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Abstract

Motivation: Recent microbiome dynamics studies highlight the current inability to predict the

effects of external perturbations on complex microbial populations. To do so would be particularly

advantageous in fields such as medicine, bioremediation or industrial scenarios.

Results: MDPbiome statistically models longitudinal metagenomics samples undergoing perturba-

tions as a Markov Decision Process (MDP). Given a starting microbial composition, our MDPbiome sys-

tem suggests the sequence of external perturbation(s) that will engineer that microbiome to a goal

state, for example, a healthier or more performant composition. It also estimates intermediate micro-

biome states along the path, thus making it possible to avoid particularly undesirable/unhealthy states.

We demonstrate MDPbiome performance over three real and distinct datasets, proving its flexibility,

and the reliability and universality of its output ‘optimal perturbation policy’. For example, an MDP cre-

ated using a vaginal microbiome time series, with a goal of recovering from bacterial vaginosis, sug-

gested avoidance of perturbations such as lubricants or sex toys; while another MDP provided a quan-

titative explanation for why salmonella vaccine accelerates gut microbiome maturation in chicks. This

novel analytical approach has clear applications in medicine, where it could suggest low-impact clinical

interventions that will lead to achievement or maintenance of a healthy microbial population, or alter-

nately, the sequence of interventions necessary to avoid strongly negative microbiome states.

Availability and implementation: Code (https://github.com/beatrizgj/MDPbiome) and result files

(https://tomdelarosa.shinyapps.io/MDPbiome/) are available online.

Contact: markw@illuminae.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

This manuscript addresses an important challenge in microbiome ana-

lysis (Bashan et al., 2016; Bradley and Pollard, 2017; Gilbert et al.,

2016): precise description of longitudinal microbiome variability and

dynamics. It responds to the call for a ‘microbial Global Positioning

System (GPS)’, originally suggested by Gilbert et al. (2016), where the

start and end states of the microbiome for an individual subject could

be defined and located, and the optimal route from start to end clearly

mapped. High-throughput sequencing has enabled the study of

metagenomics—determination of microbial compositions more pre-

cisely and rapidly than bacterial culture techniques. Metagenomics

analyses of the same population over time may reveal the detailed dy-

namics within complex bacterial communities, interactions between

microbes and the influence of external perturbations. Inferring

microbial dynamics from temporal metagenomics data is, however, a

very challenging task (Cao et al., 2017) and there are relatively few

studies and little knowledge about microbiome dynamics.

Nevertheless, it should be possible to utilize such data to construct

models aimed at in silico prediction of perturbation-outcomes (Fritz

et al., 2013).

It is well-recognized that predictable microbial compositions are

associated with important traits such as health (Gilbert et al., 2016;

Shankar, 2017), and recent studies have supported alteration of the

microbiome as ‘therapy’ (Bashan et al., 2016; Cao et al., 2017).

Therefore, an example of where predictive microbiome models

would be useful would be a hospital critical-care ward. Patients suf-

fering from sepsis often die before traditional bacterial cultures can
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be returned, and often the causative agent is never identified. With

little information about the cause of the infection, a wide range of

high-impact clinical interventions are applied to the patient in the

hope that one might prove effective. Unfortunately, the resulting

disruption—including to the normal microflora of the patient—often

leads to serious complicating illnesses such as pneumonia (Boyd et al.,

2014). In silico models of the microbiome could, therefore, provide

badly needed and rapid feedback on the efficacy of an ongoing

treatment regime, or better still, guidance on a specific course of

interventions—for example, a personalized and contextually sensitive

sequence of drugs and/or food—that could lead the patient safely back

to health. Outside of medicine, intensive agriculture has significant

negative impacts on the environment through, for example, greenhouse

gas emissions and the application of large amounts of pesticides and fer-

tilizer, and the resulting contamination of groundwater (Canter, 2017).

The plant-associated microbial populations available to be engineered

are the root-associated (endophytic) microbes in the rhizosphere, with

the objective of improving plant health or nutrition, improving soil fer-

tility and/or promoting low-impact, sustainable farming.

Current approaches to microbiome engineering might be consid-

ered ‘extreme’, for example, faecal microbiome transplantation

(FMT). Less extreme, but nevertheless relatively direct, pre- and

pro-biotics are used in the farming industry to engineer animal gut

microbiomes in order to avoid the pathogen resistance resulting

from antibiotic treatments. Acknowledging that microbiome engin-

eering was still in its infancy, Foo et al. (2017) proposed to engineer

the microbiome through perturbations to recover microbial

communities from a state of dysbiosis. Achieving this, however, will

require a deeper understanding of, and tooling to measure, micro-

biome states and responses.

It is known that elements such as natural variations and stress

factors modify microbiota composition (Weiss and Hennet, 2017),

however it is an open problem to discover which factor(s) lead to

which specific composition change, and how and why that happens.

The review of Faust et al. (2015) lists a series of observations regard-

ing temporal changes in the microbiome that are particularly rele-

vant to the work we report here. First, microbial diversity tends to

be stable over time in the same environment. Second, microbial

communities evolve through stable states that change due to (i) ex-

ternal perturbations (e.g. diet), (ii) direct modifications (e.g. antibi-

otics, probiotics) or (iii) transient perturbations (e.g. microbial

interactions). Third, subsequent to a perturbation, the community

may return to its original state, or may remain in the new (or an-

other) state. Finally, those communities exhibit a priority effect,

where the existence of certain strains will prevent specific other taxa

from establishing themselves in a community. These observations

are encouraging, in that they suggest that it should be possible to

build predictive state-change models. Moreover, they reveal that not

all state-changes are possible, thus indicating that a desired state-

change might require sequential, planned interventions.

