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Abstract: Oral cavity incessantly encounters a plethora of microorganisms. Plaque biofilm—a major
cause of caries, periodontitis and other dental diseases—is a complex community of bacteria or
fungi that causes infection by protecting pathogenic microorganisms from external drug agents
and escaping the host defense mechanisms. Antimicrobial nanoparticles are promising because of
several advantages such as ultra-small sizes, large surface-area-to-mass ratio and special physical
and chemical properties. To better summarize explorations of antimicrobial nanoparticles and
provide directions for future studies, we present the following critical review. The keywords
“nanoparticle,” “anti-infective or antibacterial or antimicrobial” and “dentistry” were retrieved
from Pubmed, Scopus, Embase and Web of Science databases in the last five years. A total of 172
articles met the requirements were included and discussed in this review. The results show that
superior antibacterial properties of nanoparticle biomaterials bring broad prospects in the oral field.
This review presents the development, applications and underneath mechanisms of antibacterial
nanoparticles in dentistry including restorative dentistry, endodontics, implantology, orthodontics,
dental prostheses and periodontal field.
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1. Introduction

The oral cavity constantly encounters a plethora of microorganisms [1]. Plaque biofilm—a major
cause of caries, periodontitis and other dental diseases—is a complex community of bacteria or fungi
that causes infection by protecting pathogenic microorganisms from external drug agents and escaping
the host defense mechanisms [2]. Although significant numbers of study that focus on developing
antimicrobial agents to overcome this problem exist, most of these attempts failed to achieve desired
outcomes due to the rapid degradation and fast release of antibacterial agents causing low efficiency
and safety concerns [3,4].

Nanomaterials usually refer to tiny solid particles with a diameter of 1–100 nm. Nanomaterials
are promising in antibacterial therapies because of their enhanced and unique physicochemical
properties such as ultra-small sizes, large surface-area-to-mass ratio and increased chemical
reactivity [3]. Nanoparticles (NPs) may provide a new strategy for treating and preventing dental
infections [5]. The large surface area and high charge density of NPs enable them to interact with the
negatively-charged surface of bacterial cells to a greater extent resulting in enhanced antimicrobial
activity [6]. Moreover, NPs combined with polymers or coated onto biomaterial surfaces was found to
exhibit superior antimicrobial properties in the oral cavity [3].

Metal and organic NPs have been applied in several areas of dentistry because of their
broad-spectrum bactericidal properties [5]. Smaller NPs could release their corresponding ions more
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to obtain a better antibacterial effect. Many kinds of research focused on the antibacterial properties of
NPs and showed that NPs possessed superior antibacterial activity in bacteria of drug resistance [1,2,4].
Thus, the application of nanoparticles in dentistry might be particularly advantageous.

This paper aims to present a comprehensive review (Figure 1) on the development and
application of antibacterial NPs in dentistry including restorative dentistry, endodontics, implantology,
dental prostheses, orthodontics and periodontal field.
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2. Antimicrobial Applications in Dentistry

2.1. Antimicrobial Activity in Oral Medicine

2.1.1. Restorative Dentistry

Dental caries is one of the most common infectious diseases in the oral cavity, which is usually
repaired with materials of which the color is similar to that of the teeth. However, the failure of
restoration or the formation of secondary caries can occur because of the lacking of antibacterial
properties and demineralization caused by microorganisms and microbial acid production [1].

The development of nanotechnology has arisen the interests of many researchers. There are
two methodologies to resist dental caries. The first method is incorporating inorganic antibacterial
NPs into resin composites and agents to reduce microorganism biofilm with direct contact [7–17].
Composite resins containing 1% silver nanoparticles (AgNPs) or zinc oxide nanoparticles (ZnO NPs)
exhibited a better antibacterial activity. Note that the antibacterial effect of composite resin
containing ZnO NPs on Streptococcus mutans (S. mutans) was significantly higher than that containing
AgNPs [1,18,19]. Additionally, S. mutans activity could be significantly inhibited by AgNPs which
was formed in situ via a photoreduction mechanism concomitant to the polymerization reaction [3].



