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Abstract: Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a
challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize
the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp
image from only one blurred image. Under many degraded imaging conditions, the blur kernel
could be considered not only spatially sparse, but also piecewise smooth with the support of a
continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid
regularization method is proposed in this paper to robustly and accurately estimate the blur kernel.
The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both
the L1-norm of kernel intensity and the squared L2-norm of the intensity derivative. Once the accurate
estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct
deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image
restoration model is presented based on the L1-norm data-fidelity term and the total generalized
variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur
kernel estimation and non-blind deconvolution are effectively handled by using the alternating
direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments
on both synthetic and realistic datasets have been implemented to compare the proposed method
with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory
imaging performance of the proposed method in terms of quantitative and qualitative evaluations.

Keywords: imaging sensors; blind deblurring; image restoration; total variation; total generalized
variation; alternating direction method of multipliers

1. Introduction

1.1. Background and Related Work

Single-image blind deblurring for imaging sensors has recently received increasing attention in
modern imaging applications, e.g., the Internet of Things (IoT), astronomical imaging, biomedical
imaging, computational photography and microscopy [1–3]. It is well known that the image pixel
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intensity can be determined by the total incoming light sensed by the imaging sensor over the exposure
time. As shown in Figure 1, the discrete image degradation model can be written as follows:

B (x, y) =
M

∑
m=1

wm (HmL) (x, y) + ξ (x, y), (1)

where B (x, y) is the observed image after camera exposure, L (x, y) denotes the latent sharp image
to be restored, ξ (x, y) denotes the additive white Gaussian noise, wm is a weight, which essentially
represents the length of exposure time at camera pose m, and Hm is a transformation matrix related
to the camera rotation or translation at pose m during exposure. In this work, we only consider the
case of uniform (i.e., spatially invariant) image deblurring. Thus, the matrix Hm only corresponds
to the camera translation along both the X and Y axes. For the sake of simplicity, the original image
degradation model (1) can be rewritten as a convolution version as follows:

B = L⊗ k + ξ, (2)

where ⊗ is the mathematical operation of convolution, k denotes the blur kernel related to the weight
w and transformation matrix H in (1). The purpose of single-image blind deblurring is to recover
both k and L from only one blurred image B. It is a challenging ill-conditioned inverse problem,
since many different pairs k and L can lead to the same B [4]. The constraints on both the blur kernel
and the latent sharp image should be exploited to select the optimal pairs k and L for enhancing
imaging performance.

Figure 1. Diagram of the image degradation model for the motion blur of the imaging sensor in the
Internet of Things (IoT). (a) Camera translation along both the X and Y axes considered in this work.
(b) Discrete image degradation model with the curve being the sensor motion trajectory over the
exposure time.

To cope with the ill-conditioned nature of blind deblurring, many statistical priors learned from
blur kernels and latent sharp images have been developed to regularize the restoration process. In the
literature [4,5], current single-image blind deblurring methods are widely divided into two categories:
(1) methods that simultaneously estimate both the blur kernel and latent sharp image; (2) methods that
first estimate the blur kernel, then recover the latent sharp image. It is well known that the support
size of the blur kernel is often extremely smaller compared to the image size. Therefore, the joint
maximum a posteriori (MAP) estimation of k and L often fails since the number of unknowns is larger
than the number of known variables in B. In contrast, the estimation of the blur kernel can be obtained
accurately through the MAP estimation of k alone [4]. To guarantee the high-quality blind deblurring,
this paper mainly focuses on the second type of method, i.e., estimating the blur kernel first and then
dealing with the corresponding non-blind deconvolution problem.

The pioneering work [6] mainly focused on the estimation of simple and small blur kernels, which
are very rare in many practical scenarios. To make blind deblurring more practical, most current
state-of-the-art methods were usually proposed by exploiting the prior knowledge from the statistics
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of blur kernels and sharp images. In 2006, Fergus et al. [7] contributed the original work on practical
blind deblurring where the blur kernels were quite large and complex. In particular, the authors
proposed a variational Bayesian image deblurring model by combining the mixture-of-Gaussian image
prior with the mixture-of-exponential kernel prior. In [8], the blur kernel prior was assumed to follow
an exponential distribution. Under the MAP framework, the exponential distribution results in an
L1-norm constraint on kernel intensity, which has a good interpretation on the sparsity of the blur
kernel [9,10]. Under some imaging conditions, the blur kernel can also be assumed as a (piecewise)
sufficiently smooth function. As a consequence, many researchers proposed to replace the L1-norm of
kernel intensity with its squared L2-norm version [11–13]. Current experiments have shown that both
L1- and squared L2-regularized optimization methods could achieve accurate kernel estimation on
the benchmark dataset introduced by [4]. In the case of large blur kernels, however, it is difficult to
robustly and accurately estimate the blur kernels using these methods mentioned. Many efforts [4,5]
have been devoted to theoretically explain the reason why it is difficult for accurately estimating the
blur kernels, especially for the large ones in practice. More recently, hybrid sparsity priors on blur
kernels [14,15] have been considered and achieved robust image restoration results.

Once the blur kernel is estimated, the blind deblurring problem (2) essentially becomes a
non-blind image deconvolution. During the past several decades, numerous numerical methods
have been developed to handle non-blind deconvolution. One of the most popular methods is
the Tikhonov regularization [16,17], followed by its various extensions [18,19]. These methods
can be easily implemented, but commonly generate over-smoothing effects on the restored images.
Other widely-used methods, such as the Richardson–Lucy method [20] and Wiener filter [21], easily
suffer from noise amplification and ringing-like artifacts. To overcome the undesirable artifacts,
Yuan et al. [22] proposed to develop a progressive inter-scale and intra-scale image deconvolution
approach based on the bilateral Richardson-Lucy method. Current research illustrates that images
have the properties of sparse gradients. Many efforts [23–25] were made to enhance non-blind
deconvolution by imposing the total variation (TV) regularizer. From a statistical point of view, the
TV regularizer corresponds to an assumption of a Laplacian sparse prior on image gradients. Recently,
the extended TV regularizers, such as non-convex TV (NCTV) [11,13,26] and higher-order TV
(HOTV) [27,28], have been attracting increasing attention for improving non-blind deconvolution.
Both TV and HOTV regularizers have also been combined to overcome the potential disadvantages
existing in these two regularizers [29–31]. The newly-developed total generalized variation (TGV)
regularizer, originally proposed by Bredies et al. [32] in 2010, achieved great success for the restoration
of blurred images [33–35]. Motivated by the concepts of non-local means (NLM) and graph Laplacian,
the non-local TV (NLTV) regularizer has significantly improved the deconvolution quality [36–39]. The
NLTV-regularized variational models can guarantee the highest-quality deconvolution because they
take full advantage of the high degree of geometrical self-similarity that is inherent in natural images.