There are few large, publicly available longitudinal metagenom-

ics datasets that could be used to design such models. Most datasets

span short periods of time (weeks), though some span several years.

Most studies are focused on the human gut, but unfortunately, they

seldom include longitudinal metadata (i.e. possible perturbations)

associated with each sample. Gibbons et al. (2017) suggested that

current time series metagenomics datasets are not rich enough to be

used to explain population dynamics. Gilbert et al. (2016) analysed

which sampling frequency would be required in a microbiome time

series to capture the microbiota dynamics with sufficient detail to be

applied in medicine, concluding that it is an open problem.

Nevertheless, there have been attempts at modelling microbiome

dynamics. Lotka–Volterra (LV) models were the first to predict

changes in community composition only based on pairwise micro-

bial interactions (Stein et al., 2013), with some posterior improve-

ments based on generalized LV (Cao et al., 2017). State transition

diagrams have also appeared in some temporal dynamics metage-

nomics studies (Ding and Schloss, 2014; Gajer et al., 2012). These,

however, do not specify the role of distinct perturbations.

Tools that could be applied to investigating microbiomes are

usually not suited to longitudinal datasets; other tools are special-

ized for generic time series, not taking biological peculiarities into

account thus limiting their applicability to metagenomics data; and

finally others are focused on microarray analyses, which is a distinct

problem from that of metagenomics [see descriptions in (Baksi et al.,

2018)]. MDSINE (Bucci et al., 2016) is the tool most-adapted for

time-series microbiome data. MDSINE includes time-series based

algorithms, predicting microbe concentrations, interaction networks

and stable states in perturbed and unperturbed populations.

MDSINE is complementary to the work described here for several

reasons: (i) MDSINE does not present a transition model between

states; (ii) MDSINE results are not perturbation-focused, only con-

sidering a yes/no perturbation over time and (iii) MDSINE utilizes

Maximum-Likelihood and Bayesian algorithms, compared to the

Markovian algorithms employed in this work. Additional discussion

regarding MDSINE is available in Supplementary Material. Martı́

et al. (2017) analysed variability in the microbiome, and also predicted

microbiome transitions. Our work differs, however, in that: (i) we util-

ize a data-driven approach, versus their parametrized mathematical

model; (ii) their work was focused exclusively on human gut, whereas

our approach has a wider application range and (iii) the objectives of

their work were to differentiate healthy and disease states, whereas the

work presented here is focused on the effects of perturbations, and esti-

mating the resulting state transitions. Finally, TIME (Baksi et al.,

2018) is a microbiome time series visualization tool that interactively

allows biologists to show variations in terms of different metrics (such

as diversity, abundance or stability). This, again, is distinct from the

work presented here in that we aim to suggest consequential interven-

tions, rather than simply observe temporal changes.

Markov Decision Processes (MDPs) have a history of use in

medicine, for example, suggesting course-of-treatment within clinic-

al decision support systems (Capan et al., 2017; Sonnenberg and

Beck, 1993). Here, we apply MDPs in a novel approach to the ana-

lysis of microbiome dynamics, and decision-support regarding

directed interventions aimed at microbiome engineering.

2 System and methods

2.1 MDPbiome
Figure 1 outlines our proposed solution, the MDPbiome system. We

represent microbiome time series as a state transition diagram with

actions, and solve the MDP to determine the optimal strategy of se-

quential interventions that will lead the microbiome to a goal state.

The input to MDPbiome are time series of microbiome data (see

Fig. 1, top), where each series corresponds to a different subject (e.g.

an individual patient). Each time point in the series is a microbiome

sample, represented by an Operational Taxonomic Unit (OTU) vec-

tor. The number of time points and frequency of sampling may dif-

fer between subjects. Each transition between two time points is

labelled with an external perturbation that occurred in that interval,

such as some specific dietary intake, drug, probiotic treatment, etc.

MDPbiome then presumes that this perturbation is causative of any

composition change between those time points.
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To create an MDP, we convert the time series of OTU vectors

to a time series of microbiome states, preserving the transitions

labelled with actions, and where each state is a group of micro-

biome samples. Next, from the time series of microbiome states,

we obtain a transition probability table for each perturbation

(Fig. 1, bottom left), and represent this as a transition diagram,

labelling each transition with an action and its frequency.

Finally, we apply an MDP solver to identify the optimal policy,

i.e. a path to the goal state through the transition diagram (Fig. 1,

bottom right).

We have implemented this workflow in a system called

MDPbiome. In addition to the optimal policy, the system provides a

set of quality control and visualization outputs, including evaluation

of the policy reliability, and set of diagrams and graphs for visual

analysis and interpretation of MDP elements and their related mi-

crobial data.

