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In sheep, differences were observed regarding fat accumulation and fatty acid

(FA) composition between males and females, which may impact the quality

and organoleptic characteristics of the meat. The integration of different omics

technologies is a relevant approach for investigating biological and genetic

mechanisms associated with complex traits. Here, the perirenal tissue of six

male and six female Assaf suckling lambs was evaluated using RNA sequencing

and whole-genome bisulfite sequencing (WGBS). A multiomic discriminant

analysis using multiblock (s)PLS-DA allowed the identification of 314 genes

and 627 differentially methylated regions (within these genes), which perfectly

discriminate between males and females. These candidate genes overlapped

with previously reported QTLs for carcass fat volume and percentage of

different FAs in milk and meat from sheep. Additionally, differentially

coexpressed (DcoExp) modules of genes between males (nine) and females

(three) were identified that harbour 22 of these selected genes. Interestingly,

these DcoExp were significantly correlated with fat percentage in different

deposits (renal, pelvic, subcutaneous and intramuscular) and were associated

with relevant biological processes for adipogenesis, adipocyte differentiation,

fat volume and FA composition. Consequently, these genes may potentially

impact adiposity and meat quality traits in a sex-specific manner, such as

juiciness, tenderness and flavour.
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Introduction

Sheep meat, like the meat of other ruminants, is a good

source of beneficial fatty acids (FAs) for human health, such as

polyunsaturated fatty acids (PUFAs), branched-chain FAs,

PUFA biohydrogenation intermediates, and conjugated

linolenic acids, among others (Dilzer and Park, 2012; Ran-

Ressler et al., 2014). The meat from suckling lambs is

characterised by its tenderness, low-fat levels, moisture and

pale pink colour, which result in a high-quality and valuable

product in Mediterranean countries (Sañudo et al., 2007).

Therefore, sheep meat meets the increasing demand from the

consumer market for products that combine quality and health-

promoting properties (de Smet and Vossen, 2016).

Fat deposits are a fundamental part of the organoleptic

quality of carcasses. In general, adipose tissues are

differentially regulated in males and females partly due to the

effect of androgens and oestrogens, especially testosterone (Clegg

et al., 2006; McInnes et al., 2006; Clarke et al., 2012). In sheep,

differences were observed in the metabolic homeostasis response

during changes in the growth, muscle and fat accumulation rates

between males and females (Rosales Nieto et al., 2019).

Additionally, sex effects on specific FA profiles (i.e., higher

levels of PUFA and ꞷ3 in males) and meat tenderness

(i.e., tender meat for females) were also described in sheep

(Vargas Junior et al., 2019). More specifically, in the Assaf

breed, females reach the phase of greater fat deposition at

lower body weights, with sex differences evident at very low

body weight (Landa et al., 2004).

In lambs, the FA composition of adipose deposits is directly

influenced by the composition of the milk and/or

supplementary feedstuffs they consume (Doney et al., 1984;

Zygoyiannis et al., 1992; Bas andMorand-Fehr, 2000; Frey et al.,

2001; Osorio et al., 2007). However, it has been described that in

suckling lambs, independent of diet, females are predisposed to

develop more fat than males (Velasco et al., 2000; Dervishi et al.,

2012). Moreover, other research in elder lambs (11 weeks)

showed that body fat content was higher in females than in

males, and in perirenal fat, females had larger adipocytes

(Landa et al., 2004). Another factor to consider during the

first 2 weeks of postnatal life is that the perirenal adipose

deposit transits from predominantly brown adipose tissue

(BAT) in the first 4 days of life to predominantly white

adipose tissue (WAT) at approximately 14 days of life (Basse

et al., 2015). However, some studies from our research group

confirmed the presence of brown adipocytes in suckling lambs

slaughtered between 17 and 23 days of life (Suárez-Vega et al.,

2018). This transition from BAT to WAT is guided by the

regulation of different genes and transcription factors, which

reflects the necessity of the organism to move from

thermoregulation in the first days of life to growth and

homeostasis in the next stages of life. Interestingly, sex-

specific differences in BAT mass, distribution, and activity

have been identified in humans and rodents, with females

having more BAT than males (Kaikaew et al., 2021).

