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Abstract

There is a high incidence of infertility in males following traumatic spinal cord injury (SCI). Quality of semen is frequently
poor in these patients, but the pathophysiological mechanism(s) causing this are not known. Blood-testis barrier (BTB)
integrity following SCI has not previously been examined. The objective of this study was to characterize the effects of
spinal contusion injury on the BTB in the rat. 63 adult, male Sprague Dawley rats received SCI (n = 28), laminectomy only
(n = 7) or served as uninjured, age-matched controls (n = 28). Using dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI), BTB permeability to the vascular contrast agent gadopentate dimeglumine (Gd) was assessed at either
72 hours-, or 10 months post-SCI. DCE-MRI data revealed that BTB permeability to Gd was greater than controls at both 72 h
and 10 mo post-SCI. Histological evaluation of testis tissue showed increased BTB permeability to immunoglobulin G at
both 72 hours- and 10 months post-SCI, compared to age-matched sham-operated and uninjured controls. Tight junctional
integrity within the seminiferous epithelium was assessed; at 72 hours post-SCI, decreased expression of the tight junction
protein occludin was observed. Presence of inflammation in the testes was also examined. High expression of the
proinflammatory cytokine interleukin-1 beta was detected in testis tissue. CD68+ immune cell infiltrate and mast cells were
also detected within the seminiferous epithelium of both acute and chronic SCI groups but not in controls. In addition,
extensive germ cell apoptosis was observed at 72 h post-SCI. Based on these results, we conclude that SCI is followed by
compromised BTB integrity by as early as 72 hours post-injury in rats and is accompanied by a substantial immune response
within the testis. Furthermore, our results indicate that the BTB remains compromised and testis immune cell infiltration
persists for months after the initial injury.
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Introduction

Men who have suffered traumatic spinal cord injuries (SCI)

commonly become infertile, in large part because of a dramatic

reduction in the quality of their seminal fluid. For these patients,

sperm motility and viability are frequently poor [1]. Additionally,

abnormalities of the semen are frequently exhibited after SCI;

these include leukocytospermia, elevated levels of cytokines and

reactive oxygen species within the seminal fluid, and the presence

of seminal antisperm antibodies [2–4]. The decline in seminal

quality after injury is rapid. In one report, sperm viability and

motility were found to be as poor in men 16 days post-injury as

that of men with chronic SCI [5]. It has been suggested that

physiological and lifestyle factors such as scrotal temperature,

bladder management, and ejaculation frequency might contribute

to the poor quality of SCI patients’ semen. To date, however, no

definitive etiology has been identified [1].

The blood-testis barrier (BTB) is comprised of tight junctions

between the Sertoli cells that line the seminiferous tubules of the

testes; it divides the tubules into basal and adluminal compart-

ments. The BTB has two important functions: (1) To maintain a

specialized adluminal biochemical environment that is essential for

the maturation of viable sperm, and (2) to confer immune privilege

upon maturing germ cells [6]. Disruption of the BTB leads to the

production of anti-sperm antibodies, causing immunological

infertility [7]. Experimental BTB disruption in the rat has also

been shown to cause reduction of tight junction protein expression,

and germ cell loss from the seminiferous epithelium [8].

Recent studies indicate that pathological inflammatory process-

es after SCI are associated with damage of peripheral organs

including the lung, kidneys, and bladder [9–11]. For example,

damage to the bladder following SCI is characterized by a cellular

inflammatory response, accompanied by decreased functional

integrity of the uroepithelium due to a loss of tight junction

proteins; this pathology persists for several months after SCI [10].

In the testes, it is known that systemic inflammation can induce

damage and apoptosis in germ cells [12]. Additionally, it has been

shown that proinflammatory cytokines disrupt the BTB and result

in increased BTB permeability [13–15]. It is therefore conceivable

that SCI-associated systemic inflammation might also adversely

affect testicular function via breakdown of the BTB.
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There is little published data on the effects of experimental SCI

on the testes, and therefore it is not well-defined how variables

such as the level of injury (e.g., cervical or thoracic) and injury

model (e.g., transection, compression, contusion) may differentially

affect testicular outcome. Huang and colleagues have made

significant contributions toward understanding the effects of

thoracic SCI on outcomes such as sperm damage and spermato-

genesis in the rat [16–18]. In the current study, we have chosen to

utilize a moderate, midline spinal contusion injury at thoracic level

10 (T10) with a 1 s dwell, using the rat as a model species. This

‘‘contusion/compression’’ injury model was selected for both its

reproducibility and its close approximation of the blunt trauma

injuries exhibited by a large percentage of patients in the clinic

[19,20]. Our laboratory utilizes a T10 injury model because of its

common use by groups studying hindlimb function after SCI [19].

At this spinal cord level, there is no innervation to the testes; thus

SCI at T10 does not directly alter neuronal input to testis tissue.

Hence, the current study was designed to evaluate the effects of

SCI on the testes in the absence of testicular denervation.

Since the effects of SCI on the BTB have not previously been

reported, the overall aim of this study was to characterize BTB

function in the rat following moderate spinal contusion injury. Here,

we report functional alterations in the BTB in relation to histological

changes in the testes in the acute and chronic phases of SCI.