2.2 Markov decision process (MDP)
Markov Processes describe systems with stochastic transitions be-

tween discrete-time states. MDP extends Markov processes, includ-

ing at each time step a decision point where an ‘agent’ can choose

from a set of actions. Even though these actions might have stochas-

tic effects, the model considers that these decisions affect the dynam-

ics for transiting between states (Bellman, 1957; Howard, 1960;

Puterman, 1994). In a basic Markov Process, the probability of the

transitions between states are defined in a bi-dimensional square

state-matrix. In an MDP, actions are an added dimension to the ma-

trix. An MDP is formally defined as a tuple hS;A;T ;Ri, where:

• S is a set of finite states
• A is a set of finite actions
• T : S �A ! PðSÞ ¼ Prðstþ1jst; aÞ; 8s 2 S; 8a 2 A
• RðSÞ ! <

T corresponds to the transition table that accounts for the prob-

ability of going from st to stþ1 in the next time slot, given action a

has been applied. R is the reward function, which represents how

‘good’ a state s is. A solution to an MDP is a policy (p : S ! A), i.e.

a mapping from states into actions that is used as the basis for deci-

sion making. The optimal policy p� for an MDP is the policy that

maximizes the expected sum of rewards. The optimal policy is usu-

ally computed with a dynamic programming algorithm such as value

iteration or policy iteration (Bellman, 1957; Howard, 1960).

2.3 MDP for longitudinal metagenomics
In our approach we represent longitudinal metagenomics with per-

turbations as a generic MDP ¼ hS;A; T ;Ri. This involves ad-

equately defining the four elements of the MDP, then solving it to

obtain the optimal policy.

2.3.1 Step 1: Pre-processing microbiome data

Metagenomics pre-processing steps are necessary, but not standar-

dized, and differ between laboratories. In this work, pre-processing

is applied to the OTU table following the methodology described in

David et al. (2014), for longitudinal microbiomes. It involves remov-

ing OTUs not present in any samples (i.e. whose sum is 0), from

other body sites, other donors, etc.; removing samples due to suspi-

cion of experimental noise or contamination (as defined per experi-

mental procedure); removing samples with low read-counts (<10

000); and normalizing the OTUs. For more details about pre-

processing and normalization, see Supplementary Material or David

et al. (2014).

2.3.2 Step 2: Defining MDP states

The states considered by MDPbiome could be defined using any

existing pre-definition of states (e.g. stages of treatment) or in the

absence of an external definition, we utilize our own algorithm for

robust clustering of OTU vectors based on the similarity of their mi-

crobial abundance composition (Garcı́a-Jiménez and Wilkinson,

2018).

Though, clearly, microbial populations would evolve in a con-

tinuous manner, a discretization approach is a plausible simplifica-

tion that makes modelling analysis viable. Many non-discrete

processes (including biological ones) are studied with discrete com-

putational and mathematical models (Faust and Raes, 2012; Faust

et al., 2015), and we do so here when defining states. It is important

to note, however, that our defined MDP microbiome states are not

synonymous with the concept of ‘enterotypes’, where the latter con-

cept is limited to the gut microbiome, is highly controversial, and ill-

defined (Costea et al., 2018). Rather the states we describe here

could appear within a single enterotype, and/or within any micro-

biome in any cavity or niche/environment. Gonze et al. (2017) pro-

posed multi-stability as a reason for the existence of different states.

Costea et al. (2018) concludes that ‘clustering can provide useful

insights into some microbiome datasets, even when not strongly

supported statistically’. Further supporting our definition of states in

MDPbiome, Brooks et al. (2017) demonstrated there are no signifi-

cant differences among distinct clustering schemas in terms of pre-

serving the patterns of transitions in community state types in

the vaginal microbiome; and Turroni et al. (2017) determined

the existence of ‘shifting between different steady states’ in human

gut microbiota dynamics of astronauts. See Garcı́a-Jiménez and

Wilkinson (2018) for additional discussion of discrete states in

microbiomes.

Fig. 1. MDPbiome general schema for identifying a temporal sequence of

microbiome states, influenced by perturbations, and how this may be

employed to suggest a temporal sequence of actions aimed at achieving a

defined goal
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2.3.3 Step 3: Defining MDP actions

Having controllable perturbations as part of the model enables

decision-making points to guide microbiome towards a desired goal

state. The definition of what constitutes an ‘action’ (i.e. different

values of a perturbation) depends on the particular experimental

question. Briefly, actions can be binary, for instance, sexual practi-

ces (see Section 2.5.2); nominal, for example, salmonella vaccine

and probiotic combined treatments in chicks (see Section 3.4); or nu-

merical after discretizing, such as breast milk intake in infant gut

(see Section 2.5.3). Since the set of actions in an MDP must be finite,

we must discretize any continuous values in perturbations. We rep-

resent and solve a different MDP for each perturbation. Even though

concurrent perturbations might not be independent in reality, this is

a practical approximation, given that usually there is insufficient

data to build an MDP that models combined actions. For few per-

turbations, we build set A as the cartesian product of the actions in

the single perturbations. This alternative makes sense when there

are a reasonable number of transitions for each combined action as

discussed in Section 3.4.

2.3.4 Step 4: Defining MDP transitions

We model the transition table T as a set of multinomial distributions

that are estimated from the transitions observed in the available

data. For each perturbation and subject, we split the metagenomics

time series into triples ðsi; aj; s
0
kÞ that corresponds to an observation

where the microbiome was in si and reached state s0k under the

effects of action aj. Thus, probabilities of reaching a particular state

is estimated as

Pðs0kjsi; ajÞ ¼
countsðsi; aj; s

0
kÞXjSj

k¼1
countsðsi; aj; s0kÞ

where the counts correspond to number of times the triples occur in

the whole set of samples.

