to predict pest presen-
ces outside the host native range with ∼79% accuracy. Our work has important impli-
cations for predicting regions that may be vulnerable to future pest invasions and
understanding the accumulation of pests outside the native ranges of their hosts.
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Tree pathogens and insect pests, hereafter pests, play important roles in natural and
managed systems, contributing to carbon cycling and forest regeneration, and may
even contribute to shaping patterns of global tree diversity (1). However, some pests,
especially those that are introduced outside their native range, can have severe impacts
on agricultural crops and natural tree populations, resulting in billions of dollars of eco-
nomic and ecological damage annually (2). Impacts of many pests, native and invasive,
are likely to be exacerbated by climate change, which may allow additional pest life
cycles per annum and provide more hospitable climates for pests for a longer part of
the growing season (3, 4). Despite their immense economic and ecological importance,
we lack a strong understanding of what limits the current global geographic extent of
most tree pests. Constructing robust models that allow us to project pest geographic
ranges through space and time is thus a critical step toward predicting future pest inva-
sion and maintaining the ecological and economic integrity of natural and managed
systems.
Modeling pest ranges, however, is more challenging than modeling the ranges of

their hosts. Unlike free-living organisms, biotrophic pests require one or more hosts to
persist in a region (5), but the ability of a pest to infect its hosts, reproduce, or spread
may be limited by additional biotic and abiotic factors. For instance, regions where
hosts are rare or distantly related to the surrounding vegetation could present a type of
biotic resistance to pest establishment (6), especially as pest host ranges are often phylo-
genetically circumscribed (7–10). Like other organisms, pest distributions may also be
limited by climate and geography, either directly or indirectly via the distribution of
hosts. In addition, unlike their tree hosts, which tend to be large in size with visually
identifiable characteristics, many pests are particularly vulnerable to undersampling,
especially those that require specialty expertise or technology to accurately identify and
diagnose. Our current knowledge of pest occurrences is thus likely skewed toward
developed countries, which have resources to invest in pest surveillance and reporting
(11). However, wealthy countries with high levels of imports from abroad may also
tend to accumulate more pests, due to increased propagule pressure and opportunity
for pest establishment (12). To accurately model pest distributions we must therefore
integrate information on pest–host associations, host phylogeny, community structure,
climate, and socioeconomic factors linked to detection probability and introduction
pathways within a common statistical framework. Parameterizing such a model
demands massive amounts of pest and host data, which until recently has not been
readily available.
Here, we assembled a global dataset of >310,000 pest observations (presences and

inferred absences) across 206 countries, to model pest distributions in their native host
ranges (Fig. 1). We then use this model to predict pest observations in their nonnative
host range using a separate set of >120,000 pest occurrences. We show that after
accounting for sampling effects, our model can predict pest presences and absences
within and outside the host native range with high accuracy, suggesting that the biotic,
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abiotic, and socioeconomic constraints on pest occurrences are
similar within and outside their native host ranges. Our statisti-
cal framework represents a major advance to understanding
the global distribution of tree pests and allows us to make
projections on future pest invasion risks.

Results

Pest Occurrences within and outside the Native Host Range.
Individual pests tended to occur in a relatively few number of
countries where their host genera are native (∼13% of coun-
tries), and occurrences were most common in population-rich
and/or geographically large countries, such as the United States
(1,365 observed pest occurrences), India (1,074), China
(1,070), Italy (855), and Japan (737). Countries with the larg-
est number of inferred absences (i.e., host trees are present, but
pests have not been reported) were typically geographically
small and biased toward southern Asia, including Nepal (2,862
inferred absences), Bhutan (2,773), Myanmar (2,771), Vietnam
(2,612), and Laos (2,557).
On average, host genera tended to have more pests in their

native range than in their nonnative range (for the 438 host genera
with pests in their native and nonnative range, there was a mean
15.76% fewer pests in the nonnative range). This was true even
for hosts grown widely outside their native ranges for agriculture,
forestry, or as ornamentals, and/or considered widely invasive (Fig.
2). Pinus, for instance, native to the Northern Hemisphere but
grown extensively in the Southern Hemisphere as a forestry tree
(and sometimes an aggressive invasive) (13), has hundreds more
pests in its native range than its nonnative range. The same is true
for other widely grown or invasive trees, including Malus, Populus,
and Prunus (Fig. 2). Nonetheless, we observed a substantial

number of hosts (∼22%) with a greater number of pests in their
nonnative ranges than their native ranges. A notable example is
Eucalyptus, which includes the most widely grown plantation tree
species, native to Australia and the surrounding islands, but also
grown in over 100 countries around the globe.