Materials and Methods

Ethics Statement
We certify that all applicable institutional and governmental

regulations concerning the ethical use of animals were followed

during the course of this research. This study was carried out in

strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of

Health. The protocol was approved by the Institute for Animal

Care and Use Committee of The University of Texas Health

Science Center (UTH NIH Assurance Number: A3413-01). All

efforts were made to minimize suffering.

Animal subjects and surgeries
A total of 63 adult, male Sprague-Dawley rats weighing 225–

250 g were used in this study. All spinal cord injury surgeries were

performed under anesthesia [ketamine (80 mg/kg), xylazine

(10 mg/kg), acepromazine (0.75 mg/kg)] at a dose of 0.1 mL/

100 g body weight. Spinal surgeries were performed using the

Infinite Horizon spinal injury device (Precision Systems and

Instrumentation, LLC, Fairfax Station, VA) [21]. Briefly, a

laminectomy was performed at T10 and the vertebral column

stabilized at T9 and T11. A moderate contusion injury was delivered

using 150 kdynes of force with a 1 s dwell. Immediately following

injury, the overlying muscles were sutured and the skin was closed

with stainless steel wound clips. Sham-operated animals received a

laminectomy without spinal cord contusion. Animals’ bladders were

manually expressed twice daily until control of bladder function was

completely regained. Animals were treated twice daily for five days

with buprenorphine (0.02 mg/kg). Animals received 0.9% saline i.p.

twice daily for the first 72 h, as well as postoperative antibiotics

(2.5 mg/kg Baytril) twice daily for up to 10 days to prevent infection.

Prior to DCE-MRI scans, animals were anesthetized with

isoflurane (4%), intubated, and maintained under anesthesia (2–

2.5% isoflurane, 30% oxygen, 67.5–68% air) by mechanical

ventilation through a rodent ventilator for the entire duration of

the scan (approximately 2 h). For intravenous delivery of the

contrast agent, gadopentate dimeglumine (Gd) (287 mg/kg;

Magnevist, Montville, NJ), the right jugular vein was cannulated,

a vascular port with silicone tubing was implanted, and the incisions

closed with suture. Animals used for DCE-MRI experiments were

sacrificed either at 72 h post-SCI (n = 21), or at 10 mo post-SCI

(n = 14). DCE-MRI scans were performed only once per animal. All

animals were euthanized with beuthanasia (75 mg/kg) and

transcardially perfused with ice-cold PBS. Testes were excised and

immediately snap-frozen for histological analyses.

DCE-MRI
To assess BTB permeability, dynamic contrast-enhanced mag-

netic resonance imaging (DCE-MRI) was performed. All DCE-MRI

studies were performed on a 7-Tesla Bruker scanner (70/30 USR;

Bruker Biospin, Karlsruhe, Germany). A 72-mm diameter birdcage

volume coil was used for transmitter and receiver. Prior to each

DCE-MRI scan, a quality assurance scan was performed to assess

signal-to-noise ratio and magnetic field homogeneity. A 5-mm

diameter cylindrical phantom was placed adjacent to the testes and

used to monitor for any signal drop due to system instabilities in

order to make corresponding compensation adjustments to the

DCE-MRI signal during data analysis. Animals were oriented feet-

first and supine on a Plexiglas bed. Respiratory rate and rectal

temperature were monitored throughout the experiment with a

physiologic monitoring unit. A pulse-oximeter was used to monitor

heart rate and oxygen saturation levels. For the duration of the

experiment, a heating system was used to maintain the body

temperature at 33uC. This served to minimize temperature-

responsive testes movement. The DCE-MRI scan consisted of a

2D T1-weighted multi-slice multi-echo scan to acquire contiguous

axial images across the entire testes. Acquisition parameters were:

repetition time [TR] = 1200 ms, number of echo images = 1, echo

time [TE] = 10.4 ms, field-of-view [FOV] = 35 mm643.75 mm,

acquisition matrix = 1286160, slice thickness = 1 mm, number of

slices = 24, and number of repetitions = 25. To avoid crosstalk

between slices, a slice–interleaved acquisition scheme was used in

addition to a gradient spoiler at the beginning of each slice

acquisition and the use of Hermite RF pulses to improve the slice

profile. The scan had a temporal resolution of 3 min, 12 s.

Immediately following the third repetition, a ready-to-inject 0.2-

mL bolus of Gd was administered into the jugular vein via the

vascular port. Image intensities over a user-defined region of interest

(ROI) encompassing only testes tissue were obtained using

ParaVision 4.0 image analysis software. 8–10 integrated image

intensities were obtained for each testis, and the mean image

intensity for each group was calculated. The increase in signal

intensity following Gd injection was expressed as a percentage

change relative to baseline intensity, as previously described [22].

Data for right and left testes were analyzed separately in order to rule

out the possibility of significant differences in permeability between

the right- and left testes, but no significant differences were found

(data not shown). Thus, the reported data reflects the sum total (right

+ left testes) of integrated image intensities for each animal.

Immunofluorescent microscopy and
immunohistochemistry

For all of the following histological procedures, frozen tissue was

cryosectioned to a thickness of 10 mm, mounted to gelatinized

slides, air dried, and fixed in 220uC methanol for 10 minutes.

Every sixth section in series was chosen for histological analysis.