Molecules 2019, 24, 1033 3 of 15

Even dental resins containing a low concentration of novel nanofillers possessed adequate and
long-term antimicrobial properties [4]. An amount of 1 wt% quaternized copolymer functionalized
nanodiamond-reinforced resin composites effectively inhibited the formation of biofilm without
cytotoxicity [6]. However, some researches related to the resin luting cements with AgNPs addition
and dental sealants modified with nylon-6 and chitosan nanofibers did not show an antibacterial effect
against S. mutans [5,20]. The cooperation of graphite oxide, AgNPs and phthalocyanine molecules
promoted lasting disinfection in the presence of near-infrared irradiation [21]. The form of colloidal
metal oxide NPs was also proven to have superior antibacterial activity [22].

Glass ionomer cements (GICs) with a good fluoride-ion release function have been applied to
prevent and reduce the occurrence of secondary caries [23]. The copper-doped glass ionomer-based
materials greatly enhanced their antibacterial properties and reduced collagen degradation [24].
The addition of titanium dioxide (TiO2) NPs significantly improved mechanical and antibacterial
activity [25]. Hexametaphosphate NPs incorporated in GICs effectively improved antibacterial
properties and enhanced fluoride ion release [26]. Nevertheless, ZnO NPs as an additive into GICs
could not promote the antimicrobial activity against S. mutans [27].

The second methodology is the usage of organic NPs to reduce demineralization
and achieve remineralization. The nanoparticles of amorphous calcium phosphate (NACP)
combined with polymerizable quaternary ammonium methacrylates (QAMs), such as quaternary
ammonium polyethyleneimine (QPEI) [28], quaternary ammonium dimethacrylate (QADM) [29],
dimethylaminohexadecyl methacrylate (DMAHDM) [7,30–35] and organic antibacterial NPs [36–39]
was researched. Modified composite incorporating QPEI NPs had excellent antibacterial activity and
long-term durability [28]. A composite containing both QADM and AgNPs possessed a stronger
antibacterial capability, which lasts for 12 months of water-aging [29]. Antibacterial bonding agents
containing DMADDM and AgNPs greatly inhibited biofilm activities such as reducing the metabolic
activity, colony forming unit (CFU) and lactic acid of microcosm biofilms, even when the dental
adhesive was pre-coated with salivary pellicles [36].

The combination of DMAHDM, 2-methacryloyloxyethyl phosphorylcholine (MPC) and NACP
was also researched [29–32,40–42]. MPC, one of the most common biocompatible and hydrophilic
biomedical polymers, was incorporated into dentin bonding agents and composites due to its
hydrophilicity that prevents the adsorption of proteins [32,33]. NACP could release a high level
of Ca and P ions, neutralize acids, and inhibit dental caries by matching mechanical properties when
containing into resin composites [30–32].

A new rechargeable NACP composite with multiple re-release capability was developed for
long-term caries inhibition [33]. The methodologies of using NACP, MPC and DMAHDM may be
applicable to other dental composites, adhesives and cements to reduce the formation of plaque biofilm
in restorative dentistry.

2.1.2. Root Canal Therapy

Long-term or secondary dental caries may lead to pulpitis and apical periodontitis which are
mainly caused by bacteria and their products. Enterococcus faecalis (E. faecalis) is mainly responsible
for reinfections after root canal therapy [43–45]. Complex root canal anatomy makes the complete
microbial cleanup particularly difficult, even with a thorough root canal preparation and filling [46,47].