2.3.5 Step 5: Defining MDP goal states

Our reward modelling only depends on states. MDPbiome defines

two reward schemas to construct reward functions focused on either

pursuing a desirable ‘goal’ state(s) or avoiding an undesirable ‘bad’

state(s). As input, the system needs a utility vector UðSÞ that estab-

lishes a numerical state preference. The schemas are defined as

follows

RBestðsÞ ¼ 1; s ¼ argmaxðUðSÞÞ

R:WorstðsÞ ¼ 1; 8sjs 6¼ argminðUðSÞÞ

having Ri ¼ 0 for any other case not holding the condition. RBest

will guide the policy towards the best state, and R:Worst will guide

decisions to avoid the worst state. Given that deciding the goal

standard is not trivial for many domains, MDPbiome offers a de-

fault behaviour in which UðSÞ is set to alpha diversity (adiv) average

of the microbiome samples belonging to each state. In this case, for

instance, RBest will lead to policies that pursue the highest diversity

microbiome state.

2.3.6 Step 6: Solving the microbiome MDP

Solving an MDP consists of finding an optimal policy p� that maxi-

mizes the cumulative expected reward for any given state. Here we

apply the algorithm value iteration, a dynamic programming algo-

rithm used to find policies for MDP with indefinite horizon. Our im-

plementation uses the MDPtoolbox (Chadès et al., 2014) R package

as the base solver.

2.4 Evaluation technique
The state transition probabilities in our MDP models are estimated

from the transition counts of the observed data. Thus, we consider

it necessary to employ two evaluation procedures to measure

how reliable the policies are. First we evaluate the stability of the

resulting optimal policy given the uncertainty in the input data,

specially under infrequent observed transitions. Then, in addition,

we evaluate if the policies are general or particular amongst

individuals.

2.4.1 Sensitivity analysis on input data

We apply a sensitivity analysis on the estimated transition proba-

bilities to measure the stability of the optimal policy, similar to

(Chen et al., 2017) but for an indefinite horizon for MDPs. The

uncertainty of multinomial estimates is frequently modelled using

the Dirichlet distribution with hyper-parameters that coincide

with the observed transition counts (Tetreault et al., 2007). Our

evaluation procedure consists of generating 1000 transition tables

T̂ i by sampling from the Dirichlet distributions corresponding to

the observed transition counts. Each T̂ i is used to compute an opti-

mal policy with value iteration. Finally we compute the ratio of

actions that remain the same as in the original optimal policy. The

higher the ratio, the more stable the optimal policy will be. We

also compute the stability ratio of each individual action to iden-

tify if there are particular states in which one action should have a

clear preference over the others to induce a microbiome state

change.

2.4.2 Policy generality amongst subjects

To make the most of the available data we perform a leave-one-out

cross-validation (LOOCV). Given a dataset of n subjects, the pro-

cedure iterates n times, considering at each iteration i, all samples

except those of subject i. Thus, each subject can be associated to an

optimal policy p�i computed with data not related to this subject. To

measure the performance, we get from each subject time series, the

set of transitions (s; s0) and then compute the number of transitions

that lead to the same or better state (i.e. UðsÞ�Uðs0Þ) when the policy

is applied in s and when is not. If the frequency of ‘good’ transitions

following the policy is higher than when not following the policy we

can infer that the policies are changing the a priori probability of

these transitions and therefore they are general enough to be applied

to out-of-sample individuals. As in the reward function, the adiv of

clusters is used as the utility function when an alternative sorting cri-

teria is not provided.

2.5 Datasets
Few public longitudinal microbiome datasets include sufficiently fre-

quent sampling and associated meta-data to allow perturbation

studies. Table 1 summarizes the characteristics of each dataset for

which our MDPbiome system could be applied, as the next subsec-

tions explain.

2.5.1 Chick gut microbiome

Ballou et al. (2016) studied the response of different treatments

(Salmonella vaccine and/or probiotics) in the chick gut, during

their first month of life. The data was downloaded from the Qiita

repository (http://qiita.ucsd.edu study no.10291). The actions A

are Salmonella vaccine (s) versus control (c); and probiotic supple-

ment (0.1% Primalac) (p) versus (c). The control (c) is the lack of

vaccine or probiotics, respectively. Salmonella vaccine was given

at the outset of the study, prior to the day 0 sampling, and we

MDPbiome i841
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consider the effect of the vaccine to remain throughout the time

series. Probiotic was mixed with food on every day of the experi-

ment. Thus, the action is the same for the same subject in its time

series.

2.5.2 Vaginal microbiome

Gajer et al. (2012) analyzed the dynamics of the vaginal micro-

biome taking samples from 32 women over several weeks. The

OTU table and the clusters come from their supplementary Table

S2 (Gajer et al., 2012). The data counts were pre-processed, and

normalized to a sum of 100 per sample, thus representing relative

abundances. As such, we did not apply our pre-processing step to

this dataset.

The actions set A was composed by the available meta-data

related to the hygienic and sex activities that could perturb the vagi-

nal microbiome (Ai¼ {Yes, No} x {anal sex, digital penetration,

douching, lubricant, oral sex, sex toy, tampon, vaginal intercourse}).

As MDP states, we take community state types defined by the ori-

ginal study authors (S ¼ {I, II, III, IV-A, IV-B}). The IV-B group con-

centrates most of the high and intermediate Nugent categories

indicating the greatest risk for the Bacterial Vaginosis disease

(Nugent et al., 1991). The preferred reward schema in this scenario

is R:Worst, focused on avoiding a non-desired state related to bacter-

ial vaginosis. Therefore, we take the inverse of the average Nugent

score per state as utility function UðSÞ.

2.5.3 Infant gut microbiome

The La Rosa et al. (2014) dataset includes 58 pre-term babies who

were stool-sampled at variable time points until a month and a half.