For immunofluorescent detection of endogenous immunoglob-

ulin G (IgG), sections were blocked with 5% normal goat serum

for 1 hr, then incubated with Alexa Fluor 488 anti-rat IgG (goat

polyclonal, 1:500, Invitrogen) overnight at 4uC on a rotating

shaker. Sections were then stained with the nuclear stain DAPI

(0.0007%) in PBS for 30 minutes, washed, dried, and coverslipped

SCI Causes Blood-Testis Barrier Disruption
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with Fluoromount-G (SouthernBiotech, Birmingham, AL). For all

other immunofluorescent detection, sections were blocked first

with 5% normal goat serum for 1 hr, then incubated with

antibodies against occludin (rabbit polyclonal, 1:250, Invitrogen),

CD68 (mouse monoclonal, 1:500, Serotec), or IL-1b (goat

polyclonal, 1:10, R&D Systems) overnight at 4uC on a rotating

shaker. Tissue was washed and incubated with species-specific

Alexa Fluor conjugated secondary antibodies (1:500, Invitrogen)

for 3 hr, stained with DAPI, washed again, dried, and cover-

slipped. Image stacks were generated using a Nikon A1R confocal

microscope, and used to produce single, projected images. All

efforts were made to maintain the same levels for laser power,

gain, and contrast between image samples.

Cellular apoptosis was detected with terminal deoxynucleotidyl

transferase-mediated dUTP nick end-labeling (TUNEL) staining,

using the DeadEnd Colorimetric TUNEL System protocol

(Promega). After fixation, tissue sections were permeabilized with

Proteinase K. Tissue was then washed again in PBS and refixed in

4% paraformaldehyde. Tissue was washed again, equilibrated,

and incubated with biotinylated nucleotide and recombinant

Terminal Deoxynucleotidyl Transferase (rTDT) enzyme in a

humidified chamber for 1 hr. After washes, sections were

incubated in Streptavidin HRP solution for 30 min, and then

developed using 3,39 Diaminobenzidine as the chromogen. Tissue

sections were counterstained with hematoxylin, washed, dried, and

coverslipped. Mast cells were labeled by staining with toluidine

blue. Sections were washed in PBS then dH2O, and stained with

toluidine blue (0.1%) as previously described [23]. Sections were

rinsed in dH2O, dried, and coverslipped. Light-level images were

captured using an Olympus BX61 upright microscope with a

SPOT Flex microscope digital camera.

Immunoblot analysis
Animals used for immunoblot experiments (n = 28) were

sacrificed and tissue was harvested as described above. Tissue

was homogenized and total protein concentration was determined

Figure 1. Representative dynamic contrast-enhanced MRI testes images. Each column displays an axial slice through the testes, as imaged
at various time points during the course of the DCE-MRI scan. (Figure S1 provides a guide to interpreting testis anatomy in this figure.) Rows from top
to bottom: before intravascular injection of the contrast agent gadopentate dimeglumine (Gd); 6 min-; 39 min-; and 66 min post-injection. Areas of
Gd-induced contrast enhancement manifest as an increase in tissue brightness (for example, see Figure 1B, arrow). (A – D): Representative testes
image from 72 h sham-operated group (n = 7). Dashed oval in (A) represents a typical user-defined region of interest that was used to calculate
integrated image intensities. (E – H): Representative image from 72 h SCI group (n = 7). Arrow in (G) indicates a region of hyperintense tissue and
increased BTB permeability. (I – L): Representative image from 10 mo uninjured (naı̈ve) group (n = 7). (M – P): Representative image from 10 mo SCI
group (n = 7). Arrow in (P) indicates a region of hyperintense tissue and increased BTB permeability. Scale bar = 1 cm.
doi:10.1371/journal.pone.0016456.g001
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with the Pierce BCA protein assay (Thermo Scientific). Samples

were resolved by SDS-PAGE, and transferred to PVDF

membrane using a Trans-Blot SD semi-dry transfer cell (Bio-

Rad). Non-specific antigens were blocked by incubation in

Odyssey Blocking Buffer (LI-COR Biosciences, Lincoln, Ne-

braska) for 1 h at room temperature on a rotating shaker.

Membranes were then incubated in primary antibodies against

occludin (rabbit polyclonal, 1:1000, Invitrogen) and the endoge-

nous control marker b-actin (mouse monoclonal, 1:15000, Abcam)

at 4uC on a rotating shaker. Immunoreactivity was detected using

species-specific IRDye infrared secondary antibodies (LI-COR

Biosciences) and visualized with the Odyssey Infrared Imaging

System (LI-COR Biosciences). Immunoreactivity was quantified

using Odyssey software (LI-COR Biosciences).

Statistical Analysis
Group data were analyzed by one-way analysis of variance,

followed by a paired Student’s t-test for comparisons between

groups. Data are expressed as the mean 6 standard deviation

(s.d.), with P value ,0.05 considered to be significant.