1.2. Motivation and Contributions

In the current literature [7–13], most existing blur kernel estimation methods were proposed
based on the assumptions that the blur kernel was spatially sparse or piecewise smooth within the
support of a continuous curve. As a consequence, the proposed methods could not always guarantee
high-accuracy estimation under certain degradation conditions. In recent years, more attention has
been paid to the sparse image priors for improving the estimation accuracy. To further enhance the
estimation quality, in our opinion, it is still necessary to investigate advanced sparsity constraints on
the blur kernel. The robust estimation method will be proposed in this paper by taking into account the
sparsity and smoothing properties of the blur kernel. In particular, the sparsity property is promoted
using the L1-norm of kernel intensity; the smoothing property is utilized through the introduction
of the squared L2-norm of the intensity derivative. By making full use of the advantages of both
the L1-norm and the squared L2-norm on kernel prior representation, the proposed method could
potentially generate satisfactory estimation under more different degradation conditions. Essentially,
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most of the previous works [8,9,11–13] on blur kernel estimation can be considered as a special case
of our proposed hybrid regularization method. If we only use the L1-norm term, it can take full
advantage of the property of spatial sparsity, but the resulting estimated blur kernel easily suffers
from the isolated points [15]. If we only use the squared L2-norm term, the continuous and smoothing
properties of blur kernels under certain imaging conditions could be well preserved. However,
the potential spatial sparsity property may be ignored, leading to inaccurate estimation of the blur
kernel. Therefore, to guarantee the accuracy of the estimated blur kernel, it is necessary to combine
the L1-norm of kernel intensity with the squared L2-norm of the intensity derivative in our work.
If images are degraded by Gaussian, average or pillbox (disc) blur kernels, which have the weak spatial
sparsity properties, but high smoothing properties, the proposed hybrid regularization method could
theoretically generate higher estimation accuracy compared with traditional single regularization
methods. It is worth mentioning that the hybrid blur kernel prior proposed in this work is extremely
different from the current hybrid versions [14,15]. Current work [13,40–42] has illustrated that the
L0 quasi-norm has a good natural interpretation of the sparsity property of the image gradient and
benefits for image detail enhancement. In particular, it performs well in penalizing small gradient
magnitudes and encouraging large ones to preserve fine details. To improve the accuracy of blur
kernel estimation, the L0 quasi-norm of the image gradient is also incorporated into our blur kernel
estimation method. Owing to the non-convex nature of the L0 quasi-norm and the non-smooth nature
of the L1-norm, the commonly-used numerical methods could not be effectively adopted to solve the
blur kernel estimation problem. To guarantee a feasible solution, the resulting non-convex non-smooth
optimization problem will be effectively dealt with by developing an alternating direction method of
multipliers (ADMM)-based numerical method [43]. The preliminary results on blur kernel estimation
can be found in our previous short-version conference paper [44].

Existing work has illustrated that the TV regularizer, first proposed by Rudin et al. [23] in
1992, has the capacity of preserving edges and smoothing flat regions. TV-regularized variational
image restoration models with the L1-norm [11] or the squared L2-norm [24] data-fidelity terms have
gained considerable attention. However, the image quality could be degraded because the results
often suffer from undesirable staircase-like artifacts in regions with gradual intensity variations [45].
The reason behind this phenomenon is that the TV regularizer favors solutions that are piecewise
constant. To effectively suppress the artifacts, many extensions of TV [11,13,26–28,36–39] could be
used to improve the image quality. For example, the patch-based NLTV regularizer has the capacity
of guaranteeing the highest-quality image restoration. However, the NLTV-regularized variational
model is practically limited due to the high computational cost. To make it easier to implement
blind deblurring in practice, it is necessary to balance the trade-off between computational cost and
imaging performance. Motivated by the success of the TGV regularizer, we tend to propose an effective
non-blind deconvolution method based on the TGV regularizer of second-order (i.e., TGV2) [32].
The TGV2 regularizer is able to suppress the undesirable artifacts, while preserving the image
edges since it favors piecewise polynomial intensities [34]. The quality of restored images could
be correspondingly enhanced. From an optimization point of view, the resulting image deconvolution
model could not be directly solved using traditional numerical methods because of the non-smooth
nature of the TGV2 regularizer. To achieve a robust and effective solution, an ADMM-based
optimization method will be developed to solve the resulting non-smooth minimization problem.
In particular, the original complex minimization problem can be decomposed into several simple
subproblems by introducing some auxiliary variables. Each of these subproblems has a closed-form
solution or can be efficiently solved using the current numerical method. The effectiveness of the
proposed method will be demonstrated using comprehensive experiments on both synthetic and
realistic blurred images.

In conclusion, the main contributions of this paper, given the state-of-the-art research work,
are mainly summarized by the following three aspects:
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• To accurately estimate the blur kernel, a hybrid regularization method was proposed by
combining the L1-norm of kernel intensity with the squared L2-norm of the intensity derivative.
An alternating direction method was presented to effectively solve the resulting blur kernel
estimation problem.

• The TGV2-regularized variational model with an L1-norm data-fidelity term was proposed for
enhancing the non-blind deconvolution result. To guarantee the stability and effectiveness of the
solution, an ADMM-based numerical method was developed to solve the resulting non-smooth
optimization problem.

• The satisfactory blind deblurring performance of the proposed method has been illustrated
using comprehensive experiments on both synthetic and realistic blurred images (with large blur
kernels). The proposed method has also been successfully exploited for single-image deblurring
in the field of ocean engineering.

The main benefit of the proposed method is that it takes full advantage of the hybrid constraints
for blur kernel estimation and the TGV2 regularizer for non-blind deconvolution. Therefore, it can
accurately estimate the blur kernel and guarantee high-quality image deconvolution. Experiments
using synthetic, as well as realistic blurred images will be implemented to verify the effectiveness of
our proposed method in practical applications.

2. Hybrid Regularized Blur Kernel Estimation

As discussed in Section 1.2, our robust two-step framework for single-image blind deblurring is
illustrated in Figure 2. This section mainly focuses on the first blur kernel estimation step, which is
separated into the following two aspects: (1) sharp edges restoration; and (2) blur kernel estimation.
In order to enhance the deblurring performance, we exploit the following statistical priors for blur
kernel estimation: an L0-sparsity prior on the latent gradient image x and a hybrid sparsity prior
on the blur kernel k. Under these sparsity-constrained priors, blur kernel estimation in this paper is
equivalent to solving the following minimization problem:

(x∗, k∗) = argmin
x,k

{1
2
‖x⊗ k− y‖2

2 + γ ‖x‖0 + η1 ‖k‖1 + η2 ‖∇k‖2
2

}
, (3)

where γ, η1, η2 are predefined positive regularization parameters, the L0 quasi-norm ‖◦‖0 counts
the number of nonzero elements, x denotes ∇L = (∂hL, ∂vL)T and y denotes ∇B = (∂hB, ∂vB)T

with ∂h and ∂v being the finite differences along the horizontal and vertical directions, respectively.
The proposed blur kernel estimation model (3) is mainly composed of four terms: The first term,
called the squared L2-norm data-fidelity term, denotes a measure of the distance between the restored
data and the observed version. The second term is the L0 quasi-norm regularization term, which
can preserve the sparsity of natural image gradients. The third and fourth terms are, respectively,
the L1-norm and the squared L2-norm constraints on the blur kernel, which can stabilize the final
estimation result. The accurate estimation of the blur kernel is beneficial for generating high-quality
non-blind image deconvolution.
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Figure 2. The illustration of our proposed robust regularization method for single-image blind
deblurring. The proposed method first estimates the blur kernel, then recovers the latent sharp image.