Drivers of Pest Occurrences in Host Native Ranges. Our hier-
archical Bayesian regression of pest occurrences in host native
ranges revealed tree pests are most likely to occur in countries
adjacent to other countries where the pest has been reported.
Pests also tended to occur in countries with a greater richness of
their hosts, especially when these host trees have a close phyloge-
netic affinity to the rest of the native tree flora within countries
(Fig. 3 and SI Appendix, Table S1). Climate was an important
predictor of pest occurrences, but effects tended to be more
muted. In general, across their hosts’ native ranges pests were
more likely to occur in countries that were on average warmer
and wetter. Countries with high research output (measured as the
number of citable documents), also tended to have more pests,
most likely due to their having greater access to resources for pest
surveillance, diagnosis, and reporting. However, number of cit-
able documents also covaried closely with volume of international
trade, and in a model where the number of citable documents
was replaced with the value of imported goods (these two varia-
bles were strongly correlated across countries, when log trans-
formed r = 0.84), countries with greater trade had an increased
probability of pest presences.

Arthropods had narrower geographic ranges than other pest
types (except protists and those of unknown etiology), while
molluscs tended to have the widest ranges. Per capita gross
domestic product (GDP) and country area had little effect on
pest occurrences. Similarly, mean human footprint (a metric of
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Fig. 1. Sankey diagram of pests, hosts, and countries used in our Bayesian regression of pest × country occurrences. (A) Pests (Far Left) are linked to
their hosts (Center), which are linked to their native countries (Far Right). Pest–host links are colored by pest types (i.e., arthropods, nematodes, molluscs,
fungi, bacteria, virus, chromist, protists, and unknown microorganisms), and host–country links are colored by country. Smaller panels, below, are subnet-
works for (B) Austropuccinia psidii, myrtle rust; (C) Agrilus planipennis, emerald ash borer; and (D) Phoracantha semipunctata, eucalyptus longhorned borer,
where gray lines represent the underlying network in A, and blue lines are observed pest–host associations and host native ranges. Note that, despite hav-
ing similar narrow host ranges (e.g., C and D), the native distribution of hosts varies dramatically.
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human pressure on the local environment) within countries was
also not an important predictor of pest occurrence, but human
footprint variability (i.e., countries with large variability in
human pressure on the environment) had a small positive
effect, that is, pests were more likely to occur in countries with
a mixture of natural and human-impacted habitats.

Drivers of Pest Occurrence outside Their Native Host Ranges
and Model Predictive Accuracy. After adjusting for the effect
of sampling (by fixing the number of citable documents
published in countries to the global maximum), our model was

able to correctly classify pest presences and absences within
their native host range with high accuracy (true presence rate =
0.83, true absence rate = 0.81; SI Appendix, Table S2). Our
model performed almost as well at predicting pest occurrences
outside the native range of their hosts, i.e., occurrences not
used in model fitting (true presence rate = 0.79, true absence
rate = 0.80). When assessed within individual countries, classi-
fication error was low in nearly all countries examined (Fig. 4).
Thresholding predictions to binary presence or absence can bias
test statistics (14), but model performance was also strong
when evaluating pest occurrences as a continuous probability

Fig. 2. Pest richness of Eucalyptus, Pinus, Populus, and Robinia within and outside their respective native ranges (log10 scale). Gray areas are regions where
either the host genus has not been documented in the Global Naturalized Alien Flora (40) or CABI Invasive Species Compendium (41) or no pests of the
genus have been reported.