Figure 2. Blood-testis barrier permeability to Gd is increased in acute and chronic SCI. Gross BTB permeability is represented by
integrated signal intensity (SI) of testes tissue after i.v. injection of gadopentate dimeglumine (Gd). All data are expressed relative to pre-Gd injection
values (baseline). X-axis indicates number of min following Gd injection. Data points represent mean 6 s.d. (A): Total SI for testes of 72 h SCI group
(triangles, n = 7) compared to that of sham-operated group (circles, n = 7). SI was significantly higher in SCI group compared to shams by 12 min after
Gd injection (P = 0.046), and remained significantly increased by the end of the scan (66 min, P = 0.009). (B): SI of 10 mo SCI testes (triangles, n = 7)
compared to that of uninjured, age-matched control testes (circles, n = 7). SI of SCI group was significantly greater than that of controls by at 6 min
after Gd injection (P = 0.011), and remained significantly increased at the end of the scan (66 min, P = 0.008). Asterisk (*) and double asterisk (**)
indicate statistical significance P,0.05 and P,0.01, respectively.
doi:10.1371/journal.pone.0016456.g002
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Results

DCE-MRI
DCE-MRI is a noninvasive imaging technique that allows

visualization of blood-organ barrier permeability using vascular

contrast agents. The low molecular weight paramagnetic contrast

agent Gd is administered i.v. and readily diffuses from the

bloodstream to the extravascular space, but does not cross the

BTB [22,24]. DCE-MRI has previously been shown to be an

effective indicator of BTB dysfunction in the rat and cat [22,25].

To assess BTB function after SCI in rat, testis tissue permeability

to Gd was examined using DCE-MRI at 72 h (acute) and 10 mo

(chronic) following SCI. The 72-h time point was chosen for these

experiments because it was shown to coincide with peak blood-

spinal cord barrier permeability during the acute phase of SCI

(unpublished data). (A guide to understanding testis anatomy on

the MRI panels is provided in Figure S1.) Figure 1 shows

representative DCE-MRI images of rat testes before and after

vascular administration of the contrast agent Gd. Only regions of

tissue within the tunica albuginea were analyzed (Figure 1A,

dashed oval).

Testes of 72 h sham-operated animals (Figure 1, A–D) displayed

a slight overall increase in signal intensity (SI) shortly after

injection (Figure 1B), followed by a gradual reduction in SI over

the course of the scan. 72 h age-matched, uninjured animals

displayed contrast enhancement profiles similar to those of shams

(data not shown). This slight global contrast enhancement in testes

of non-SCI animals is attributable to Gd that diffuses into the

interstitial space, but does not penetrate the BTB [22,25]. By

approximately one hour after administration of contrast agent,

testes’ SI still appeared slightly enhanced compared to pre-Gd

baseline (Figure 1D). Testes of 72 h SCI animals (Figure 1, E–H)

appeared similar to those of shams before Gd bolus (Figure 1E).

However, contrast enhancement in 72 h SCI animals was

exaggerated compared to shams; additionally, bright spots of

enhancement were visible shortly after injection and gradually

became more prominent over the course of the scan (Figure 1G,

arrow). 10 month-old uninjured control animals displayed a

contrast enhancement profile similar to that of 72 h shams

(Figure 1, I–L). Conversely, testes of rats 10 mo after SCI

displayed a rapid and substantial increase in SI from immediately

after injection, and SI appeared to grow more enhanced over time

Figure 3. Seminiferous tubules are permeable to IgG following SCI. Immunofluorescent images of testis tissue labeled for the antibody
protein immunoglobulin G (IgG; green) and counterstained for the nuclear stain DAPI (blue). (A): IgG was detected only within interstitial space of
testes (arrowhead) in 72 h sham controls (n = 7). (B): IgG was detected within seminiferous tubules in testes 72 h after SCI (n = 7). Notably, some cells
present within the seminiferous epithelium appeared to be closely associated with bright IgG immunoreactivity (arrowheads). (C): Seminiferous
tubules of 10 mo age-matched, uninjured controls did not contain IgG (n = 7). (D): Diffuse IgG staining was present within seminiferous tubules of
10 mo SCI testes (n = 7). Additionally, the basal lamina of some tubules was partially degraded (arrowhead). Scale bars = 100 mm.
doi:10.1371/journal.pone.0016456.g003

SCI Causes Blood-Testis Barrier Disruption
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(Figure 1, M–P). Contrast enhancement was not uniform

throughout testis tissue, and distinct regions of especially high SI

were often observed (Figure 1P, arrow).

In order to quantify BTB permeability, integrated image

intensities of user-defined ROIs in testis tissue (Figure 1A, dashed

oval) were obtained and plotted as a function of time relative to Gd

injection (Figure 2). A significant increase in SI of the 72 h SCI

group compared to shams (P = 0.046 at 12 minutes) was first

observed early after i.v. administration of Gd (Figure 2A). For the

remainder of the scan, SI was consistently higher in the SCI group

compared to shams. In the 10 mo group, SI of the SCI group was

also significantly higher than age-matched controls from early

post-Gd injection (P = 0.011 at 6 minutes), and this trend was also

sustained throughout the scan (Figure 2B). SI curves for the 10 mo

uninjured group appeared to be slightly more variable among

subjects compared to the 72 h sham group, possibly due to age-

associated variability in BTB function.