2.1. Sharp Edge Restoration

Since x and k are independent in (3), in the first step, the latent sharp edges x at the (m + 1)-th
outer iteration can be recovered by solving the following minimization problem:

xm+1 = argmin
x

{1
2
‖x⊗ km − y‖2

2 + γ ‖x‖0

}
, (4)

for m = 0, 1, · · · , Mmax with Mmax denoting the maximum number of outer iterations. As discussed
in [11,13], strong edges are not always beneficial for accurate estimation of the blur kernel. To select
the informative edges, an effective method used to measure the usefulness of gradients is given by:

r(p) =

∥∥∥∑q∈Nh(p)∇B(q)
∥∥∥

2
∑q∈Nh(p) ‖∇B(q)‖2 + 0.5

, (5)

where B is the blurred image and Nh(p) denotes an h× h window centered at pixel p ∈ Ω (image
domain). The measure metric (5), first proposed by Xu and Jia [11], enables accurate estimation of
the blur kernel by removing some narrow strips. To incorporate the measure metric into our kernel
estimation framework, the problem (4) can be reformulated as:

xm+1 = argmin
x

{
1
2
‖Kmx− y‖2

2 + γ ‖κ ◦ x‖0

}
, (6)

where ◦ represents the pointwise product and κ (p) = exp(− |r (p)|0.8) for p ∈ Ω with the variable
r (p) being defined in (5). For the sake of simplicity, the convolution version in (6) is expressed
in a matrix-vector multiplication form. In (6), Km is a block Toeplitz matrix with Toeplitz blocks
transformed from the blur kernel k at the m-th outer iteration. x and y represent the vector version
of x and y, respectively. It is well known that the model (6) is difficult to solve directly because
of the non-smooth and non-convex natures of the L0 quasi-norm ‖κ ◦ x‖0. To guarantee solution
efficiency and stability, we propose to develop an ADMM-based numerical method [43,46,47] to solve
the unconstrained optimization problem (6). To apply ADMM, we first replace x by v and then
transform (6) into the following constrained optimization problem:

min
v,x

{
1
2
‖Kmx− y‖2

2 + γ ‖κ ◦ v‖0

}
, s.t. v = x. (7)
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Note that the updates of v and x are independent of each other. Let LA (v, x; ϕx) represent the
augmented Lagrangian function of (7), which is defined as follows:

LA (v, x; ϕx) =
1
2
‖Kmx− y‖2

2 + γ ‖κ ◦ v‖0 +
β1

2
‖v− x‖2

2 − 〈ϕ
x, v− x〉, (8)

where β1 is a pre-defined penalty parameter and ϕx denotes the Lagrangian multiplier. In particular,
ADMM solves problem (6) by minimizing LA (v, x; ϕx) with respect to v and x alternatively given the
other fixed, followed by an update of the Lagrangian multiplier ϕx, i.e.,

vi+1 = argmin
v

{
γ ‖κ ◦ v‖0 +

β1

2

∥∥∥∥v−
(

xm,i +
ϕx

i
β1

)∥∥∥∥2

2

}

xm,i+1 = argmin
x

{
1
2
‖Kmx− y‖2

2 +
β1

2

∥∥∥∥x−
(

vi+1 −
ϕx

i
β1

)∥∥∥∥2

2

} (9)

with xm,0 = xm. At each iteration, the Lagrangian multiplier ϕx can be updated through
ϕx

i+1 = ϕx
i − τβ1 (vi+1 − xm,i+1) for i = 0, 1, · · · , Imax with Imax denoting the maximum number of inner

iterations. Here, τ ∈
(

0, (
√

5 + 1)/2
)

denotes the step length. In order to accelerate the convergence
of numerical solution, during each iteration, the penalty parameter β1 can be updated as β1 ← ρβ1

with ρ being a positive step length. The explicit solution of the v-subproblem in (9) can be directly
obtained using the element-wise hard thresholding operator formulated in [48], i.e.,

vi+1 = Hκγ,β1

(
xm,i +

ϕx
i

β1

)
, (10)

whereHa,b (·) is defined as:

Ha,b (s) =

{
0, if |s| <

√
2a/b,

s, otherwise.

where both a and b are intermediate variables.
Essentially, the x-subproblem in (9) is a least-squares optimization problem; the corresponding

normal equation can be readily obtained as follows:(
K>mKm + β1I

)
x = K>m y + β1

(
vi+1 −

ϕx
i

β1

)
, (11)

where superscript > denotes the transpose operator for real matrices or vectors and I denotes an
identity matrix. Under the periodic boundary condition, K>mKm is a block circulant matrix with
circulant blocks. It can be diagonalized using the two-dimensional discrete Fourier transform. Let F
denote the forward fast Fourier transform (FFT) operator. Applying by F on both sides of (11)
and yields: (

F (Km)F (Km) + β1F (I)
)
F (x) = F (Km)F (y) + β1F

(
vi+1 −

ϕx
i

β1

)
. (12)

To decrease the computational cost, both F (Km)F (Km) + β1F (I) and F (Km)F (y) can be
computed only once at the beginning of the iterative algorithm. Thus, solving (12) is straightforward,
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which means that it is relatively easy to achieve the solution of (11). As a consequence, the solution of
the least-squares optimization problem (11) is given by:

xm,i+1 = F−1

(
F (Km)F (y) + β1F

(
vi+1 − ϕx

i /β1
)

F (Km)F (Km) + β1F (I)

)
, (13)

where F−1 (·) denotes the inverse FFT operator and F (·) represents the complex conjugate operator.
The minimization process (9) is implemented alternately until the solution converges to the optimal
one. Finally, the recovered sharp edge xm+1 = xm,Imax is achieved to enhance the accuracy of blur
kernel estimation in the next step. The whole optimization procedure of ADMM for Subproblem (6) is
summarized in Algorithm 1.

Algorithm 1 ADMM for Subproblem (6).

1: Input: Blur kernel km, blurred image gradient y, τ = 1.618, ρ = 3, Imax = 5 and ε = 5× 10−6.

2: Initialize: ϕx
0 = 0, β1 = 0.03 and i = 0.

3: xm,0 = xm.

4: while (not converged and i ≤ Imax) do
5: Compute vi+1 according to (10).

6: Compute xm,i+1 according to (13).

7: Update Lagrangian multiplier and parameter: ϕx
i+1 = ϕx

i − τβ1 (vi+1 − xm,i+1) and β1 ← ρβ1.

8: Check convergence condition: ‖vi+1 − xm,i+1‖∞ < ε

9: end while
10: xm+1 = xm,Imax .

2.2. Blur Kernel Estimation

In the blur kernel estimation step, given the recovered sharp edge xm+1, the blur kernel k in (3) at
the (m + 1)-th outer iteration can be estimated by considering the following minimization problem:

km+1 = argmin
k

{
1
2
‖Xm+1k− y‖2

2 + η1 ‖k‖1 + η2 ‖∇k‖2
2

}
. (14)

where the optimal parameters η1 and η2 are manually selected by extensive experiments. It is obvious
that Model (14) is essentially a convex optimization problem. Analogous to the optimization of
problem (6), ADMM can also be adopted to efficiently solve (14) in our experiments. We first replace k
by h and then obtain the corresponding augmented Lagrangian function LA

(
h, k; ϕk) as follows:

LA
(

h, k; ϕk
)
=

1
2
‖Xm+1k− y‖2

2 + η1 ‖h‖1 + η2 ‖∇k‖2
2 +

β2

2
‖h− k‖2

2 − 〈ϕ
k, h− k〉, (15)

where β2 is a pre-defined penalty parameter and ϕk denotes the Lagrangian multiplier. Given the
fixed km,j, the minimization of LA

(
h, k; ϕk) with respect to h could be easily handled through the

widely-used shrinkage operator [49–51], which operates pointwise on scalars or matrices. The solution
hj+1 at the (j + 1)-th inner iteration is given by:

hj+1 = argmin
h

{
η1 ‖h‖1 +

β2

2

∥∥∥∥h−
(

km,j +
ϕk

j
β2

)∥∥∥∥2

2

}
(16)

= max
{∣∣∣∣km,j +

ϕk
j

β2

∣∣∣∣− η1

β2
, 0
}
◦ sign

(
km,j +

ϕk
j

β2

)
,
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with km,0 = km. Here, the sign function sign (·) is defined as:

sign (s) =


1 : s > 0,

0 : s = 0,

−1 : s < 0.