The application of NPs has attracted researchers’ attention [43,48–51]. Biosynthesized AgNPs
had an antimicrobial ability against E. faecalis [52–54]. Afkhami et al. reported that irrigant with
100 ppm AgNPs solution had better antimicrobial efficacy than 2.5% sodium hypochlorite (NaOCl) [55].
Poly (vinyl alcohol)-coated AgNPs (AgNPs-PVA) and farnesol (FAR) were not only more favorable for
tissue repair and but also less cytotoxic in comparison with NaOCl [56]. Compared to 5.25% NaOCl,
nano-MgO (5 mg/L) and chitosan NPs exhibited statistically significant long-term efficiency in the
elimination of E. faecalis in the root canal system [57,58]. A previous study showed that the biomimetic
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iron oxide NPs with peroxidase-like activity enhanced antibacterial activity on root canal surfaces and
in dentinal tubules [59].

The form of NPs may influence the antibacterial properties. Chlorhexidine (CHX)-AgNPs
containing lyotropic liquid crystals (LLC) exhibited excellent and sustained sterilization and inhibitory
effect on E. faecalis lasting for more than one month with a bacterial inactivation rate of ≥98.5%.
Besides, no toxicity was observed in the cytotoxicity evaluation [60]. However, the latest literature
showed that AgNPs irrigant was less effective against E. faecalis biofilm and infected dentinal tubules
than NaOCl [61], which was consistent with the result that AgNPs gel was more effective as irrigant
agent than solution form [62]. Moreover, NaOCl has been the most efficient irrigating solution in root
canal treatment [63].

It is essential to develop antibacterial root filling materials for endodontic treatment to prevent
secondary infection [64–66]. The addition of 0.15% AgNPs and 2.5% DMAHDM did not adversely
affect the physical properties of the AH Plus paste, furthermore, the paste with nano-fillers exhibited
significantly higher antibacterial activity against E. faecalis [67]. Calcium hydroxide (Ca(OH)2) is
routinely used as an intracanal medicament in clinical practice. Incorporating chitosan NPs into a
Ca(OH)2-based paste had the potential of increasing its antibacterial ability [68]. Both the nanoforms
of Ca(OH)2 and chitosan showed superior penetration into the dentinal tubules and appreciable
antibacterial efficacy [69–71].

The addition of NPs promoted antibacterial activity in Ca(OH)2 [72,73] and other filling
materials [74–77]. Calcium silicate cement such as mineral trioxide aggregate (MTA) and Portland
cement (PC) showed antimicrobial effects, and their antimicrobial activity was significantly enhanced
by mixing them with different concentrations of AgNPs [75,78]. Similarly, the addition of QPEI NPs
also reduced bacteria viability and promoted cell death [48,76,79].

2.2. Implants Modified with Antibacterial Nanoparticles

A dental implant is one of the most common and recognized ways to repair missing
teeth. Titanium (Ti) implants are widely used in dentistry, for the high strength, durability and
biocompatibility [80]. The failure of implantation is caused by the accumulation of plaque biofilm in
the oral cavity during the early and healing stage. Implant infections usually include peri-implant
mucositis and peri-implantitis, with incidences increasing dramatically [80,81]. The pathogenesis
of dental peri-implantitis is similar to periodontitis, which is characterized by a high prevalence of
Gram-negative anaerobes [81].

Among the sources of infections, Staphylococcus aureus (S. aureus), S. mutans and Escherichia coli
were the principal bacterial strains to be found and tested [82–84]. Pathogenic bacteria/fungi such
as Porphyromonas gingivalis (Pg) [85–87], Aggregatibacter actinomycetemcomitansand (Aa) [88], Candida
albicans (C. albicans) [89] were also used as targets in a model of simulated implant infection. It is
crucial to develop alternative implant materials with antibacterial ability to prevent and reduce
bacterial-associated implant failure [80].

Different antimicrobial NPs were developed such as Ag [89–96], copper (Cu) [95], ZnO [87,97,98],
titanium dioxide (TiO2) [99–101] and selenium (Se) [102]. AgNPs showed significant antimicrobial
activity against Gram-negative and Gram-positive bacteria [86,103]. Ti surface loaded with 0.05 ppm
AgNPs was sufficient to inhibit Gram-positive and Gram-negative species, and the latter was more
susceptible to AgNPs. However, the NPs applied in this study exhibited cytotoxicity on osteoblasts,
thus limited its clinical application [91]. Ag plasma immersion ion implantation-treated Ti surface
showed a higher inhibitory effect on Fusobacterium nucleatum (Fn) than S. aureus [94].