The meta-data provides us with two different perturbations: amount

of breast milk volume and antibiotic use. The first one is provided as

4 discretized values (0%, low: <10%, med: 10–50%, high: >50%

of enteral volume). The samples for 0% of volume represent <2%

of the total samples, thus we merged this category with low: <10%.

The second perturbation corresponds to antibiotics administration

in the last 3 days (yes, no). We used adiv as the utility function and

evaluate both reward schemas.

3 Results

The following sections describe the most informative results of the

application of our MDPbiome system to the three datasets. The

complete set of MDPbiome outputs (text and figures) for all datasets

and all configurations are available at https://tomdelarosa.shi

nyapps.io/mdpbiome/.

3.1 General results
3.1.1 Chick gut microbiome

Ballou et al. (2016) indicated there were no differences in the health

of the chicks at the end of the study. Therefore, lacking additional

domain knowledge, we defined the MDP states following our robust

clustering procedure (Garcı́a-Jiménez and Wilkinson, 2018). From

this, we observed that the states primarily mirror the chicks’ age (i.e.

sampling day): there is one state (called birth) with samples from

chicks in their first days of life (mainly, day 0–3), and another state

(mature) with microbiomes of all the chicks aged 2 or more weeks

(mainly day 14 and 28). This split according to age is in agreement

with the Ballou et al. analysis, where samples do not differ by any

other criteria, including the experimental conditions (vaccine/probi-

otics). Both states contains samples from all treatments. The mature

state is much more diverse than the birth state with respect to micro-

bial composition (mean adiv: 3.29�1.40). Moreover, setting the

highest diversity as the goal brings our chick MDPbiome model into

agreement with child microbiome evolution studies (Dominguez-

Bello et al., 2011; Oakley et al., 2014), which begin with an empty

or very low-diversity microbiome (such as our birth state), while

achieving maximum diversity in adulthood (our mature state).

Figure 2 shows how to engineer the chick gut microbiome with

salmonella vaccine (left) and probiotics (right) as perturbations. In

the case of salmonella, the recommendation is to administer the vac-

cine to reach the mature state, with a very high stability (see dark

blue bar in Fig. 2, left). When the perturbation is probiotics, the

highest probability to reach the goal state is ‘c’ (no probiotics) (see

0.41>0.38 in diagram) also with a stability higher than the alterna-

tive action of ‘p’ (red bar larger than the blue one). In the mature

state, with both perturbations, all actions have the same probability

(1) to maintain that state, because chick microbiomes do not return

to a less diverse state post-maturation.

In conclusion, the preferred policy is to administer salmonella

vaccine to accelerate maturation; and not to feed with probiotics (al-

though the policy regarding probiotics is less conclusive).

3.1.2 Vaginal microbiome

This scenario differs from the other datasets in that most states are

considered ‘healthy’, thus the preferred goal is avoidance of a disease

state. As Section 2.5 describes, state IV-B was identified as the non-

desired state, and the MDP was designed to provide a policy in

which the path is the (series of) action(s) that minimize the risk of

reaching it.

As a general overview, all states except IV-A have >85% likeli-

hood of remaining in the same state, regardless of action. Therefore,

the most common model-behaviour is to maintain the same state, re-

gardless of perturbation and state-to-state transitions are less fre-

quent. MDPbiome transition diagrams (see shinyapp online) show a

high degree of maintenance of the disease state IV-B, suggesting that

is clearly difficult to escape from it without specific medical

intervention.

Figure 3A shows the optimal policy and its stability per state

(each of the five columns represents a state) and perturbation (eight

graphs, one for each perturbation) of the vaginal microbiome. Here,

we focus our analysis on the last column of each plot, corresponding

to the state to avoid withR:Worst. The top row collects the perturba-

tions where the optimal policy is ‘perturbation-no’, in decreasing

order, so lubricant and sex toy are not recommended to recover

from bacterial vaginosis, with high stability. However, anal sex-no

does not evince enough stability to be considered a strong policy to

follow. These results are in agreement with Brotman et al. (2010),

Table 1. Longitudinal microbiome datasets modelled as MDP

Ecosystem Chick gut Vaginal Infant gut

References Ballou (2016) Gajer (2012) LaRosa (2014)

No. samples 119 937 922

No. taxa 1583 298 29

No. subjects 24 32 58

Time points 6 in 4 weeks 2 � 16 weeks Different

MDP.S 2 5 4

MDP.Ai {salmonella,

probiotics}

sexual practices

{oral, toy,. . .}

{breast-milk,

antibiotics}

MDP.jT ij 94 905 893

U, MDP.R Mature chick Not bacterial

vaginosis

Highest adiv
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who identified several ‘risk factors’ for bacterial vaginosis, including

the use of a lubricant and rectal sex.

3.1.3 Infant gut microbiome

In the absence of domain knowledge, we again defined the MDP

states applying our robust clustering procedure. Characterizing the

four identified states, all have a very low adiv (<1), which is consist-

ent with the newborn origin, where the gut microbiome is beginning

to be populated. This diversity measure is the only available infor-

mation to define the goal state as being the highest adiv state in RBest

rewards (state no.1, a¼0.85) and the lowest one in R:Worst (state

no.4, a¼0.35).

State 1 is mainly composed by Clostridia, state 2 by

Gammaproteobacteria, 3 by Bacilli and 4 by Bacteroidia. According

to La Rosa et al. (2014), each subject should follow the sequence

Bacilli (3) ! Gammaproteobacteria (2) ! Clostridia (1). State 4

could correspond to outliers, because it only includes samples from

two infants taking >50% of breast milk.