Given the fixed hj+1, the minimization of LA
(
h, k; ϕk)with respect to k is equivalent to solving a

least-squares optimization problem. Analogous to solving the x-subproblem in (9), the corresponding
solution km,j+1 is obtained as follows:

km,j+1 = F−1

 F (Xm+1)F (y) + β2F
(

hj+1 − ϕk
j /β2

)
2η2F (∇)F (∇) +F (Xm+1)F (Xm+1) + β2F (I)

 . (17)

It is tractable to obtain the efficient solution km,j+1 in (17) using one forward and one inverse FFT.
At each iteration, the Lagrangian multiplier ϕk can be updated as follows:

ϕk
j+1 = ϕk

j − τβ2
(
hj+1 − km,j+1

)
, (18)

for j = 0, 1, · · · , Jmax with Jmax denoting the maximum number of inner iterations. The estimated
blur kernel km+1 = km,Jmax can be achieved for sharp edge restoration in the next step. Note that
the convergence of our proposed numerical algorithm can be guaranteed according to the existing
convergence results for ADMM in the literature [43,52,53]. Finally, our proposed hybrid regularized
variational model for blur kernel estimation is summarized in Algorithm 2.

Algorithm 2 Hybrid regularized blur kernel estimation.

1: Input: Blurred image gradient y, τ = 1.618, γ = 5× 10−2, η1 = η2 = 10−3, and Mmax = 15.

2: Initialize: k0 = uniform and m = 0.

3: while (not converged and m ≤ Mmax) do
// Step 1 : Sharp Edges Restoration xm+1

4: Update xm+1 by Algorithm 1.

// Step 2 : Blur Kernel Estimation km+1

5: km,0 = km.

6: for j = 0 to Jmax do
7: Compute hj+1 according to (16).

8: Compute km,j+1 according to (17).

9: Update Lagrangian multiplier: ϕk
j+1 = ϕk

j − τβ2
(
hj+1 − km,j+1

)
.

10: end for
11: km+1 = km,Jmax , γ← 0.5γ.

12: end while
13: Output: Estimated blur kernel k.

3. Robust Non-Blind Deconvolution

This section mainly focuses on developing a high-order variational model for robust non-blind
deconvolution. For the sake of better writing, the original image degradation model B = L⊗ k + ξ

in (2) can be rewritten as follows:
B = KL + ξ. (19)
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Once the blur kernel K (i.e., k in Algorithm 2) is estimated accurately, blind deblurring can
be simplified to the non-blind deconvolution problem. As a consequence, this problem could be
handled through the commonly-used regularization methods. One of the most famous methods is
the TV-regularized deconvolution method [23–25]. However, the undesirable staircase-like artifacts
generated in restored images often lead to significant degradation of visual image quality. In order
to enhance the imaging performance, a robust non-blind image deconvolution method will be
proposed based on the second-order regularizer TGV2 [32]. Recently, TGV2 has been successfully
utilized as a regularization scheme in various practical applications [33,54–56] and outperforms the
popular TV regularizer. In particular, TGV2 is capable of preserving image edges and suppressing
undesirable artifacts.

Inspired by the work in [11], the L1-norm data-fidelity term will be incorporated into our
TGV2-regularized non-blind deconvolution to suppress the potential outliers. The used assumption
behind the squared L2-norm data-fidelity term is that the data-fidelity costs follow a Gaussian
distribution. This assumption often fails because the squared L2-norm could make the restored
images vulnerable to undesirable outliers. In contrast, the L1-norm introduced in this work is much
more robust to the presence of outliers compared with the squared L2-norm. The proposed non-blind
deconvolution model L1-TGV2 is given by:

L∗ = argmin
L

{
‖KL− B‖1 + λTGV2

α (L)
}

, (20)

where λ > 0 denotes a predefined regularization parameter. For a scalar field L ∈ L1 (Ω),
the discretized TGV2

α (L) [32] is defined as follows:

TGV2
α (L) = argmin

V∈C2
c (Ω,R2)

{α1 ‖∇L−V‖1 + α0 ‖E (V)‖1} , (21)

where α1 and α0 are positive tuning parameters, C2
c
(
Ω, R2) denotes the space of the vector field and

E (V) = 1
2
(
∇V +∇VT) with V = [V1 V2]

T being the symmetrized gradient of a complex-valued
vector field V. Due to the non-smooth nature of the TGV2 regularizer, in this paper, we propose
to develop an ADMM-based numerical algorithm to effectively solve the non-smooth optimization
problem (20). Three auxiliary variables W, Y and Z are first introduced, and (20) is then transformed
into the following constrained minimization problem:

min
W,Y,Z,L,V

{‖W‖1 + λ (α1 ‖Y‖1 + α0 ‖Z‖1)}

s.t. W = KL− B, Y = ∇L−V, Z = E(V).
(22)

It is obvious that L and V are coupled together. For the fixed values of L and V, the updates of W,
Y and Z are independent of each other. Thus, the variables W, Y, Z, L and V can be decomposed into
two blocks, i.e., (W, Y, Z) and (L, V). Let LA (W, Y, Z, L, V; ξ, ζ, η) denote the augmented Lagrangian
function of (22), which can be defined as follows:

LA (W, Y, Z, L, V; ξ, ζ, η) = ‖W‖1 +
ρ1
2

∥∥∥W− (KL− B)− ξ
ρ1

∥∥∥2

2

+λα1 ‖Y‖1 +
ρ2
2

∥∥∥Y− (∇L−V)− ζ
ρ2

∥∥∥2

2
+ λα0 ‖Z‖1 +

ρ3
2

∥∥∥Z− E (V)− η
ρ3

∥∥∥2

2

(23)

where ξ ∈ Rmn, ζ ∈ R2mn and η ∈ R4mn denote the Lagrange multipliers and ρ1, ρ2 and ρ3 represent
the positive penalty parameters that control the weights of penalty terms. It is numerically intractable
to directly obtain the solutions of (22) through commonly-used methods [57]. In order to guarantee a
stable solution, it is necessary to alternatively solve the W-, Y-, Z-, L- and V-subproblems and then
update the Lagrange multipliers (i.e., ξ, ζ and η) until the obtained solution meets the predefined
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threshold. In particular, each of these subproblems has a closed-form solution or can be efficiently
solved using the existing simple numerical method.

3.1. {W, Y, Z}-Subproblems

Given the fixed values of variables Lt, Vt, ξt, ζt and ηt, the W-subproblem, the Y-subproblem and
the Z-subproblem in Equation (23) can be efficiently solved by considering the following L1-regularized
least-squares minimization problems:

Wt+1 = argmin
W

{
‖W‖1 +

ρ1

2

∥∥∥∥W−
(
KLt − B +

ξt

ρ1

)∥∥∥∥2

2

}
, (24)

Yt+1 = argmin
Y

{
λα1 ‖Y‖1 +

ρ2

2

∥∥∥∥Y−
(
∇Lt −Vt +

ζt

ρ2

)∥∥∥∥2

2

}
, (25)

Zt+1 = argmin
Z

{
λα0 ‖Z‖1 +

ρ3

2

∥∥∥∥Z−
(
E
(
Vt)+ ηt

ρ3

)∥∥∥∥2

2

}
. (26)

Note that the unknown variables W, Y and Z are componentwise separable in the
{W, Y, Z}-subproblems (24)–(26). These subproblem can be effectively dealt with through the
commonly-used shrinkage operator [49,50]. This operator is fast and easy to implement in practice.
The solutions Wt+1, Yt+1 and Zt+1 are obtained as follows:

Wt+1 = max
{∣∣∣∣KLt − B +

ξt

ρ1

∣∣∣∣− 1
ρ1

, 0
}
◦ sign

(
KLt − B +

ξt

ρ1

)
, (27)