Ti substrates combination with hydroxyapatite [103] or chitosan NPs [85,104], surface modification
of Ti-implants [83,87,105–108] and application of composite coating [82,104,109] exhibited superior
antibacterial activity and better biocompatibility. Zhong et al. [104] prepared a phase-transited
lysozyme (PTL)-hyaluronic acid-chitosan/nano-Ag composite coating on Ti surface by the
layer-by-layer self-assembly method. At the first four days, the inhibition rate against S. aureus



Molecules 2019, 24, 1033 5 of 15

was close to 100% and kept in the range of 65–90% after two weeks. Therefore, Ti modified with
coatings could keep a strong and stable antibacterial activity for a long time.

TiO2 nano-array modified Ti substrate prepared by our group was found to promote the adhesion,
proliferation and osteogenic differentiation of human periodontal ligament stem cells. In addition,
TiO2 nanorod arrays (TNRs) exhibited superior antifungal/antibacterial properties [105,106].
The preliminary results showed that surface-area-to-mass ratio, roughness and hydrophilicity were
improved and enhanced after modification with TNRs [105]. More importantly, TNRs presented
significantly higher antifungal (C. albicans) and antibacterial (Aa and Pg) activity toward both biofilm
and planktonic states than pure Ti after ultraviolet (UV) irradiation [106]. Cu [83,110], ZnO [87,97,98]
and Se [102] also imparted certain antibacterial properties to implanting materials.

At present, most of the studies have been carried out in vitro or in vivo. The effect of
nanoparticle-modified implants on human micro-environment and the size, loading doses as well as
bio-safety of various NPs have yet to be further investigated.

2.3. Orthodontics

Fixed orthodontic appliances/treatments are inclined to plaque biofilm accumulation and enhance
the chance of enamel demineralization (also called white spot lesions, WSLs), which is the initial
performance of dental caries due to organic acid produced by the biofilm of microorganisms [111,112].
Though oral hygiene education and mechanical therapy can prevent and remove the plaque biofilm,
more effective methods should be developed to prevent WSLs with long-term anti-adhesion and
antibacterial properties independent of patient’s cooperation [111,113].

Studies showed that the addition of antimicrobial NPs to orthodontic adhesive
agents [111,114–122] and resin-modified glass ionomers cements (RMGICs) [112,121–123] might
prevent plaque accumulation and bacterial adhesion. Sodagar et al. showed that all experimental
groups reduced the viable bacterial count by comparing to the control group, 5% Ag/hydroxyapatite
nano-fillers had good antibacterial properties and shear bond strength [116]. The addition of CuO NPs
promoted the antimicrobial property without adverse effects on shear bond strength [111]. On the
contrary, the addition of TiO2 NPs presented better antimicrobial activity while weakening the shear
bond strength [114]. RMGICs were widely used in orthodontic appliances due to their outstanding
fluoride ions release [121,122]. MPC, DMAHDM, AgNPs and NACP were separately incorporated
into RMGICs and all obtained optimal antibacterial results [112,121–123]. A novel multifunctional
orthodontic cement which was developed with strong antibacterial effect could inhibit bacteria on the
cement and in the vicinity away from the brackets [112,123].

Nanotechnology was also applied to orthodontic accessories such as brackets [113,124],
orthodontic wires/ligatures [125–128], micro-implants [129] and orthodontic retainers [130] since
biofilms are more prone to aggregate on the surfaces of irregular structures. Evidence showed that
the addition of CuO NPs and (CuO-ZnO) NPs had a better antimicrobial effect and control than ZnO
NPs groups [124]. Animal experiments showed that AgNPs coated brackets effectively inhibited the
growth of S. mutans up to 45 days without cytotoxicity [113]. Nickel-Titanium (NiTi) and stainless-steel
archwires modified with antibacterial NPs of Ag and ZnO exhibited excellent antibacterial activity and
biocompatibility [127,128]. In the debonding stage in vivo, the addition of AgNPs into orthodontic
retainers had a strong antimicrobial effect against S. mutans [130].