Histological evidence of BTB failure
To histologically examine BTB function, we examined testis

distribution of immunoglobulin G (IgG), an abundant protein in

the bloodstream that is normally restricted from the seminiferous

tubules by the BTB (Figure 3) [26]. (Figure S2 is provided as an

anatomical reference and guide to interpreting histological

images.) In the 72 h sham group, IgG was detected only within

the testis interstitial tissue (Figure 3A, arrowhead) and not within

the tubules. In contrast, IgG deposits were frequently observed

within seminiferous tubules 72 h after SCI (Figure 3B). In

addition, strong IgG immunoreactivity surrounding some nucle-

ated cells was detected within the seminiferous epithelium

(Figure 3B, arrowheads). In 10 mo uninjured animals, IgG was

only detected within the interstitial space (Figure 3C). However,

diffuse IgG deposits are visible within the borders of seminiferous

tubules in 10 mo SCI animals (Figure 3D). Moreover, the basal

lamina appeared to be degraded in some IgG+ seminiferous

tubules of 10 mo SCI testes (Figure 3D, arrowhead).

To investigate the structural integrity of the BTB, we examined

distribution of the abundant BTB tight junction protein occludin

in the seminiferous tubules (Figure 4). Occludin is located in tight

junctions between Sertoli cells in the seminiferous epithelium, and

normal occludin immunoreactivity appears as a regular, discon-

tinuous pattern along the border of seminiferous tubules [27,28].

In 72 h sham and 10 mo uninjured animals, occludin immuno-

reactivity at the BTB appeared normal (Figure 4A, C). However,

Figure 4. Occludin expression at the BTB is reduced during acute but not chronic SCI. Immunofluorescent images of seminiferous tubules
labeled for the tight junction protein occludin (green). (A): Normal distribution of occludin at the BTB in 72 h sham-operated animals (n = 7). (B): 72 h
after SCI, occludin immunoreactivity appeared reduced compared to sham controls (n = 7). (C): Occludin immunoreactivity in 10 mo uninjured
animals appeared normal (n = 7). (D): Occludin distribution of 10 mo SCI group was similar to that of age-matched controls (n = 7). Scale
bars = 50 mm.
doi:10.1371/journal.pone.0016456.g004
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72 h after SCI, occludin at the BTB was dramatically altered

(Figure 4B). Overall occludin levels were substantially decreased,

and distribution patterns appeared abnormal in 72 h SCI testes.

At 10 mo post-SCI, however, distribution of occludin at the BTB

appeared normal (Figure 4D). Immunoblotting confirmed that

total testes occludin protein levels were indeed significantly

decreased at 72 h post-SCI compared to shams (P = 0.020), but

no significant difference was detected between 10 mo groups

(P = 0.282) (Figure 5).

Germ cell apoptosis in acute SCI
Experimental disruption of the BTB has been shown to damage

the seminiferous epithelium, inducing depletion and apoptosis of

germ cells [8,29]. To evaluate whether the observed BTB

dysfunction following SCI was accompanied by germ cell death,

TUNEL staining was carried out to detect apoptotic cells in the

testis tissue. Though the seminiferous epithelium of sham controls

possessed few or no cells undergoing apoptosis (Figure 6A),

extensive cell death was detected within the tubules of 72 h SCI

testes (Figure 6B). The localization of apoptotic cells within the

tubules, as well as the number of apoptotic cells present, strongly

suggested a germ cell identity. In addition, appearance of the

apoptotic cells observed here was consistent with the appearance

of apoptotic germ cells in the seminiferous epithelium in previously

published reports [30,31]. Finally, seminiferous tubules of 72 h

SCI animals appeared to contain depleted numbers of germ cells.

Thus, it is very likely that many of the cells undergoing apoptosis

72 h after SCI are germ cells. Widespread apoptosis was observed

within many different seminiferous tubules, although the extent of

apoptosis in each tubule varied (Figure 6C). Neither 10 mo

uninjured controls nor 10 mo SCI animals exhibited evidence of

germ cell apoptosis (data not shown).

Immune cell infiltration following SCI
Damage to peripheral organs following SCI has been shown to

correlate with, and be mediated by, immune cell infiltration

[9,10]. In particular, testicular inflammation causes an influx of

circulating monocytes and macrophages to the testes [32]. To

investigate whether BTB breakdown following SCI is accompa-

nied by the infiltration of these cells in the testes, immunostaining

for the monocyte-macrophage marker CD68 was performed. Few

CD68+ cells were observed in sham controls, and those observed

were only located within the interstitial space (Figure 7A). At 72 h

post-SCI, numerous CD68+ cells were detected within the

interstitial space of the testes as well as within the seminiferous

epithelium (Figure 7B). CD68+ cells were also present within the

interstitial space of 10 mo SCI testes, but were not frequently

observed within the seminiferous tubules (Figure 7D), whereas

testes of 10 mo uninjured animals contained relatively few CD68+

cells and only within the interstitium (Figure 7C).

Mast cells play a key role in inflammation during the allergic

response and defense against pathogens; they release molecules

such as histamine that trigger the inflammatory response [33].

Mast cell presence within testis tissue and seminal fluid has been

associated with infertility [34,35]. Therefore, we investigated

whether mast cells were present in testis tissue after SCI. Mast cells

are identified by their distinct purple morphology upon toluidine

blue staining (Figure 7F, arrowheads) [23]. Very few mast cells

were detected within testes of 72 h sham animals (Figure 7E) and

10 mo naı̈ve animals (Figure 7G). However, abundant numbers of

mast cells were present within the seminiferous epithelium of both

72 h SCI animals (Figure 7F, arrowheads) and 10 mo SCI animals

(Figure 7H).