Yt+1 = max
{∣∣∣∣∇Lt −Vt +

ζt

ρ2

∣∣∣∣− λα1

ρ2
, 0
}
◦ sign

(
∇Lt −Vt +

ζt

ρ2

)
, (28)

Zt+1 = max
{∣∣∣∣E (Vt)+ ηt

ρ3

∣∣∣∣− λα0

ρ3
, 0
}
◦ sign

(
E
(
Vt)+ ηt

ρ3

)
, (29)

3.2. (L, V)-Subproblems

The minimization with respect to (L, V) in (23) is essentially a least-squares optimization
problem. However, it is impossible to directly obtain the solutions Lt+1 and Vt+1 through the
forward and inverse FFT operators because the updates of L and V are coupled to each other.
To guarantee the solution stability, the minimizations with respect to both Lt+1 and Vt+1 should
be simultaneously implemented. Given the fixed values of Wt+1, Yt+1, Zt+1, ξt, ζt and ηt, the coupled
(L, V)-subproblem in the augmented Lagrangian function (23) is quadratic, resulting in the following
system of linear equations:

Lt+1 = argmin
L

{
ρ1

2

∥∥∥∥KL−
(

Wt+1 + B− ξt

ρ1

)∥∥∥∥2

2
+

ρ2

2

∥∥∥∥∇L−
(

Yt+1 + V− ζt

ρ2

)∥∥∥∥2

2

}
,

Vt+1 = argmin
V

{
ρ2

2

∥∥∥∥V−
(
∇L− Yt+1 +

ζt

ρ2

)∥∥∥∥2

2
+

ρ3

2

∥∥∥∥E (V)−
(

Zt+1 − ηt

ρ3

)∥∥∥∥2

2

}
.

(30)

Instead of directly solving the system of linear equations (30), we tend to solve the corresponding
first-order necessary optimality conditions as follows:
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

(
ρ1K>K+ ρ2∇>∇

)
L− ρ2∂>x V1 − ρ2∂>y V2

−
[

ρ1K>
(

Wt+1 + B− ξt

ρ1

)
+ ρ2∇>

(
Yt+1 − ζt

ρ2

)]
= 0,

− ρ2∂xL +
(

ρ2I + ρ3∂>x ∂x +
ρ3

2
∂>y ∂y

)
V1 +

ρ3

2
∂>y ∂xV2

−
[

ρ2

(
ζt

1
ρ2
− Yt+1

1

)
+ ρ3

(
∂>x

(
Zt+1

1 −
ηt

1
ρ3

)
+ ∂>y

(
Zt+1

3 −
ηt

3
ρ3

))]
= 0,

− ρ2∂yL +
ρ3

2
∂>x ∂yV1 +

(
ρ2I + ρ3∂>y ∂y +

ρ3

2
∂>x ∂x

)
V2

−
[

ρ2

(
ζt

2
ρ2
− Yt+1

2

)
+ ρ3

(
∂>y

(
Zt+1

2 −
ηt

2
ρ3

)
+ ∂>x

(
Zt+1

3 −
ηt

3
ρ3

))]
= 0.

(31)

For the sake of better reading, the original system of linear equations (31) can be rewritten
as follows: R1 R>4 R>5

R4 R2 R>6
R5 R6 R3


 L

V1

V2

 =

D1

D2

D3

 , (32)

with: 

R1 = ρ1K>K+ ρ2∇>∇,

R2 = ρ2I + ρ3∂>x ∂x +
1
2

ρ3∂>y ∂y,

R3 = ρ2I + ρ3∂>y ∂y +
1
2

ρ3∂>x ∂x,

(R4, R5, R6) =

(
−ρ2∂x,−ρ2∂y,

1
2

ρ3∂>x ∂y

)
,

and: 

D1 = ρ1K>
(

Wt+1 + B− ξt

ρ1

)
+ ρ2∇>

(
Yt+1 − ζt

ρ2

)
,

D2 = ρ2

(
ζt

1
ρ2
− Yt+1

1

)
+ ρ3

(
∂>x

(
Zt+1

1 −
ηt

1
ρ3

)
+ ∂>y

(
Zt+1

3 −
ηt

3
ρ3

))
,

D3 = ρ2

(
ζt

2
ρ2
− Yt+1

2

)
+ ρ3

(
∂>y

(
Zt+1

2 −
ηt

2
ρ3

)
+ ∂>x

(
Zt+1

3 −
ηt

3
ρ3

))
.

Let F denote the discrete Fourier transform operator for real (complex) matrices or vectors.
To efficiently solve the system of linear equations (32), we multiply both sides of (32) by F , such that
the coefficient matrix will be blockwise diagonal, i.e.,F (R1) F (R4)

> F (R5)
>

F (R4) F (R2) F (R6)
>

F (R5) F (R6) F (R3)


 F (L)
F (V1)

F (V2)

 =

F (D1)

F (D2)

F (D3)

 . (33)

Essentially, (33) is a linear system with three equations and three variables. We propose to directly
use Cramer’s rule to effectively yield the closed-form solutions as follows:

Lt+1 = F−1
(

detL

detT

)
, Vt+1

1 = F−1
(

detV1

detT

)
and Vt+1

2 = F−1
(

detV2

detT

)
, (34)

where F−1 (◦) represents the inverse Fourier transform operator. In particular, we have the
determinants detL =

∣∣∣S T2 T3

∣∣∣
∗
, detV1 =

∣∣∣T1 S T3

∣∣∣
∗
, detV2 =

∣∣∣T1 T2 S
∣∣∣
∗

and detT =∣∣∣T1 T2 T3

∣∣∣
∗

with T1 =
[
F (R1)

> F (R4)
> F (R5)

>
]>

, T2 =
[
F (R4) F (R2)

> F (R6)
>
]>

,
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T3 =
[
F (R5) F (R6) F (R3)

>
]>

and S =
[
F (D1)

> F (D2)
> F (D3)

>
]>

. The definition of
determinant | · |∗ in this work is briefly introduced as follows:∣∣∣∣∣∣∣

r11 r12 r13

r21 r22 r23

r31 r32 r33

∣∣∣∣∣∣∣
∗

=

 r11 ◦ r22 ◦ r33 + r12 ◦ r23 ◦ r31

+r13 ◦ r21 ◦ r32 − r13 ◦ r22 ◦ r31

−r12 ◦ r21 ◦ r33 − r11 ◦ r23 ◦ r32

 .

To shorten the computational time, all matrix elements in detT for (34) should be calculated before
the execution of our ADMM-based numerical algorithm. At each iteration, D1, D2 and D3 are first

computed; S =
[
F (D1)

> F (D2)
> F (D3)

>
]>

can be easily calculated correspondingly. The final

solutions Lt+1, Vt+1
1 and Vt+1

2 can be naturally obtained using Cramer’s rule (34).

3.3. Update the Lagrange Multipliers

At each iteration of our proposed numerical method, the Lagrange multipliers (ξ, ζ, η) should be
updated as follows:

ξt+1 = ξt − τρ1

(
Wt+1 −

(
KLt+1 − B

))
, (35)

ζt+1 = ζt − τρ2

(
Yt+1 −

(
∇Lt+1 −Vt+1

))
, (36)

ηt+1 = ηt − τρ3

(
Zt+1 − E

(
Vt+1

))
, (37)

where the step length τ = 1.618 is used throughout this paper. In conclusion, an ADMM-based
numerical method was proposed to decompose the original complex optimization problem (20) into
several simpler subproblems. Each subproblem has a closed-form solution or can be efficiently solved
using the existing numerical method. In particular, the {W, Y, Z}-subproblems (24–26) could be
easily solved using the shrinkage operator. The solutions of L and V were simultaneously obtained
through Cramer’s rule (34). The optimization procedure of our proposed method for non-blind image
deconvolution is summarized in Algorithm 3.