On the basis of the foregoing information, the investigation

of the biological mechanisms associated with the differences

between males and females regarding fat metabolism has the

potential to improve the knowledge about genes and biological

processes that drive such sex differences, consequently helping to

discover potential targets to improve the production, quality, and

food safety of sheep products. Until now, most studies aiming to

characterise gene expression differences in adipose tissue

between male and female lambs have focused on studying

candidate genes using real-time PCR analysis (Velasco et al.,

2000; Muhlhausler et al., 2008; Dervishi et al., 2012). However,

high-throughput sequencing technologies have revolutionised

the field of molecular biology by enabling large-scale

sequencing to explore the intrinsic mechanisms of tissue

directly at the DNA or RNA level. In this sense, the

integration of different omics technologies through systems

biology is postulated as a relevant approach for the

investigation of biological and genetic mechanisms associated

with complex traits, such as nutritional status and metabolism

(Zhang et al., 2008; Karahalil, 2016; Nielsen, 2017). The

informative potential of these tools is based mainly on the

capacity to analyse and scrutinise different levels of biological

information in an integrative way. For example, the genome and

transcriptome can be analysed regarding the differences in the

regulatory mechanisms using whole-genome bisulfite sequencing

(WGBS) and RNA-sequencing (RNA-seq), respectively. In

livestock animals, such an integrative approach allowed the

identification of candidate genes and biological processes

associated with several relevant traits, such as fertility (cattle),

sex-specific pubertal development (goats), skeletal muscle

development (sheep) and fat deposition (broilers) (Yang et al.,

2016; Fan et al., 2020; Gross et al., 2020; Gong et al., 2021).

The combination of both datasets in an experimental design

contrasting sexes is hypothesized to help identify candidate genes

responsible for controlling meat quality traits of sheep products.

This hypothesis is mainly grounded on the importance of adipose

deposits and the differences observed betweenmales and females.

Therefore, the objectives of this work were 1) to evaluate sex-

specific methylation marks (by WGBS) and gene expression

patterns (by RNA-Seq) in the perirenal fat of suckling lambs

and 2) to integrate both omics approaches to identify candidate

genes and biological processes underlying sex differences in

carcass fatness and meat quality in sheep.

Materials and methods

Ethics statement

The lambs included in this experiment were not subjected to

any experiment, and their management was carried out following
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the usual management practices on farms raising suckling lambs

with artificial lactation. The management, transport and

slaughter of the animals at a local slaughterhouse were in

accordance with Spanish and EU legislation [Spanish Laws

32/2007, 6/2013 and RD 37/2014; Council Regulation (EC)

199/2009].

Samples

Perirenal fat samples were collected from 12 Assaf suckling

lambs (6 males and 6 females). All animals were born at the

Instituto de Ganadería de Montaña (IGM) (Grulleros, León,

Castilla y León, Spain) in the same lambing season (winter

2019–2020) from primiparous Assaf dairy ewes. The lambs

were reared under the same management and diet conditions.

Initially, during the first 24 h after lambing, the lambs were kept

with their dams to suck the colostrum. Subsequently, the animals

were held in lamb pens fed with artificial milk using Ovilac 60

(Calfvet®) milk replacer powder ad libitum up to slaughter to

remove the influence of maternal effects. All the animals are

progeny from different ewes; however, only two rams are among

the parents of the animals composing the current sample. Five

females and four males were paternal half-sibs, while one female

and two males shared a second ram. The lambs were slaughtered

at a local slaughterhouse at the market weight for the PGI label

“lechazo de Castilla y Leon” (9–12 kg), which has average ages of

28.16 (±4.87) and 24.16 (±5.19) for males and females,

respectively. All the animals had the percentage of perirenal,

subcutaneous and intramuscular fat measured as described by

(Mateo et al., 2018).