The cytokine interleukin-1 beta (IL-1b) is a major proinflam-

matory mediator that promotes early inflammatory responses

during pathological processes [36]. To investigate whether this

pro-inflammatory signaling is present in the testes after SCI, IL-1b
immunostaining was performed. Whereas testes of 72 h sham

controls (Figure 7I) did not show IL-1b staining, 72 h SCI testes

possessed diffuse immunoreactivity for IL-1b, both within the

seminiferous tubules as well as in the interstitial space (Figure 7J).

In addition, IL-1b+ cells were also detected within the seminiferous

epithelium (Figure 7J, arrowhead). Neither 10-mo group displayed

any IL-1b immunoreactivity (data not shown).

Discussion

Here, we have described a considerable decline in BTB integrity

subsequent to moderate spinal contusion injury in the adult rat.

We show that normal BTB function—the exclusion of blood-born

substances from the seminiferous tubules—is considerably im-

paired from as early as 72 h after SCI. Furthermore, our MRI

data suggests long-term deficits in BTB function are sustained as

late as 10 mo after SCI. We also demonstrate testis immune cell

infiltration at both acute and chronic SCI. Lastly, we provide

evidence that early post-SCI, the environment within the testis is

proinflammatory, BTB structural integrity is compromised, and

there is extensive apoptosis and depletion of germ cells.

DCE-MRI is a technique widely used to study permeability of

blood-organ barriers. The vascular contrast agent Gd does not

penetrate the intact BTB, and as such DCE-MRI has been

demonstrated to be an effective measure of BTB permeability in

vivo [22,25]. We now report contrast enhancement profiles

following SCI in the rat that indicate a substantially dysfunctional

BTB. To ascertain whether these observed effects could be

attributed to the invasive surgical procedures performed in this

study, or to the direct effect of injury to the spinal cord, we

compared the contrast enhancement profiles of 72 h sham-

operated animals to 72 h naı̈ve controls. We did not detect any

significant differences, either qualitatively (by objective analysis of

MRI images) or quantitatively (by comparison of SI curves) in the

BTB permeability of shams versus naı̈ve controls (data not shown).

Figure 5. Testis occludin expression is decreased in acute SCI.
Graph represents total testis occludin protein expression levels (mean
6 s.d.) normalized to b-actin expression levels. Occludin expression was
significantly decreased in 72 h SCI animals compared to naı̈ve,
uninjured controls [72 h naı̈ve, 1.0060.21 (n = 7); 72 h SCI: 0.3260.06
(n = 7); P = 0.020 (asterisk)]. No significant difference was detected
between expression levels of 10 mo SCI and 10 mo uninjured, age-
matched control groups [10 mo naı̈ve, 1.0060.15 (n = 7); 10 mo SCI,
0.9160.13 (n = 7); P = 0.282].
doi:10.1371/journal.pone.0016456.g005
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From this, we conclude that the observed increases in BTB

permeability are attributable to SCI alone, and we also propose

that the use of 10 mo age-matched, naı̈ve controls is an

appropriate control for this study. However, we cannot discount

the possibility that the effects of sham-surgery may alter properties

of the BTB over prolonged periods of time. This possibility will be

addressed in future investigations of the chronic effects of SCI on

the BTB.

The antibody protein IgG, an abundant component of the

bloodstream, is restricted from penetrating the intact BTB [26].

Deposits of immunoglobulins have frequently been detected within

the seminiferous tubules of rats immunized with testicular antigens

or treated with adjuvants to disrupt the BTB [37,38]. Here, we

report the presence of IgG deposits within rat seminiferous tubules

at 72 h following SCI. Together with our DCE-MRI results, this

provides compelling evidence that the BTB is compromised during

the acute phase of SCI. IgG deposits were also observed, though to

a much lesser extent, within seminiferous tubules of the 10 month

post-SCI rat. While this may indicate a chronic loss of BTB

integrity, we do not discount the possibility that these IgG deposits

are actually the uncleared remains of IgG deposited early after

injury. It is also conceivable that during chronic SCI, the BTB is

differentially permeable to smaller molecules such as Gd (0.9 kD),

and relatively impermeable to larger molecules such as IgG

(150 kD). We plan to assess the seminiferous tubule permeability

of exogenously added, fluorescently-tagged markers of various

molecular weights in future chronic SCI studies.

Based on our results, it is likely that decreased expression of tight

junction proteins such as occludin contribute to BTB dysfunction

during the acute phase of SCI. Multiple other protein components

of the BTB are critical for normal barrier opening and closing

during spermatogenesis [39]. It is likely that other BTB proteins,

while not examined in the current study, play early or sustained

roles in ongoing BTB dysfunction. Recently, it was shown that SCI

disrupts tight junctions within the uroepithelium of the bladder,

causing uroepithelial dysfunction from the acute to chronic phases

of injury [10]. In addition, there is evidence of a persistent

inflammatory process that promotes elevated blood-spinal cord

barrier permeability, and persists during the chronic phase of SCI

[40]. Organ dysfunction and failure is common in SCI patients

[41]. We therefore speculate that a sustained systemic response

after SCI might impact multiple peripheral tissues and organ

systems.