Algorithm 3 ADMM for the L1-TGV2 Model (20).

1: Input: Blurred image B, blur kernel k (i.e., K in Section 3), ρ1 = 50, ρ2 = 0.5, ρ3 = 5, α1 = 1,

α2 = 1.5, τ = 1.618, Tmax = 10 and ε = 5× 10−5.

2: Initialize: L0 = B, V0 = 0, ξ0 = 0, ζ0 = 0, η0 = 0 and t = 0.

3: while (not converged and t ≤ Tmax) do
4: Compute Wt+1 according to Wt+1 = shrinkage

(
KLt − B + ξt/ρ1, 1/ρ1

)
.

5: Compute Yt+1 according to Yt+1 = shrinkage
(
∇Lt −Vt + ζt/ρ2, λα1/ρ2

)
.

6: Compute Zt+1 according to Zt+1 = shrinkage
(
E
(
Vt)+ ηt/ρ3, λα0/ρ3

)
.

7: Compute
(
Lt+1, Vt+1) according to

Lt+1 = F−1
(

detL
detT

)
, Vt+1

1 = F−1
( detV1

detT

)
and Vt+1

2 = F−1
( detV2

detT

)
.

8: Update Lagrangian multipliers (ξ, ζ, η):

ξt+1 = ξt − τρ1
(
Wt+1 −

(
KLt+1 − B

))
.

ζt+1 = ζt − τρ2
(
Yt+1 −

(
∇Lt+1 −Vt+1)).

ηt+1 = ηt − τρ3
(
Zt+1 − E

(
Vt+1)).

9: Check convergence condition:
∥∥Lt+1 − Lt

∥∥
∞ < ε

10: end while
11: Output: Deblurred image L.
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4. Experimental Results and Discussion

Comprehensive blind deblurring experiments on both synthetic and realistic blurred images will
be performed to verify the effectiveness of our proposed method in this section.

4.1. Experimental Settings

The proposed blind deconvolution framework was evaluated on a synthetic blur-image dataset [4]
and realistic blurred images. The synthetic dataset has been widely exploited as a benchmark dataset
to evaluate the performance of blur kernel estimation. Our numerical experiments were implemented
using MATLAB R2011a (The MathWorks, Natick, Inc., MA) on a machine with a 3.30-GHz Intel(R)
Pentium(R) G3260 CPU and 4 GB RAM. For both synthetic and realistic datasets, the parameter
values for blur kernel estimation in Section 2 were set as follows: τ = 1.618, ρ = 3, Imax = 5,
γ = 5× 10−2, η1 = η2 = 10−3 and Mmax = 15. The resulting optimal parameters for non-blind
deconvolution in Section 3 were set empirically, i.e., ρ1 = 50, ρ2 = 0.5, ρ3 = 5, α1 = 1, α2 = 1.5 and
Tmax = 10. The deblurring results have illustrated the satisfactory performance of the manually-selected
parameters in our experiments. For the sake of better comparison, the competing blind deblurring
methods yield the restoration results with the input parameters manually optimized by the authors.
To further improve deblurring performance, there is a great potential to develop automatic estimation
methods to adaptively select the optimal parameters in our future work. Similar to [4], the sum of
squared differences (SSD) and SSD ratio were used simultaneously to quantitatively evaluate the
performance of blur kernel estimation in Section 4.2. In particular, the SSD ratio is measured between
the deconvolution error with the estimated blur kernel and the deconvolution error with the ground
truth kernel [4].

4.2. Experiments on Synthetically-Blurred Images

Numerous experiments are implemented in this subsection to evaluate the performance of our
proposed method on one widely-used synthetic blur image dataset [4], which can be downloaded from
the link: www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR2011Code.zip. In Figure 3,
it could be found that the dataset is composed of four grayscale images of the size 256 × 256
and eight different uniform blur kernels, resulting in a total of 32 synthetic blurred images in our
experiments. The proposed method will be compared with several state-of-the-art blind deblurring
methods [7,11–13,58] in terms of SSD and the SSD ratio. In order to guarantee an unbiased comparison,
the final deblurred results are all generated using the sparse non-blind deconvolution method proposed
in [58]. Furthermore, to enhance the robustness of blur kernel estimation, a widely-used multiscale
scheme [7] was introduced in Algorithm 2. Experimental results on the SSD ratio for different kernel
estimation methods are summarized in Figure 4. It can be found that our proposed method is able to
generate more robust estimation results on this synthetic dataset under consideration in most of the
cases. In contrast, the accuracy of blur kernel estimation for other competing methods is limited due to
the simple assumption of the blur kernel prior.

www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR2011Code.zip


Sensors 2017, 17, 174 15 of 27

Figure 3. The experimental dataset of [4]. From left to right: (a) four gray-scale test images of the size
256× 256 and (b) eight uniform blur kernels of different sizes (the blur kernel sizes are illustrated in
the upper-left panels), resulting in 32 test images in our synthetic experiments.

Figure 4. Cumulative histograms of the sum of squared differences (SSD) ratios on the blur-image
dataset of Levin et al. [4].
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The objective function Equation (3), comprising the L0 quasi-norm and the L1-norm regularization
terms, is both non-convex and non-smooth. Thus, it is much more difficult to estimate the complexity
of the proposed method from a theoretical point of view. It is well known that computational cost is
highly dependent on the algorithm complexity. For the sake of simplicity, we only tend to compare the
computational time for different blur kernel estimation methods under the same imaging conditions.
The methods of Xu and Jia [11] and Cho and Lee [12] are efficiently implemented using C code in
our experiments. In contrast, the other competing methods are performed in MATLAB. Since all test
images in Figure 3 are mainly composed of fine details of different textures, we take images Im02
and Im04 as examples to evaluate the computational efficiency. The computational time of different
competing blur kernel estimation methods is summarized in Table 1. It could be found that the
methods of Xu and Jia [11] and Cho and Lee [12] generate the lowest computational cost due to the C
implementation. Our proposed method yields significantly faster computational speeds compared
with Fergus et al. [7] and Levin et al. [58]. However, the method of Pan and Su [13] achieves the
highest computational efficiency due to the fast alternating direction optimization method. As shown
in Table 1, the proposed method yields the best evaluation results in terms of the SSD metric under
consideration in most of the cases. The satisfactory performance of our proposed method benefits
from the combination of the L1-norm of kernel intensity with the squared L2-norm of the intensity
derivative. It could be further observed that both computational cost and image quality highly depend
on the size of the blur kernel. As the size becomes larger, the computational cost obviously becomes
higher, and the image quality could becomes lower for all competing methods under different imaging
conditions. In addition, there is no significant difference in blind deblurring performance between
different test images for the same blurring degradation.

Table 1. Sum of squared differences (SSD)/CPU computational time (unit: seconds) of different blind
deblurring methods on one synthetic test image from [4].