2.4. Other Applications

2.4.1. Antimicrobial Application in Prosthetic Fields

Wearing removable/complete dentures for a long term is prone to microbial aggregation, which
can lead to denture stomatitis [131]. Polymethyl methacrylate (PMMA) has been the most common
utilized biomaterial for removable partial or complete dentures, although it exhibits relatively poor
antimicrobial properties [132].
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Various nanofillers have been incorporated into biomaterials to improve antibacterial activity.
The addition of inorganic NPs such as Ag [133–136], platinum [137], Zn/ZnO [138], Ti/TiO2 [139–141]
and zirconium oxide (ZrO2) [142,143] exerted excellent antibacterial effects. TiO2 NPs have a large
spectrum of activity against microorganisms including Gram-negative and Gram-positive bacteria and
fungi [140]. Additionally, TiO2 NPs improved the antimicrobial behavior of PMMA by significantly
reducing bacterial adherence as TiO2 ratio increased [139]. PMMA incorporation with the nanofillers of
TiO2 and silicon dioxide mixture had a superior antibacterial activity under UV, which could degrade
microorganisms with prolonged exposure [144]. A study compared four inorganic antibacterial
materials and showed that 3 wt% Ag-supported Zr phosphate (Navaron) and tetrapod-like zinc
oxide whiskers (T-ZnOw) in ZrO2-Silanized aluminum borate whiskers (ABWs)/PMMA composites
possessed substantially higher antibacterial activity and exhibited no cytotoxicity, even though the
filler of TiO2 NPs and (Ag/TiO2) NPs were slightly cytotoxic [141].

Non-metallic NPs possess powerful antibacterial properties. CHX-NP-coated silicone specimens
exhibited antifungal action while CHX-hexametaphosphate (HMP) showed slow, sustained antibacterial
properties [145]. As organic polymers, chitosan and graphene oxide are well known for their antibacterial
properties. The application of chitosan NPs effectively inhibited fungal and bacterial growth within 48
hours [131]. Graphene oxide incorporated into PMMA had long term antimicrobial-adhesive effects
without compromising mechanical properties [146]. However, the black color of graphene oxide limited
its clinical application.

In summary, the current NPs still have certain disadvantages. In the future, antibacterial
nanomaterials with excellent mechanical and aesthetic functions are expected to be developed and
applied in clinical practice.

2.4.2. Periodontics and Preventive Medicine

Periodontitis is a type of bacterial infectious disease caused by microorganisms. The new
composite consisted of DMAHDM, MPC and NACP effectively inhibited the recognized
periodontitis-related pathogens without compromising the mechanical properties [147–150].
Studies in vitro showed that the mouthwash solution containing TiO2 NPs showed superior
antibacterial activity against oral pathogenic microorganisms [151]. Nanoparticles of Zn [152,153],
Ag [2,154–160] synergistic with CHX [161,162] or doxycycline [163] showed significant antibacterial
effect in an in vitro subgingival biofilm mode. Hexagonal form of boron nitride (hBN)—referred as
“white graphite”—showed high antibiofilm activity on preformed biofilm and exhibited no cytotoxic
effect on cells at the concentration range of 0.025–0.1 mg/mL [164].

In addition to active and effective antibacterial treatment, NPs also play a major role in the field
of prevent the oral diseases. Nanoparticles of sodium fluoride (NSF) fluoride-based varnishes showed
expected antibacterial effects when compared to silver diamine fluoride (SDF) varnishes—the gold
standard for anticariogenic agents [165–167]. The toothbrush impregnated with AgNPs reduced the
number of the putative periodontal pathogens [168,169]. The abovementioned methods can be applied
to prevent the early childhood pit and fissure caries.