The mean percentages of renal, pelvic, renal and pelvic, leg

intramuscular, and leg subcutaneous fat were compared between

males and females using a Student’s t test. For these analyses,

variance equality was assumed after an F test, and normality was

assumed after an Anderson‒Darling test. The abovementioned

statistical analyses were performed using R software (R Core

Team, 2021), and the significance threshold was defined as a

p-value <0.05 for all analyses.

RNA extraction and RNA-sequencing
analysis

For RNA preservation, the sampled tissues were preserved in

an RNA-stabilization solution (Ambion RNAlater; Life

Technologies) and stored at 4°C for 24 h. Subsequently, the

RNA-stabilization solution was removed, and the samples

were frozen at -80°C until RNA extraction. RNA was

extracted using the miRNeasy Mini KIT (Qiagen, Germany)

with adaptations for use in adipose tissue (up to 100 mg of

tissue and inclusion of Qiagen RNeasy Lipid Tissue Mini Kit).

The Agilent 2,100 Bioanalyzer device (Agilent Technologies, CA,

USA) was used to estimate the RNA integrity value, which was

higher than 7 for all the samples. The UltraTMRNA Library Prep

Kit (NEBNext®, MA, USA) was used for cDNA library

construction at Novogene in Cambridge (UK). The 12 cDNA

libraries were sequenced on an Illumina Novaseq 6,000. A

minimum depth of 30 million 150 bp stranded paired-end

reads was generated for each sample. The raw datasets derived

from the sequencing are available at ArrayExpress repository

with reference E-MTAB-12130.

RNA-sequencing quality control, mapping
and quantification

The quality control of RNA-Seq reads was performed using

FastQC version 0.11.8 (Andrews, 2015) to identify potential

sequencing artefacts, duplicated sequences, adapters and base

quality (Phred score) distribution. Next, the raw reads were

processed and trimmed by Trimmomatic (version 0.38) to

remove Illumina adapters, low-quality bases (Phred <30),
reads with an average quality score below 30 within a sliding

window of four nucleotides and reads with less than 75 bp after

trimming. After quality control, the remaining reads were aligned

to the ovine reference genome Oar_Ram_v2.0 (annotation

release 104) available at the National Center of Biotechnology

Information (NCBI) (https://www.ncbi.nlm.nih.gov/assembly/

GCF_016772045.1/) using the software STAR version 2.7.10a

(Dobin et al., 2013) with default parameters. Transcript

quantification was performed using the software RSEM

version 1.1.17 (Li and Dewey, 2011).

Differentially expressed gene analysis and
weighted gene correlation network
analysis

The read counts were normalised using Fragments Per

Kilobase per Million Mapped Reads (FPKM). Gene

transcripts with FPKM<0.2 in both males and females were

removed from the analysis. After filtering low expressed genes,

the raw read counts for the remaining genes were normalised

and fitted in a model contrasting females and males using a

negative binomial distribution in DESeq2 (Love et al., 2014)

with females as reference group for the contrasting. The raw

reads counts were normalized using the median of radios

method implemented in DESeq2 for differential expression

analysis. Once the differential expression analysis was

performed, the p values were adjusted by multiple testing

using the Benjamini and Hochberg False-Discovery Rate

(FDR) method (Benjamini and Hochberg, 1995).

The differentially expressed genes (DEGs) were identified

using a threshold composed of FDR<0.05 and |log2(Fold-

Change)| >2.
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Independent of the differential gene expression analysis,

the FPKM normalised read counts were used to identify

correlated gene networks using the R package CoExpNets

(https://github.com/juanbot/CoExpNets). The CoExpNets

package is based on the WGCNA R package (Langfelder

and Horvath, 2008); however, it applies an additional step

where the genes are reallocated within modules using a

k-means clustering approach, which results in modules

with a higher biological meaning (modules composed by

genes which play more similar functional roles when

compared with the traditional module assignment provided

by the WGCNA package) (Botía et al., 2017). Previously, to

construct the correlated gene networks, the WGCNA R

package was used to identify genes and/or samples with too

many missing entries and genes with zero variance between

the male and female datasets. For this purpose, the function

goodSamplesGenesMS() was used with the default options.