Fig. 3. (A) Posterior parameter distribution from a Bayesian regression of pest occurrences and the marginal effects of (B) host richness, (C) cophenetic
distance between hosts and native tree flora, (D) proportion of neighboring countries with the pest, and (E) mean temperature. Variables were scaled
(mean of 0 and SD of 1.0) and log transformed (except mean temperature). In A, points are means, bolder lines encompass 80% of values, and thinner lines
encompass 95%. Categorical pest type variables are not shown. See also SI Appendix, Table S1 and Fig. S1.
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(area under the receiver operating curve [AUC] = 0.88, Boyce
index = 1.0).
While overall predictive accuracy of our model was high, ∼20%

of pests documented in countries outside the native range of their
hosts were misclassified (i.e., false absences). Many of the misclassi-
fied pests (>35%) were known in only one or two countries in the
host native ranges (i.e., two or fewer presences were used in model
training, for these pests), despite, in some cases, hosts being widely
distributed (mean ± SD native host range = 68.4 ± 46.3 coun-
tries). Imbalance between presences and absences in the native host
range likely results in a low predicted probability of occurrence
regardless of other modeled predictors. Although the false absence
rate varied by country, there were no strong geographic trends, sug-
gesting we are not systematically misclassifying pests geographically.
Our primary goal was to predict pest presences (as opposed to

absences); nonetheless, our model also predicted absences with
reasonably high accuracy. The marginally higher classification
error for absences than presences (∼20% of pest absences in our
dataset were predicted as presences), however, should not neces-
sarily be regarded as a failure of the model. Globally, pests are
not at equilibrium with their hosts, and the vast majority of pests
occur in only a small portion of their host native ranges. Further-
more, tree pests continue to establish in new regions across the
globe (15, 16), a process that is expected to persist into the fore-
seeable future (17). Thus, some apparent misclassifications may
represent regions where hosts are present; the tree community is
sufficiently closely related to known hosts; climate is suitable; and
the pest is present in nearby countries, but the pest has either not
yet been introduced or reported.

Discussion

By analyzing a database of over a quarter million occurrence
records of >3,000 tree pests, we were able to predict with high
accuracy the occurrence of tree pests within and outside their

hosts’ native ranges. Our results indicate that within the native
range of their hosts, pests tend to occur in warmer and wetter
countries with a large number of known host trees, especially
when these hosts are closely related to native flora. Our ability
to identify the factors limiting pest host ranges, and accurately
predict pest occurrences outside the native host range, illustrates
the potential of our modeling framework to identify pests most
likely to invade new regions (and the regions most susceptible to
future pest invasions).

Factors Controlling Pest Occurrences. Within the native
ranges of their hosts, pests tended to occur in countries with a
large number of their hosts, especially when those hosts were
closely related to the native tree flora of countries. The link
between pest occurrences and host richness and evolutionary
affinity could have multiple explanations. In regions where
pests are native, pests may accumulate hosts over evolutionary
time as new pest variants emerge capable of overcoming the
defenses of host plants. If host defenses are phylogenetically
conserved, this might also structure the expansion of pest host
ranges to closely related tree hosts. Alternatively, pests may
accumulate hosts as pests spread to new regions within their
host native ranges and come into contact with previously iso-
lated, but competent novel host species, perhaps close relatives
of pests’ coevolved hosts. If the latter mechanism is common,
shifts in pest ranges in response to global change is likely to
facilitate the further expansion of pest host breadths. The link
between pest occurrences and host richness could also result
from pests invading regions where (many) hosts are already pre-
sent. For example, generalist invasive pests, such as spongy
moth (Lymantria dispar dispar) and winter moth (Operophtera
brumata) (both native to Eurasia), have accumulated hundreds
of novel hosts in their invaded North American range, likely
due to these pests being preadapted to the large number of
related tree taxa North America shares with Eurasia. This sort

Fig. 4. Geographic pattern of validation statistics for predicting pests outside their native host ranges. Statistics were calculated based on the presence
and inferred absence of 3,080 tree pests outside their hosts’ native range. True presences are pest occurrences that were correctly predicted present within
countries by the model; false presences are pest absences that were incorrectly predicted as present; false absences are pest occurrences that were
incorrectly predicted as absent; and true absences are absences that were correctly predicted as absent. The false presence rate is particularly important
as it indicates the regions where the model predicts the greatest relative increase in pest occurrences through new documentations or invasions. Countries
colored gray have either no recorded nonnative plants or no pests of nonnative plants.
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of phylogenetic facilitation likely contributes to the spread of
nonnative pests to regions where coevolved host species
are absent.
Although we were unable to unambiguously separate the