Methods Ker01 Ker02 Ker03 Ker04 Ker05 Ker06 Ker07 Ker08
Im02

Fergus et al. [7] 156.1/449.6 181.8/403.7 44.28/409.3 88.89/311.0 69.13/350.5 44.92/377.8 120.6/407.8 77.30/466.8
Xu and Jia [11] 44.45/1.264 82.76/1.263 76.92/1.061 38.64/1.263 138.2/1.248 67.12/1.279 231.6/1.280 81.19/1.264
Cho and Lee [12] 75.82/1.159 103.2/1.163 74.06/1.021 112.1/1.250 70.55/1.140 41.28/1.133 75.42/1.236 130.6/1.245
Pan and Su [13] 42.11/1.474 102.2/1.564 56.28/1.328 132.5/1.559 46.36/1.428 37.04/1.452 99.73/1.673 57.67/1.572
Levin et al. [58] 85.76/115.9 121.8/138.7 37.92/68.14 73.36/299.1 102.7/94.09 83.74/83.95 106.9/185.6 57.93/179.0
Ours 35.20/2.041 74.64/2.008 36.85/1.823 95.50/2.159 34.26/1.884 34.20/2.052 73.17/2.136 42.25/2.128

Im04
Fergus et al. [7] 99.55/436.2 162.4/389.7 51.64/418.6 72.67/299.2 47.70/338.7 45.65/374.6 90.47/388.4 65.20/472.4
Xu and Jia [11] 38.43/1.294 93.93/1.248 70.88/1.092 195.7/1.280 60.74/1.263 36.03/1.123 125.3/1.264 69.44/1.263
Cho and Lee [12] 112.0/1.243 113.5/1.130 69.76/1.046 135.2/1.269 116.0/1.223 43.65/1.086 269.0/1.238 123.1/1.242
Pan and Su [13] 45.42/1.494 131.4/1.560 54.48/1.325 127.5/1.572 55.22/1.433 36.64/1.457 125.5/1.579 62.00/1.570
Levin et al. [58] 88.21/108.5 123.3/135.6 39.84/79.05 122.4/284.9 63.71/91.66 63.30/79.67 114.0/169.6 57.70/168.3
Ours 36.43/1.995 93.36/1.970 36.58/1.895 90.51/2.129 39.91/1.867 35.20/1.923 88.96/2.171 45.18/2.163

For a better comparison, Figure 5 visually displays a test image from the synthetic blur-image
dataset [4] recovered by different deblurring methods. As can be observed, our proposed method
estimates a more accurate blur kernel. The proposed method generates the highest quality of deblurred
image, since it achieves a more natural-looking appearance. We can conclude that our proposed
method has superior performance compared with other competing methods.
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Figure 5. Comparison of results on one test image from [4]. From top-left to bottom-right: (a) latent
sharp image, deblurred versions with (b) the truth blur kernel, estimated blur kernels generated
by (c) Fergus et al. [7], (d) Xu and Jia [11], (e) Cho and Lee [12], (f) Levin et al. [58], (g) Pan and
Su [13] and (h) our proposed method, respectively. The estimated blur kernels are illustrated in the
upper-left panels.

4.3. Experiments on a Large Blur Kernel

Single-image blind deconvolution with a large blur kernel is an extremely challenging problem
in practical application. It is necessary to investigate whether our proposed method is able to deal
with the large blur kernel. In this subsection, our proposed method will be compared with three
state-of-the-art deblurring methods, i.e., Xu and Jia [11] in ECCV-2010, Krishnan et al. [9] in CVPR-2011
and Pan et al. [59] in CVPR-2016. Once the blur kernel is estimated, the method of Xu and Jia [11]
implements a robust non-blind deconvolution by integrating the L1-norm data-fidelity term and
the TV regularizer. Krishnan et al. [9] directly uses the hyper-Laplacian prior-based fast non-blind
deconvolution method [26] to generate the final recovered image. The non-blind deconvolution results
in our proposed method will be achieved using the combination of the L1-norm data-fidelity term
and the TGV2 regularizer summarized in Algorithm 3. In contrast, the method in Pan et al. [59]
simultaneously estimates the latent sharp image and blur kernel by introducing the assumption of the
dark channel prior.

The blind deblurring results with large blur kernels are visually displayed in Figures 6 and 7.
As shown in Figure 6, the method of Krishnan et al. [9] is unable to yield the satisfactory estimation
of the large blur kernel of the size 159× 159. The resulting deblurred image suffers from the loss of
important geometrical structures, which significantly degrades the visual quality. In contrast, the
methods of Xu and Jia [11], Pan et al. [59] and our proposed method have the capacity of guaranteeing
the accurate estimation of the blur kernel. The main geometrical structures in the deblurred images
could be reconstructed correspondingly. However, an excess smoothing could be observed in the
methods of Xu and Jia [11] and Pan et al. [59], which leads to the loss of small structural features.
Owing to the second-order regularizer TGV2, our non-blind deconvolution method produces a much
more natural-looking result than Xu and Jia [11] and Pan et al. [59]. As shown by the arrows in Figure 6,
more details could be preserved in our proposed method; thus, the resulting deblurring performance
outperforms other comparative methods. More blind deblurring results with large blur kernels are
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visually illustrated in Figure 7. The sizes of the estimated blur kernels in our experiments are 101× 101,
95× 95 and 91× 91, respectively. It could be found that the method of Krishnan et al. [9] fails to
yield the accurate estimation of the blur kernel and generates unsatisfactory deblurring performance.
In contrast, the proposed method is able to generate comparable results to the state-of-the-art blind
deblurring methods, i.e., Xu and Jia [11] and Pan et al. [59]. The final high-quality recovered images
could be achieved with more structures and details preserved. Therefore, there is a huge potential to
use our proposed method to restore the blurred images with large blur kernels in practice.

Figure 6. Restoration of a blurred image with a large motion kernel of the size 159× 159. From left to
right: (a) input blurred image, deblurred versions generated by (b) Xu and Jia [11], (c) Krishnan et al. [9],
(d) Pan et al. [59] and (e) our proposed method, respectively. The estimated blur kernels and local
magnification views respectively are illustrated in the upper-left and bottom panels.

Figure 7. Blind deconvolution of three different realistic images. From left to right: (a) input blurred
image, deblurred versions generated by (b) Xu and Jia [11], (c) Krishnan et al. [9], (d) Pan et al. [59]
and (e) our proposed method, respectively. The sizes of the estimated blur kernels from top to bottom
are 101× 101, 95× 95 and 91× 91, respectively.
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4.4. Experiments on Ocean Engineering

In the field of ocean engineering, computer vision-assisted automatic detection and tracking
systems with airborne and shipborne imaging sensors have been widely used to improve maritime
control, safety and rescue operations. However, the resulting imaging performance sometimes suffers
from motion blur, noise, haze and sensor nonlinearities, which could significantly degrade the visual
image quality under poor weather conditions. In this paper, we mainly focus our attention on the
restoration of blurred images, since this degradation condition is more common than other conditions
in ocean engineering. The experimental images captured with airborne and shipborne imaging sensor
systems, as well as the corresponding blur kernel estimation and image deconvolution results are
visually displayed in Figures 8 and 9. The sizes of the estimated blur kernels are 35× 35 and 95× 95,
respectively. As shown in Figure 8, the method of Krishnan et al. [9] is unable to achieve high-quality
blur kernel estimation resulting in unsatisfactory deblurring performance with ringing-like artifacts.
In contrast, Pan et al. [59] and our proposed method have the capacity of producing accurate estimation
of the blur kernel for this example. The final high-quality restored images could be guaranteed using
non-blind deconvolution methods. However, due to the low-contrast structure shown in Figure 9, the
latest dark channel prior-based method [59] could not accurately estimate the blur kernel in the case of
shipborne imaging. The reason behind this phenomenon may be that the statistical properties between
images captured by shipborne cameras and natural images are essentially different. The assumption
of the dark channel prior is not always valid under different imaging conditions. The method of Xu
and Jia [11] also fails to estimate the blur kernel and generates a low-quality restored image. Figure 9
visually illustrates that our proposed method is still able to guarantee accurate kernel estimation and
image deconvolution. More geometric structures and fine details could be preserved in our recovered
images, beneficial for detecting and tracking moving vessels in practice. The maritime control, safety
and rescue operations could be correspondingly improved in the field of maritime management and
ocean engineering.