The most relevant conclusions in the infant gut microbiome are

that, to preserve the most diverse state and the final one in the mat-

uration sequence (state 1), no antibiotics should be administered,

with the stability of this recommendation higher than 90% (see large

red bar in Fig. 3B, top). However, regarding milk intake the stabil-

ities are less conclusive. These observations are in-agreement with

studies indicating that antibiotics cause much more disturbance in

microbiomes than dietary interventions (Costea et al., 2018).

3.2 Evaluating policy stability
Table 2 shows the stability ratio (see Section 2.4.1) for the optimal

policies per different dataset, perturbation and reward schema. This

ratio computes, in terms of actions, the similarity that the policies

obtained with transition tables from the Dirichlet sampling would

have with the optimal policy computed with the original probability

estimates. This aggregated value can be seen as a measure of the reli-

ability of the MDPbiome policy. In terms of microbiome engineer-

ing, it means how invariant the recommendation for applying a

particular perturbation would be. Although there are differences be-

tween datasets, perturbations and rewards, most values are in a 60–

85% range, showing MDPbiome suggestions achieve high stability

along multiple distinct cases. The minimum threshold of stability

depends on the number of values of each perturbation ( 1
jAj), with

50% for yes/no perturbations and lower for perturbations with >2

values, such as the combined treatments in infant gut microbiome,

where even 26% stability is greater than choosing a random policy

(1
6). In the chick gut dataset, RB is equivalent to R:W because there

are only two states. The differences in this case are due to sampling

and therefore negligible.

A lower stability ratio often means there are too few samples for

the number of distinct actions of a perturbation, and therefore the

transition probability table is not reliable because of the uncertainty

from the input data. In other cases, the stability ratio is affected

when transitions resulting from different actions have a similar

probability and associated reward. Here, small changes in the input

Fig. 2. MDP diagrams with optimal policy and barplots with stability ratio per

state and perturbation to chick gut microbiomes. In the diagram, red arrows

represent the MDP solution; and the goal state is that highlighted in red. In

the barplots, strong colors represent the optimal policy and faint colors the

non-optimal ones. The s(p)/c actions mean salmonella vaccine(probiotics)

yes/no (c, control), respectively

A B

Fig. 3. MDPbiome recommendations to reach the defined goal, in terms of stability ratio of the optimal policy of single perturbations given each particular state.

(A) Goal ¼ avoid bacterial vaginosis. (B) Goal ¼ highest adiv. (A and B) Each independent graph represents an external perturbation that could influence the

vaginal or infant gut microbiome, respectively. Columns represent the microbiome states. Stronger colors represent the optimal policy and faint colors the non-

optimal ones. Red bars correspond to ‘no’ and blue ones to ‘yes’, with the exception of breast milk which is discretized into three categories
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time series could produce a change in the recommended strategy.

For this reason, we consider the interpretation of the per-state stabil-

ity of actions relevant, as indicated by the stability barplots (such as

Figs 2 and 3).

3.3 Evaluating policy universality
The datasets used in our study were not originally designed for

guided perturbation analyses, and had terminated prior to the initi-

ation of our study. Therefore, there is no direct way to test policy ac-

curacy by imposing the guidance indicated in the optimal policy on

a test subject. Thus, our approximation of this ideal test procedure

is, with existing data, to relate the compliance the subject has in fol-

lowing the policy, with the number of times the subject moves to a

better, equal or worse state, compared to when the subject does not

follow the policy.

Figure 4 shows the results for chick and infant gut datasets, and

Supplementary Figure S1 for vaginal microbiome. The LOOCV

results provides confirmation that the infant gut microbiome is quite

stable regardless of perturbations (75.5%). Nevertheless, there is

some evidence to support that the policies are generalizable across

individuals (see Fig. 4, right): 91.9% of the transitions for breast

milk intake result in the same or in a better state (blue þ green of

central columns) when following the policy (F), versus 85.5% when

the policy was not followed (nF).

In the chick guts, there is no case where the microbiome gets

worse (no red bar), because there are only two states and all chicks

move from birth to a mature state (goal) eventually. When the per-

turbation is salmonella vaccine or combined, following the policy

reported better results than not following it (see larger green bars in

F than nF in 1st and 3rd pair of columns in Fig. 4, left); however,

when the probiotic is the single perturbation, our generality evalu-

ation indicates that not following the policy is better.

3.4 Combining actions
In the chick dataset, we could merge simultaneous perturbations

because the data corresponds to an exhaustive collection of all pos-

sible combinations of states and perturbations. Thus, actions go

from salmonella {yes, no} and probiotics {yes, no} to one combined

perturbation equivalent to the treatment with four different values

{cc, cp, sc, sp}.

When we combine perturbations to define the MDP actions, the

aggregated stability ratio is lower than considering the perturbations

independently (see Table 2); due to the reduction in the complete-

ness of the transition table; the same transitions must fulfill a table

with higher dimensions. This demonstrates that combining simul-

taneous perturbations in an unique MDP could be viable if there are

sufficient data about all combinations of perturbations, however it

could entail lower stability in the optimal policy. The MDP diagram

in Figure 5 points out that ‘sc’ is the action with the highest prob-

ability to reach the mature state. The barplot in Figure 5 shows

that the optimal policy in state mature, i.e. ‘cc’, is not the one with

the highest stability, because regardless of the action, there is the

same probability to preserve the mature state. While in the birth state,

the optimal policy, and the most stable, are clearly the same: to ad-

minister salmonella vaccine, without probiotics. Therefore, we could

conclude that an adult microbiome, with more diversity, is reached

earlier with the salmonella vaccine treatment without probiotics.