effects of sampling from trade in our models (as both tend to
be high in wealthy countries), these variables represent dis-
tinct, but not mutually exclusive, factors shaping pest occur-
rences. Our index of citable documents provides a measure of
detection probability and reporting, but it may also capture
additional socioeconomic variables correlated with pest intro-
duction. Trade has also frequently been found to have a
strong effect on the accumulation of nonnative pests, espe-
cially agricultural imports from climatically similar regions
(12). While the effect of trade on nonnative pests is relatively
well established, it is less clear whether trade should have as
direct an impact on the distribution of pests in their native
host ranges (used in model fitting), which includes regions
where hosts and pests have historically interacted. This depen-
dency could explain why our sampling variable (the number
of citable documents) had a stronger effect on pest presences.
While we were able to predict pest occurrences outside their
hosts’ native ranges with high accuracy with both documents
and trade, future work that allowed us to distinguish between
the effects of trade and sampling could improve our under-
standing of the importance of dispersal in limiting global pest
distributions.
Accurately predicting pest occurrences outside the hosts’

native range helps elucidate the ecological dynamics that follow
plant invasions and intentional introductions. For instance,
many trees that are purposefully grown outside their native
range are able to escape the pests of their native ranges that
limit their growth or production—the enemy release hypothesis
(18). Our results provide some support for enemy release, with
most hosts experiencing lower pest pressure in their introduced
ranges. However, enemy release tends to be ephemeral as pests
from the native range can eventually track their hosts to new
regions, and native pests may expand their host breadth to
include the novel nonnative host (19). For instance, Eucalyptus
has accumulated more pests, on aggregate, outside its native
range than are documented in its native distribution. While the
greater number of Eucalyptus pests in the nonnative range could
be explained by undersampling in the native range, the center
of Eucalyptus native diversity is Australia, one of the wealthiest
countries globally, and likely far better sampled than many
countries where Eucalyptus has been introduced. More likely,
exporting Eucalyptus around the globe has exposed it to many
additional pests not present in the native range and for which it
may have no evolved resistance (20). Thus, while few individ-
ual countries had more Eucalyptus pests than Australia, the total
pest load is greater outside the native range. (Although it is
worth noting that many herbivores/pathogens with minimal
impact on Eucalyptus in the native range may not be considered
pests, per se.) Our finding indicates that there are many pests
that could pose a threat to natural and managed Eucalyptus for-
ests if introduced into Australia or other parts of its native
range (21).
An important future challenge is to elucidate the geographic

and environmental influences that facilitate host jumps during
invasions, although data distinguishing novel or recent hosts
from historic or coevolved hosts is sparse for most pests.
Further parsing of pest distributions to differentiate between
introduced versus historic geographic ranges could help to iden-
tify not only where pests may be likely to establish in the
future, but which hosts may be most at risk from yet-to-be

established pests. While identifying the mechanisms that allow
both geographic and host jumps could further improve our
understanding of the regions and hosts most at risk from non-
native pests, our model nevertheless provides strong inferences
on the principal drivers of pest spread, as illustrated by our abil-
ity to predict pest occurrences outside host native ranges.

Identifying the pests most likely to track their hosts outside
the host native range can help to protect not only high-value
nonnative plants (agricultural, ornamental, and forestry spe-
cies), but also, by extension, native plants that could be at risk
from pest spillover. Many of the most destructive nonnative
pests of native North American trees were introduced on non-
native live plants imported from abroad that subsequently
jumped to native species (e.g., balsam and hemlock woolly
adelgids [Adelges piceae and A. tsugae] and beech scale [Crypto-
coccus fagisuga]) (22). One notable example, Cryphonectria para-
sitica (causal agent of chestnut blight), was first introduced into
North America likely on Japanese chestnut (Castanea crenata)
nursery stock and spilled over to native trees, leading to the
effective extirpation of mature American chestnuts (C. dentata)
in North America. Pests tracking their hosts to the nonnative
range can also be detrimental when nonnative hosts are eco-
nomically valuable. Pitch canker of pines (caused by Fusarium
circinatum), for instance, likely native to Mexico, has been
exported to many of the pine-growing regions of the world
where it has caused economic losses in nonnative pine planta-
tions and nurseries (23, 24).