Here, we have reported the presence of IL-1b in testis tissue

during the acute phase of SCI. IL-1b is a potent proinflammatory

cytokine secreted by macrophages, and its presence is strongly

indicative of the acute phase inflammatory response of host

defense in disease. It promotes activation of immune cells such as

macrophages and neutrophils, causing them to release tissue-

damaging free radicals and proinflammatory peptides, and

phagocytose invading pathogens [42]. Thus, presence of IL-1b
within the testes 72 h after SCI is indicative of a pathological,

proinflammatory process that occurs early following injury. The

specific effects of IL-1b signaling following SCI are not clear. It

was previously shown that IL-1b expression is also up-regulated in

Figure 6. Apoptosis in the seminiferous epithelium during
acute SCI. TUNEL staining revealed the presence of apoptotic cells
(dark brown) in testis tissue. (A): Testes of 72 h sham-operated animals
possessed very few detectable apoptotic cells (n = 7). (B): 72 h after SCI,
seminiferous tubules possessed increased numbers of apoptotic cells
(arrowheads) (n = 7). (C): Apoptosis was widespread in 72 h SCI testis.
Note that seminiferous tubules in the SCI group contained varying
amounts of apoptotic cells. Scale bars = 100 mm.
doi:10.1371/journal.pone.0016456.g006
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Figure 7. Immune cell infiltration in the testis tissue during acute and chronic SCI. (A – D): Immunofluorescent images of seminiferous
tubules labeled for the macrophage antigen CD68 (green) and stained for the nuclear stain DAPI (blue). (A): Testes of 72 h sham-operated animals
contained few CD68+ cells. (B): Up-regulation of CD68-expressing cells (arrowhead) within and surrounding the seminiferous tubules 72 h after SCI.
(C): Few CD68+ cells were observed in testes of 10 mo uninjured controls. (D): 10 mo post-SCI, many CD68+ cells were detected surrounded the
seminiferous tubules. (E – H): Light-level images of seminiferous tubules stained with toluidine blue to indicate mast cells (dark purple). (E): No
detectable mast cells in or surrounding tubules in 72 h sham controls. (F): Mast cells (inset, arrowheads) were present within the seminiferous
epithelium of testes 72 h post-SCI. Inset depicts a magnified view of the shaded region. (G): Few mast cells were present in testes of 10 mo uninjured
controls. (H): Increased numbers of mast cells were detected within the seminiferous epithelium of testes 10 mo post-SCI. (I, J): Immunofluorescent
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a rodent model of experimental testicular ischemia-reperfusion. In

this study, IL-1b was sufficient to activate testicular endothelial

signaling pathways promoting neutrophil recruitment, and causing

germ cell-specific apoptosis [43]. Our results indicate that IL-1b
secretion is correlated with extensive germ cell apoptosis at 72 h

after SCI in the testes (Figures 6, 7). IL-1b is also known to affect

integrity of tight junctions; for example, IL-1b increases the

permeability of tight junctions between epithelial cells lining the

intestines, and vascular endothelial cells at the blood-brain barrier

and blood-retinal barrier [44–46]. Proinflammatory cytokines are

known to play a role in BTB dynamics as well [13,14,47]. It is

therefore plausible that IL-1b signaling early after SCI is

implicated in BTB opening. However, as there is little data

describing the role of this cytokine in the testes, future studies are

necessary to understand its role.

Breakdown of the BTB exposes germ cells to the immune

system, enabling systemic autoimmunity to develop [48,49]. Anti-

sperm antibodies have been found in the blood and seminal fluid

of men with SCI, and sperm autoimmunity has been acknowl-

edged as an important contributing factor to SCI-related male

infertility [50–52]. However, sperm autoimmunity in men who

have received a SCI has not previously been associated with BTB

dysfunction. Here, we have demonstrated substantial infiltration of

immune cells into the testes, showing both an early immune

response during acute SCI, and a sustained presence of immune

infiltrate in chronic SCI. Interestingly, this histopathology is

similar to that of experimental autoimmune orchitis (EAO), an

animal model of sperm autoimmunity induced by immunization

with sperm or testicular antigens. EAO pathology—chiefly,

immune cell infiltration into the seminiferous epithelium—is

believed to be associated with BTB dysfunction and male infertility

[48,49,53]. We posit that compromised BTB integrity following

SCI may lead to infiltration of immune cells, as in EAO. It is

possible that this immune infiltrate may play a direct role in the

early apoptosis of germ cells we have described. Lysiak et al. have

demonstrated that infiltration of neutrophils is essential for

ischemia-induced germ cell-specific apoptosis in the mouse [54].

There is much evidence that immune cell infiltration to the testes is

associated with reproductive deficits in men. Mast cells in testis

tissue and seminal plasma are associated with infertility [34,35].

Additionally, increased numbers of mast cells and CD68+

macrophages in the testes are associated with abnormal sper-

matogenesis [55]. CD68+ macrophages in testis tissue are mostly

proinflammatory [56]; furthermore, proinflammatory cytokines

are involved in testis tissue damage, germ cell damage and

apoptosis, and BTB disruption [13,15,47,53,57,58]. Therefore, it

is likely that inflammation in the testes is closely associated with the

germ cell apoptosis we have observed at 72 h following SCI.