In the infant gut dataset, the two perturbations (milk and antibi-

otics) could also be represented as a combined perturbation with six

actions to study the effect of simultaneous perturbations. In this

scenario, there are many actions that split the available transitions,

resulting in very few data points per action, leading to a decrease in

the stability and generality of the optimal policy when a combined

perturbation is considered versus the individual ones (see last col-

umn Table 2 and Fig. 4).

In the vaginal microbiome it was not feasible to combine pertur-

bations because the number of combinations (28) is too high, result-

ing in many state transitions not being observed in the dataset.

Table 2. Aggregated optimal policy stability ratio

for perturbations

Chick gut

RB R:W

Salmonella 0.68 0.78

Probiotic 0.59 0.60

Combined 0.48 0.43

Infant gut

RB R:W

Breast milk 0.56 0.59

Antibiotics 0.84 0.87

Combined 0.54 0.26

Vaginal

RB R:W

Anal sex 0.58 0.70

Digital penet. 0.77 0.79

Douching 0.65 0.75

Lubricant 0.76 0.76

Oral sex 0.75 0.64

Sex toy 0.85 0.66

Tampon 0.87 0.77

V. intercourse 0.70 0.76

Fig. 4. Frequency of categorized transitions when following, or not, the opti-

mal policy. F: following the MDPbiome policy, nF: not following it. Better,

equal and worse state-transition is defined considering adiv for sorting states

Fig. 5. MDP diagram with optimal policy and barplot with stability ratio per

state and combined perturbation to chick gut microbiomes. Same legend

than in Figure 2
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3.5 Re-defining states
We examined the consequences of changing the MDP state defin-

ition for the same dataset. We filtered the subset of taxa (dominant,

non-dominant) used by our robust clustering algorithm. We defined

dominant taxa as a percentage (1% or 0.5%) of the most frequent

taxa; and the complementary taxa are the non-dominant subset.

In the Ballou et al. (2016) dataset, when all taxa are clustered,

the result was two states (young and mature chicks). However, con-

sidering only non-dominant taxa at 1%, six clusters are robustly

identified, grouping the chicks based on similar age. In fact, the adiv

of these states change in parallel, increasing with the average age of

the chicks in each cluster. In both clusterings (all and non-dominant

1%), a consistent MDPbiome optimal policy is preserved—to ad-

minister salmonella vaccine to reach maturation as quickly as

possible—despite the total number of states being tripled. Analyzing

transition probabilities in the non-dominant taxa at 1% clusters,

with salmonella-yes (Fig. 6, left), we observe transitions between

non-consecutive states (see more crossing lines in the middle of left

than right circle plot, such as from avg1 to avg8, avg3 to avg8 and

avg8 to avg26) while with no vaccine (‘c’) the transitions are mainly

sequential, meaning a slower maturation. Thus, this provides a bio-

logical explanation for how salmonella vaccine accelerate matur-

ation that was not (and could not be) detected in the original study.

In chick microbiome, it seems that the use of non-dominant species

for clustering presents a higher-resolution separation of microbiome

states, that nonetheless behaved in the same manner as the more

coarse analysis using all taxa.

Nevertheless, besides useful information such as that just

described, no conclusive determination could be made regarding the

MPDbiome policy stability and generality when filtering data along

the lines of dominant/non-dominant taxa. Comprehensive analysis

of additional, larger, purpose-designed datasets will be required to

derive more general conclusions.

4 Discussion

The MDPbiome approach has a variety of positive features. First, it

can be applied to a wide diversity of datasets and external perturba-

tions. Second, MDPbiome can evaluate multiple (>2) microbiome

states. As such, the more common ‘healthy’ vs ‘unhealthy’ categories

in typical microbiome variability studies (Martı́ et al., 2017) could

be examined with greater granularity, with the ability to identify,

for example, healthy sub-states that are nevertheless more at-risk of

transitioning into an unhealthy one (e.g. state IV-A in the vaginal

microbiome analysis). Third, MDPbiome allows a variety of differ-

ent questions to be asked of the same dataset. For example, the

MDP may be optimized to reward microbial diversity (i.e. the de-

fault behaviour), or may alternatively be set to optimize for recovery

from a disease.

Stability evaluation of the MDPbiome policies indicates the de-

gree of confidence that can be attributed to these policies. Thus, we

can recognize whether the number of subjects and/or variability of

transitions is sufficient to cover all possible paths in the MDP dia-

gram, and therefore derive stronger conclusions. Similarly, general-

ity evaluation measures the predicted performance of the policies

when prescribed to subjects not included in the original study.

MDPbiome results may also be used for hypothesis-generation,

for example, predicting interaction between the specific microbes

present in two states. For example, if a transition between state Q1

and Q2 is defined with high probability and stability for a given per-

turbation x, it could mean that x might facilitate the increase of the

predominant bacteria in state Q2 or be a detriment to the predomin-

ant bacteria in state Q1. Moreover, state-transitions in the absence

of perturbation (action-negative) may reveal patterns of competition

or cooperation between the species in each state.