Identifying pests before their introduction, however, remains
challenging as many destructive invasive pests may not be dam-
aging within their native ranges. Indeed, many nonnative pests
are, at least initially, cryptogenic. Swiss needle cast (caused by
Phaeocryptopus gaeumannii), for instance, first described in the
early 20th century in Germany and Switzerland in planted
Douglas fir plantations (Pseudotsuga menziesii), was not known
to cause disease in its native North American range until the
1970s (25), decades after its description in Europe. The false
presences identified in our model clearly illustrate many pests
have suitable hosts (native and nonnative) and climate in coun-
tries where they have not yet been reported. These
“misclassifications” may thus provide a useful guide for identi-
fying pests that could become invasive in the future, or alterna-
tively, could already be present although are as yet unreported,
perhaps because current impacts are low.

While we are able to highlight pests with potential to
become invasive, and regions vulnerable to future invasions, the
successful establishment of a pest in a new region is likely medi-
ated by multiple additional factors that we were not able to
quantify in our model. Pest establishment and spread, for
instance, could be facilitated by the lack of natural enemies in
the pests’ nonnative range. Enemy release has commonly been
found for nonnative plants (26), but its importance for nonna-
tive pests is poorly understood and underdocumented (27).
Numerous case studies have been described in the literature
(sometimes inferred from biocontrol efforts) (28), although it is
unclear whether this is a general trend among nonnative pests.
The presence or absence of closely related pests may also affect
pest establishment. If niches are phylogenetically conserved, for
instance, nonnative pests may be more likely to establish in
regions with native congenerics; conversely, if closely related
taxa are strong competitors, pests may be excluded from regions
with close relatives (i.e., Darwin’s naturalization conundrum).
While this conundrum in plants can be partially explained by
spatial scale (29), it remains unclear whether tree pests follow
similar trends and, if they do, at what spatial scale they operate.

PNAS 2022 Vol. 119 No. 13 e2113298119 https://doi.org/10.1073/pnas.2113298119 5 of 8



Last, we note that future global change is likely to shift the
regions available for pest colonization, and in some cases, could
affect pests’ host breadths. Recent climate change has resulted
in plant pests shifting poleward at a rate of, on average, 2.7
km/y (30), and if pests and plants track climate asynchronously
(31), this is likely to expose many pests to novel hosts. The
recent climate-induced expansion of mountain pine beetles
(Dendroctonus ponderosae) into northern Alberta, for instance,
has exposed jack pine (Pinus banksiana) to beetle attack (32)
and potentially provides a corridor to other susceptible hosts in
eastern North America. Warmer climates may also be associated
with more favorable environmental conditions for pests, addi-
tional pest lifecycles, and greater host stress, each of which
could increase the likelihood and impacts of pest establish-
ments. Likewise the continued introduction of trees to new
regions (accidentally or intentionally) similarly expands the
potential range of many pests as host composition is the pri-
mary driver of tree pest composition globally (33). Future work
integrating effects of global change on pest distributions could
help refine projections of invasion risks over the next few
decades.

Summary. Humans have markedly modified the distributions
of plant and pest species, and in doing so we have revealed that
many species can greatly extend their distributions when geo-
graphic barriers that have historically precluded dispersal are
removed. Plants have been continually introduced outside their
native ranges—either inadvertently or intentionally as agricul-
tural, ornamental, or forestry species—for millennia (34), and
some have been of immense benefit to humankind. Many non-
native invasive plants, however, not only have direct negative
economic/ecological effects, but also act as pathways for the
introduction of novel pests. Our global model of pest occur-
rences indicates host richness and phylogenetic composition are
among the most important factors limiting pest distributions;
however, we show that many pests are absent from countries
with suitable hosts and climates. We suggest there is substantial
risk of these pests expanding their ranges in the future, threat-
ening biodiversity and food security. Our statistical framework
allows us to predict these future pest emergence events with
high accuracy. Nonetheless, predicting the occurrence of rare or
endemic pests remains challenging and may ultimately require
additional fine-scale information on pest and host ecologies and
data on coevolved versus acquired hosts and historic versus
invaded pest ranges.