Figure 8. Restoration of a blurred image captured with an airborne camera. From left to right:
(a) input blurred image, deblurred versions generated by (b) Xu and Jia [11], (c) Krishnan et al. [9],
(d) Pan et al. [59] and (e) our proposed method, respectively. The estimated blur kernels of the size
35× 35 and local magnification views respectively are illustrated in the upper-left and bottom panels.
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Figure 9. Restoration of a blurred image captured with a shipborne camera. From left to right:
(a) input blurred image, deblurred versions generated by (b) Xu and Jia [11], (c) Pan et al. [59] and
(d) our proposed method, respectively. The estimated blur kernels of the size 95 × 95 and local
magnification views respectively are illustrated in the bottom-left and bottom panels.

4.5. Experiments on More Realistic Blurred Images

To better evaluate our proposed method, this subsection is concluded by testing blind deblurring
on more realistic human and nature images. Our experimental results will be compared with
the recovered results generated by the three above-mentioned methods, i.e., Xu and Jia [11],
Krishnan et al. [9] and Pan et al. [59]. The estimation of the blur kernel for each method is implemented
directly using the codes and parameter settings provided by the authors. As shown in Figure 10,
the recovered result generated by Krishnan et al. [9] suffers from the over-smoothing of detailed
texture structures due to the inaccurate estimation of the blur kernel. The loss of geometrical structures
easily makes the deblurred image look less natural, resulting in significant visual quality degradation.
The local magnification views shown in Figure 10 visually illustrate that the proposed method yields a
more “natural-looking” performance compared with Xu and Jia [11] and Pan et al. [59]. In particular,
more geometrical details in the face and hand regions could be preserved in our proposed method.
The sharp edges, slightly over-smoothed by Xu and Jia [11] and Pan et al. [59], have been reconstructed
accurately using our proposed method. Its superior performance benefits from the hybrid blur kernel
constraints and edge-preserving TGV2 regularizer.
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Figure 10. Single-image blind deblurring results with a blur kernel of size 27× 27 (top) and their local
magnification views (middle and bottom). From left to right: (a) input blurred images, deblurred
versions generated by (b) Xu and Jia [11], (c) Krishnan et al. [9], (d) Pan et al. [59] and (e) our proposed
method, respectively.

The excellent deblurring performance of our proposed method could also be visually found in
Figure 11. As shown in the local magnification views, the inaccurate estimation of the blur kernel for Xu
and Jia [11] causes the degraded visual quality with a significant loss of fine details. Krishnan et al. [9]
is able to guarantee the quality of blur kernel estimation in this case. However, the final deblurring
result tends to be unsatisfactory because the restored “number” could not be preserved correctly,
shown in the local magnification views. The main geometrical structures and fine details in the
recovered images are preserved by Pan et al. [59] and our proposed method. The ringing-like artifacts
could be visually found near the ear region in the deblurring result by Pan et al. [59]. Our proposed
method is able to overcome this limitation, but still generates slight ringing-like artifacts in the jaw
region. The reason may be that our non-blind deconvolution method summarized in Algorithm 3
is performed with a constant regularization parameter λ. To further enhance the image quality, the
regularization parameter should be selected spatially variant to suppress the ringing-like artifacts.
More realistic deblurring results on human images are visually displayed in Figure 12. It could be
observed that our proposed method yields deblurring results that are visually comparable with the
current state-of-the-art methods. Figure 13 illustrates the realistic deblurring results on five different
natural images. The sizes of the estimated blur kernels from top to bottom are 35 × 35, 55 × 55,
41× 41, 35× 35 and 55× 55, respectively. Since these realistic images contain sufficient textures
and geometrical structures, all competing methods have the capacity of accurately estimating the
blur kernels in these cases. Therefore, our experimental results are visually comparable to others.
The quality of the deblurred images could be correspondingly guaranteed in practical applications.
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Figure 11. Restoration of a blurred image with a blur kernel of the size 27 × 27 (top) and the
corresponding local magnification views (middle and bottom). From left to right: (a) input blurred
images, deblurred versions generated by (b) Xu and Jia [11], (c) Krishnan et al. [9], (d) Pan et al. [59]
and (e) our proposed method, respectively.

Figure 12. Blind deconvolution of two realistic human images. From left to right: (a) input blurred
images, deblurred versions generated by (b) Xu and Jia [11], (c) Krishnan et al. [9], (d) Pan et al. [59]
and (e) our proposed method, respectively. The sizes of the estimated blur kernels from top to bottom
are 25× 25 and 23× 23, respectively.
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Figure 13. Blind deconvolution of five different realistic natural images. From left to right:
(a) input blurred images, deblurred versions generated by (b) Xu and Jia [11], (c) Krishnan et al. [9],
(d) Pan et al. [59] and (e) our proposed method, respectively. The sizes of the estimated blur kernels
from top to bottom are 35× 35, 55× 55, 41× 41, 35× 35 and 55× 55, respectively (the images are best
viewed in full-screen mode).

5. Conclusions and Future Work

The major contributions of this work are mainly two-fold. First, a hybrid regularization method
was developed to robustly estimate the blur kernel by incorporating both the L1-norm of kernel
intensity and the squared L2-norm of the intensity derivative. The underlying assumption behind the
proposed method was that the blur kernel was not only spatially sparse, but also piecewise smooth
within the support of a continuous curve. An alternating direction algorithm was then proposed to
effectively solve the resulting problem of blur kernel estimation. Second, to guarantee high-quality
non-blind deconvolution, the TGV2-regularized variational model with an L1-norm data-fidelity
term was presented to enhance the final image quality. The resulting optimization problem was
then effectively solved using an ADMM-based numerical method. Comprehensive experiments
implemented on both synthetic and realistic blurred images have illustrated the effectiveness of the
proposed method. Given the recent progress in image deblurring, the proposed deblurring framework
has several potential limitations in its current version. To further improve the blind deblurring
performance, there is a huge potential to extend our future work along the following directions:

• The constant parameters (i.e., η1 and η2) for both the L1-norm of kernel intensity and the squared
L2-norm of intensity derivative in (3) are manually selected in our current work. Essentially,
it is necessary to automatically and adaptively select the parameters according to the statistical
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properties of the blur kernel. For instance, if the blur kernel can be better sparsely represented
in the spatial domain, η1 should be larger; whereas η2 plays a more important role if the blur
kernel has a significant piecewise smooth structure. In our future work, an automatic estimation
method should be developed to adaptively select the weighting parameters η1 and η2 in (3) to
enhance the accuracy of blur kernel estimation.

• The single-image blind deblurring method proposed in this work is performed based on a
common assumption that the blur kernel is uniform (i.e., spatially invariant) across the image
plane. Recent work in the literature [2,60–65] has illustrated that the uniform simple assumption
does not always hold in practice. To further enhance image quality, the assumption of the
non-uniform (i.e., spatially variant) blur kernel has gained increasing attention in modern
imaging sciences. In our opinion, the proposed hybrid regularized blur kernel estimation method
discussed in Section 2 can be naturally extended to the case of non-uniform deblurring in
future work.

As discussed beforehand, our proposed method suffers from some potential limitations
(i.e., constant weighting parameters and uniform blurring assumption). Numerous experiments
implemented on both synthetic and realistic blurred images have demonstrated its satisfactory
deblurring performance. Therefore, it is still worthy of consideration since it could guarantee
reliable performance compared to current state-of-the-art uniform blind deblurring methods. Recent
research [9,41,59] has indirectly shown that our proposed method could be easily extended to the case
of the non-uniform scenario. We believe there is a great potential for restoring blurred images using
the proposed method in practical applications.
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