At present, the primary purpose of research on periodontitis and oral prevention is to achieve the
long-term sustained antibacterial effect, and researchers mainly focused on the loading and sustained
release of NPs on drugs [170–172].

3. Antibacterial Mechanism

Nanoparticles are capable of attaching and penetrating cell walls of both Gram-positive and
Gram-negative bacteria, which disturbs cell function by releasing related ions [4]. Therefore, NPs are
advantageous for the prevention and treatment of diseases caused by drug-resistant microorganisms
and inhibition of biofilm formation.

The antibacterial mechanism of NPs can be roughly divided into three types although the specific
mechanism of action is not yet clear. The antibacterial mechanisms are described as follows: (1)
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interacting with peptidoglycan cell wall and membrane and causing cell lysis; (2) interacting with
bacterial proteins and disrupting protein synthesis; (3) interacting with bacterial (cytoplasmic) DNA
and preventing DNA replication [4,120,141].

As the representative of inorganic NPs, AgNPs have been reported to interact with the
abovementioned structures to inhibit respiratory chain enzymes and to interfere with membrane
permeability. AgNPs could convert oxygen into active oxygen by its catalytic action leading to the
structural damage of the microorganisms, which is called the “oligodynamic action” of Ag [133].

As the representative of organic NPs, chitosan is a derivative of chitin, the second most abundant
natural biopolymer. Chitosan is biocompatible and biodegradable, and possesses a broad range
of antimicrobial activity [56]. Moreover, chitosan NPs are inferred to have a similar antibacterial
mechanism as AgNPs.

Despite the significant antibacterial activity of NPs, limitations for application still exist,
which include inconsistent antibacterial concentrations against micro-biofilm, toxicity and potentially
undesirable effects on the human body.

4. Toxicity

The toxicity of NPs may be influenced by many factors. Some studies did not explore the
toxicity of NPs [18,45,64,67,124], while others showed that NPs with antibacterial properties did
not exhibit cytotoxicity within a certain concentration ranges [11,57,80,92,94,101,115,120,146,154,164].
Not surprisingly, low concentration NPs with antibacterial properties were non-toxic while the
high-concentration ones exhibited more pronounced cytotoxicity [110], and even some researchers
found that the toxicity of NPs exhibited a dose-dependent effect [6,9,159].

However, there are other sounds according to the toxicity of NPs [19,60,95,141]. A previous
study found that the toxicity of NPs had a strong correlation with the time, rather than with the
concentration of antimicrobial NPs [19]. A favorable outcome was that the addition of antibacterial
NPs made the original materials less toxic but more biocompatible [60,84,90]. In summary, the toxicity
of antimicrobial NPs is affected by a variety of factors such as dosage, types, particle size, distribution,
duration of action, interaction with other components and so on.

NPs can easily enter the body and accumulate in organs leading to symptoms of poisoning due to
the extremely small particle size. To date, no study has been conducted to test the cytotoxicity of NPs
on human beings. Additionally, though a few pieces of research have explored the antibacterial toxicity
of different NPs [50,141], there are no uniform indicators to standardize the toxicity of antibacterial
NPs. As a result, it is difficult to compare the toxicity among different NPs. The toxicity of antimicrobial
NPs is worthy of being explored in the same condition in dentistry.

5. Conclusions

In this review, applications of antibacterial NPs in dentistry are explored. The antibacterial
mechanisms and bio-safety are also discussed. Our results illustrate that antimicrobial NPs have
wide ranges of applications in restorative dentistry, endodontics, implantology, dental prostheses,
orthodontics and other dental fields. NPs have an excellent antibacterial effect, but their antibacterial
properties are affected by the concentration, type, form and other factors. The specific antibacterial
mechanism and toxicity are not yet clear, and thus further research is needed to address the exact
mechanism. Two limitations in the present study should be highlighted. Firstly, the applications of
antimicrobial NPs in dentistry are not completely discussed in this review, as only the papers published
during the last five years are included. Secondly, language bias might exist since only papers published
in English are included.
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