Materials and Methods

Pest Geographic and Host Data. Geographic and host information for tree
pests was extracted from the Centre for Agriculture and Bioscience International’s
Crop Protection Compendium (CABI CPC) (35). The CPC tracks host and geo-
graphic occurrences of thousands of plant pests globally and utilizes sources that
cover over 50 languages. In our analyses, we considered any pests that had at
least one tree host recorded (defined below). The CPC, following the United
Nations Food and Agriculture Organization, defines pests as “(a)ny species, strain
or biotype of plant, animal or pathogenic agent injurious to plants or plant
products” (36). Thus, while some species in our dataset may not be considered
pests, per se, in their entire distribution, utilizing all available geographic data
helps to ensure we are capturing the full environmental and host conditions
required for pest occurrences. Pests include arthropods, chromists, fungi, mol-
luscs, nematodes, protists, viruses, and several pests of unknown etiology. The
database was accessed with permission in December 2020.

Host Geographic Data. Hosts in the CPC are variously defined at the species
and genus level. Because the true host range of pests is often poorly known at

the species level, we delimit our host associations at the genus level. To extract
tree hosts, we matched the species hosts in the CPC against a list of all tree spe-
cies globally, using the GlobalTreeSearch (GTS) (37), which maintains a list of
tree species present in each country. Next, for hosts only resolved at the genus
level in the CPC, we first determined which genera include only free standing,
woody species. This step was necessary as some genera include multiple growth
forms. As an example, hosts listed in the CPC as “Quercus alba” and “Solanum
lycocarpum” would be included in our analyses (as “Quercus” and “Solanum,”
respectively), as both are recognized tree species in the GTS. Hosts listed as
“Quercus sp.” would also be included, as all Quercus species are woody and free
standing, but hosts listed as “Solanum sp.” would not, as this genus includes
multiple growth forms and several widely grown (nontree) crop species. Growth
form information was extracted from Taseki et al. (38) and Zanne et al. (39).

Tree geographic ranges were extracted from the GTS (native ranges), Global
Naturalized Alien Flora database (GloNAF, nonnative ranges) (40), and CABI Inva-
sive Species Compendium (ISC, nonnative ranges) (41). For each pest, we identi-
fied the geographic extent of its host genera (native and nonnative ranges) and
the countries where the pest was recorded as present. We assumed hosts were
nonnative in any counties listed in GloNAF or ISC that were not included in GTS.
We used pest occurrences and inferred absences in the native range of the hosts
to fit the model described below, and we then used this model to predict pests
in the nonnative host range.

Predictor Variables. Pest occurrences in host native ranges were fit using a
hierarchical Bayesian regression model, which allowed us to specify a large com-
plex model and explore the variability in predicted outcomes. Predictors
included three pest × country variables (number of hosts, average phylogenetic
distance between hosts and native tree flora, and proportion of neighboring
countries that had the pest), nine country-level variables (research output, per
capita GDP, country area, and mean and SD of temperature, precipitation, and
human footprint within countries), and pest type as a factor (i.e., arthropod,
chromist, fungus, mollusc, nematode, protist, virus, and unknown).

Number of tree hosts was calculated on a per-pest basis, as the number of
host genera native to a country. Because pest hosts tend to be phylogenetically
conserved and the full host range of pests may not be entirely known, we also
calculated the phylogenetic distance between known hosts and native tree
communities in countries. Phylogenetic distances were quantified using a com-
prehensive phylogenetic tree of vascular plants, which represents the mean
cophenetic distance between known hosts and all tree genera within countries
(from the GlobalTreeSearch). The phylogeny was constructed with V.PhyloMaker
(42) and an updated phylogenetic topology from Zanne et al. (39). Genera in
our dataset but not present in the phylogeny were added as a polytomy to the
family node (42).

For each pest × country observation, we calculated a pest-specific spatial
effect as the proportion of neighboring countries that were also known to have
the pest, regardless of the presence or nativity of tree hosts. We first identified
all countries that shared a land border, using the poly2nb function in the spdep
package (43). Next, for each pest × country presence or absence, we used geo-
graphic information of pest occurrence to determine the proportion of countries
that also contained the pest. This variable helps to account for spatial autocorrela-
tion in individual pest ranges.