Selection of an appropriate MDP representation of a microbiome

entails careful consideration, in particular because the Markov

property requires that the next state depends only on the current

state and action, regardless of previous states or actions. In our tem-

poral microbiome scenario, this might not be completely true since

interventions, such as food or drug intake, may have prolonged

effects that last over many observational cycles. Nevertheless, for

this study we consider this simplification to be acceptable, and that

in general the predictive power gained by the MDP principles is

worth this potential limit or noise in its sensitivity.

As with most population-based studies, the quality of the transi-

tion diagrams are highly dependent on the quality and quantity of

the available data. With even a few htransition, actioni pairs we can

generate a meaningful estimation of the transition probability.

However, in some cases these htransition, actioni observations are

insufficient. This prevents us from deriving even a basic MDP

model, for instance in the dataset from David et al. (2014), where

there is a lack of annotated transitions between different states.

MDPbiome obtains a policy independently for each perturb-

ation, and for combined perturbations only when there are (i) few

individual perturbations and (ii) sufficient transitions to estimate the

probabilities. MDPbiome is, therefore, similar to other population-

based studies, being limited by the trade-off of potential information

gain from non-independent perturbations and the decrease in reli-

ability due to sparse transitions for those combinations. Because we

are not able to examine combinatorial perturbations in many cases,

we are unable to assert that the application of a single external per-

turbation is sufficient to achieve a given state-transition; effectively,

we cannot guarantee that perturbations are independent, neither in

their effect, nor even in their application (i.e. two measured pertur-

bations may usually or always occur simultaneously). Similarly, we

cannot be sure that the different external perturbations that com-

pose a combined-policy need to be applied together to achieve (or

prevent) the state-transition.

Despite those drawbacks, there is a clear and pressing need to

predict the effects of interventions on microbiomes, both within

medicine and for industrial and environmental scenarios. This paper

provides, to our knowledge, the first example of a MDP being used

to explain how a microbial community will respond to any given

intervention. We believe this provides the basis for a wide range of

Fig. 6. Chick gut microbiome state transitions when clustering non-dominant

taxa at 1%, with the Salmonella vaccine perturbation. The ribbon-arrow

points out the directionality of the transitions, and ribbon width represents

the frequency of transition. Left circle shows the transition probabilities when

the perturbation is applied, and right one when it is not. The colors represent

each state, labelled with the average chick age of the samples within
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directed research, in particular with respect to microbiome-

engineering for health in the medical domain.

Adding further flexibility in modelling will make MDPbiome a

tool of interest for a wider scope of metagenomic studies. Alternative

definitions of the MDP will better enable specific scenarios within fu-

ture microbiome-engineering initiatives. For example, the reward

function could be defined as R : S � A ! < (Puterman, 1994), to in-

dicate that there is a preference on reaching a state using a particular

action. MDPs could be also modelled in terms of cost rather than

rewards, or with cost and rewards at the same time. A cost function

CðS;AÞ, could be used to represent the economic cost of a treatment

that tries to recover a healthy microbial state. Further, a finite horizon

MDP is a practical approach for finding a n-steps policy in which a

net monetary benefit can be computed, where each applied perturb-

ation entails a high cost (e.g. expensive drugs).

5 Conclusions and further work

Costea et al. (2018) imagined a computational tool for suggesting

perturbations to modulate the microbiome to move from a disease

to healthy state, but noted that no such tool existed. MDPbiome

builds a model that suggests a ‘prescription’ of external perturba-

tions that should be applied to a given microbiome that will result in

its navigation through a subset of healthy or acceptable states,

avoiding disease or other undesirable states, finally reaching a goal

state. This manuscript confirms that, given sufficient data,

MDPbiome can be applied to a diversity of temporal metagenomics

datasets, such as the three distinct domains whose solution in terms

of microbiome dynamics was found using the proposed MDP strat-

egy, and to a wide range of perturbations types.

The main knowledge contributions of this manuscript are: (i) the

inclusion of actions in microbiome state transition diagrams; (ii) pre-

diction of the sequence of external perturbations required to preserve

or to reach a desired microbiome state or to avoid an undesirable one;

(iii) techniques to evaluate the stability and generality of the recom-

mendation policies given a new dataset; (iv) demonstration of our

algorithms flexibility in definition/selection of the goal, for example,

being desirable or undesirable, or even dependent on a continuous

utility function defining the reward; (v) demonstration that, given suf-

ficient data, combinatorial perturbations can be evaluated. The pri-

mary technical contributions of this manuscript are: (i) R software

that can be easily configured to apply to a new dataset, (ii) a set of vis-

ualizations to facilitate further third-party analysis of the multiple

outputs of MDPbiome applied to these three datasets.

The power of MDPbiome will improve as increasingly rich

microbiome samples become available in the next years.

Nevertheless, MDPbiome may already be used to generate novel

hypotheses for research into temporal microbiome dynamics under

perturbations. Future work will enable MDPbiome to include

weights in the MDP, allowing it to represent, for example, the cost

of a specific policy/perturbation, thus providing not only optimal

but also cost-efficient policies. Other improvements will involve sub-

stituting OTUs by a higher resolution measures (sub-OTU) recently

defined by amplicon sequence variant (ASV) (Callahan et al., 2017).

State-definitions could be extended from phenotypic to molecular,

using transcriptomics, metabolomics, or other high-throughput bio-

markers, and the range of applicability will be expanded into the in-

dustrial and agricultural domains. Finally, we will explore the utility

of MDPbiome in the examination of multi-population studies, for

example, to explore the influence of the gut microbiome on the

microbiomes in other body cavities.
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