The mechanism underlying male infertility after SCI is not

currently understood. Presently, only a few groups have investi-

gated this question in an experimental model. Huang and

colleagues have published multiple studies describing the mech-

anisms by which SCI leads to defects in spermatogenesis. Chow

et al. have speculated that testicular dysfunction during chronic

SCI might result from deficient neural input to the testes [59]. A

similar phenomenon has been observed in the bladder; it was

shown that SCI-induced bladder dysfunction could be attenuated

by silencing the neural input into the bladder [11]. In the rat and

human, the testes are innervated by the genitofemoral nerve which

originates at L1-2, thus testicular deficits arising after injury to the

cord at T10 are not likely attributed to testicular denervation [60].

However, it is conceivable that SCI-associated deregulation of

neural activity arising from the L1-2 spinal segments might affect

testicular function. Further examination of this possibility would

require a detailed study exploring the effects of neural inhibition of

that input either before or immediately after SCI. Compelling

evidence against the argument for altered testicular neural input

comes from a study in which Brackett et al. showed that a group of

men with SCI at levels above L1 (cervical, n = 59; T1–T6, n = 39;

T7–T12, n = 42) possessed double the amount of dead, immotile

sperm compared to normal men, regardless of the level of injury

[61]. These men showed no difference, by level of injury, in the

mean amount of dead sperm within their seminal fluid. Though a

similar study has not yet been performed in the rat, these results

lend support to the theory of a systemic pathological mechanism,

rather than altered neural input, that induces testicular deficits

following SCI.

Here we have described, using non-invasive imaging and

immunohistological methods, a breakdown in BTB function

following SCI in the adult rat. Our results provide evidence that

an injury-induced mechanism causing BTB compromise is present

early after SCI, and MRI data indicates that small-molecule BTB

permeability may be sustained indefinitely. We have also identified

histological evidence of an immune response in the testes 72 h

subsequent to SCI, which is also exhibited as late as 10 months

after injury. Together, these results suggest that there exists a loss

of BTB integrity which may persist throughout the lifetime of the

subject. This study both describes a novel effect of SCI on a

peripheral blood-organ barrier, and provides new insight into the

pathophysiology of infertility in men with SCI.

Supporting Information

Figure S1 Labeled anatomical guide to interpreting rat
testes MRI. (A): Cartoon outline of a rat in the supine position,

as during MRI scanning. Red line through testes indicates the

position of a representative image slice in Figure 1. (B): Cartoon

depicting the cross-sectional (axial) view of the slice in (A). This

image corresponds to the actual MRI slice shown in (C). Legend:

1 = right testis; 2 = left testis; 3 = epididymis; 4 = tunica

albuginea; 5 = scrotum; 6 = tail. (C): Actual MRI image of testes

from a sham-operated animal.

(TIF)

Figure S2 Anatomical guide to the testes and seminif-
erous tubules. (A): Cartoon outline of a rat illustrating the

approximate size, shape, and location of testes. (B): Cartoon cross-

section of a rat testis. Legend: 1 = collecting duct; 2 = epididymis;

3 = seminiferous tubules. (C): Photograph of a testis from a naı̈ve

rat that received intravascular Evans Blue (an albumin-binding

dye). The blood vessels (1) on the testicular surface appear blue

because they contain albumin-rich blood. Red line indicates plane

of sectioning for histological studies. Inset shows the coiled

seminiferous tubules (2), visible in contrast against the darker blue

interstitial space (3). Ruler denotes length in cm. (D): Cartoon

outline of a representative histological section of testis tissue.

Legend: 1 = seminiferous tubule; 2 = interstitial space; 3 = blood

images of 72 h testis tissue labeled for the pro-inflammatory cytokine interleukin-1 beta (IL-1b; green) and counterstained with DAPI (blue). (I): Testes
of sham controls displayed no detectable IL-1b immunoreactivity. (J): 72 h after SCI, seminiferous tubules and interstitial testis tissue showed diffuse
IL-1b immunoreactivity, and IL-1b+ cells were detected within the seminiferous epithelium. No IL-1b immunoreactivity was detected in testis tissue of
the 10 mo groups (data not shown). Scale bars = 50 mm.
doi:10.1371/journal.pone.0016456.g007
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vessels. (E): Actual immunofluorescent image of the seminiferous

tubule depicted in (D). The nuclear stain DAPI is shown in blue.

Asterisk indicates the lumen of a seminiferous tubule. Immuno-

reactivity for the blood-born protein immunoglobulin G is shown

in green, to emphasize the distinct border between the interstitial

space and the seminiferous tubules. Red box corresponds to (F).

(F): Cartoon depicting cells of the seminiferous epithelium and the

blood-testis barrier. Legend: 1 = Sertoli cell; 2 = tight junction

(blood-testis barrier); 3 = basal lamina; 4 = spermatogonium; 5 =

spermatocyte; 6 = spermatid; 7 = interstitial space. The blood-

testis barrier separates the seminiferous tubule into two distinct

compartments: basal (yellow) and adluminal (orange).

(TIF)
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