We included nine country-level variables. Research output, as a proxy for
sampling effort, was approximated using the number of citable documents pub-
lished within countries between 1996 and 2019, downloaded from Scimago
Journal Rankings (44). Per capita GDP was downloaded from the CIA World Fact-
book (45) and supplemented with information from the World Bank. Data on
temperature, precipitation, and human footprint were obtained from global ras-
ter files. Pixel values were extracted within country borders, and the mean and
SD were calculated. Countries that only encompassed a single raster pixel were
assigned a SD of 0. Temperature (bioclim1: mean annual temperature) and
precipitation (bioclim12: annual precipitation) were each downloaded from
WorldClim (46). Human footprint measures the intensity of eight human pres-
sure variables (built-up environments, population density, electric power infra-
structure, crop lands, pasture lands, roads, railways, and navigable waterways) in
1-km2 grid cells across the globe (47, 48). The human footprint raster was repro-
jected and resampled to match the projection and resolution of the climate data
before extracting values. Across all observations, variables were not strongly
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correlated—the maximum correlation between any pair of variables being 0.63
(country area and temperature variability).

We also explored fitting the value of imported goods as a metric of trade and
propagule pressure within the model. However, we found that the value of
imported goods within countries was strongly correlated with the number of cit-
able documents (r = 0.84). Furthermore, we found when fitting the model,
described below, with imports in place of documents, the model with citable
documents had a greater ability to predict pest presences in the native and non-
native host ranges. Thus, we present the model with citable documents in the
main text, and the model with “value of imported goods” in SI Appendix.
Because these variables (imports and citable documents) represent disparate
mechanisms, we address both in Discussion.

Model Fitting and Validation. Pest occurrences within their hosts’ native
ranges were fit with a Bernoulli distribution and a logit link function in a hierar-
chical Bayesian regression framework. Pest identity and country were included as
grouping variables with random intercepts. The model was defined as follows:

occurrenceij ∼ BernoulliðpijÞ
logitðpijÞ ¼ αþ β1hostsij þ β2cophenij þ β3neighboringijþ

β4documentsj þ β5gdpj þ β6areajþ
β7tempMeanj þ β8tempSDj þ β9precipMeanjþ

β10precipSDj þ β11footprintMeanj þ β12footprintSDjþ
β13pestTypei þ ui þ uj,

where occurrenceij is the presence or absence of pest i in country j, A is the inter-
cept, hostsij is the number of host genera of pest i in country j, cophenij is the
average cophenetic distance between hosts of pest i and all native trees in coun-
try j, neighboringij is the proportion of neighboring countries of country j with
pest i present, documentsj are the number of documents published in country j,
gdpj is the per capita GDP of country j, areaj is the geographic area of country j,
tempMeanj/tempSDj/precipMeanj/precipSDj/footprintMeanj/footprintSDj are the
mean and SD of temperature, precipitation, and human footprint in country j,
pestTypei is the pest type of pest i, and ui and uj are random effects (intercepts)

of pest and country. We used weakly informative priors for all beta coefficients
(β1–12, normal distribution with mean 0 and SD of 1). The model was fit with
four chains, and 5,000 iterations per chain with the first 1,000 iterations used as
warmup. We verified model convergence by ensuring rhat was near 1.0 and suf-
ficient bulk and tail effective sample size. The model was fit in Stan (49) and
called with the brms package (50) in R. In total, 314,802 pest × country presen-
ces and absences were used in model fitting. Variables were scaled (mean of
0 and SD of 1.0) and log transformed (except mean temperature) before
model fitting.

We used the model fit above to predict the occurrence (presence/absence) of
3,800 pests outside the native range of their hosts (n observations = 122,533).
To adjust for sampling effects (measured as the number of citable documents,
see above), we set the number of citable documents in all countries to the high-
est level globally. This allowed us to predict occurrences as if all countries had
research output (i.e., sampling) equivalent to that of the United States, which
was the highest globally. We tested the predictive power of the model using
point estimates of the posterior predicted distribution of pest occurrences (both
medians and means) and several standard validation statistics. The median effec-
tively thresholds point estimates to 0 or 1, while the mean is a continuous pro-
portion. For median estimates, we calculated the true presence and absence
rates and false presence and absence rates both globally (all pest occurrences in
all countries) and within individual countries. For mean estimates, we calculated
the area under the receiver operating curve (AUC) and the Boyce index (51).
While AUC has been criticized as a performance metric of distribution models
(52), it remains widely used and reported. The Boyce index quantifies whether
an increasing proportion of presences occurs in areas of increasingly high
suitability and is measured as the Spearman’s rank correlation.

Data Availability. Anonymized data have been deposited in Figshare (10.
6084/m9.figshare.17912159) (53).
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