The coexpressed gene networks were identified by the

getDownstreamNetwork () function from the CoExpNets

package using 20 iterations and signed networks. The

coexpressed modules detected for each group were

compared using the following methodology:

- For each sample (s) in male and female;

- For each module m(s) in s;

- Apply a Fisher’s exact test under the null hypothesis that

there is no significant overlapping of m (male) in females

and m (female) in males after an FDR 5% adjustment.

The modules of coexpressed genes in males without a

counterpart in females and vice versa, here called DcoExp

modules, were selected.

DNA extraction and whole-genome
bisulfite sequencing analysis

The DNA samples were extracted from the perirenal fat using

the QuickGene DNA Tissue Kit (Autogen, MA, USA) based on

protein removal by protease K following the manufacturer’s

instructions. The DNA samples had an A260/280 ratio >1.8,
indicating a high quality for sequencing. The samples were used

for paired-end (150 bp) library construction on Novogene in

Cambridge (UK). Library construction was performed using the

EZ DNA Methylation Gold Kit (Zymo Research). Initially, the

genomic DNA was fragmented into 350 bp fragments through

sonification. Subsequently, the methylated cytosines were

converted to thymine by bisulfite conversion. After this step,

the Accel-NGS Methyl-Seq DNA Library Kit (Swift Biosciences)

was used to prepare the libraries for WGBS, generating

postbisulfite libraries. The libraries were sequenced on an

Illumina NovaSeq 6,000, with a minimum coverage depth of

20X for each sample. The raw datasets derived from the

sequencing are available at European Nucleotide Archive

(ENA) repository with accession number PRJEB55533.

Methylation calling and differentially
methylated region identification

The quality control of reads generated by the WGBS was

performed using FastQC (Andrews, 2015). Trim Galore software

(version 0.6.5) (Krueger, 2015) was used to trim the reads based

on quality scores, remove adapters and filter short reads using the

default options. The ovine reference genome Oar_Ram_v2.0 was

indexed using BowTie2 (Langmead and Salzberg, 2012).

Subsequently, the trimmed reads were aligned to the reference

genome using Bsseeker2 (Guo et al., 2013) software by the

Python script bs_seeker2-align.py using the default options.

The alignment output files were sorted by position using

Samtools software (version 1.15.1) (Li et al., 2009). After this

step, the duplicated reads were removed using Picard software

(version 2.25) (https://broadinstitute.github.io/picard/). The

Python script bs_seeker2-call_methylation.py from

Bsseeker2 was used to perform the methylation calling

procedure using the default options.

The R package DSS was used to identify differentially

methylated loci (DMLs) and differentially methylated regions

(DMRs) (Feng et al., 2014). A DML corresponds to a differential

methylation pattern in a single nucleotide, while a DMR

represents a differential methylation pattern in a group of

nucleotides. Initially, the mean methylation levels for all the

methylated sites were estimated using a simple average algorithm

for smoothing, as described by (Feng et al., 2014). Subsequently,

the dispersion at each methylated site was estimated, and a Wald

test was conducted to identify the DMLs with a p value threshold

of 0.001. The DMRs were detected based on regions with many

statistically significant methylated sites based on the following

criteria: p value <0.01 for the methylated site, minimum length

(50 bp), minimum number of methylated sites (3), and

percentage of methylated sites being significant in the region

(0.5). The DMRs mapped in regions less than 50 bp from each

other were merged into a single DMR. The identified DMRs were

annotated using the R package genomation (Akalin et al., 2015)

using the gene annotation from the ovine reference genome

Oar_Ram_v2.0 (annotation release 104). First, the DMRs were

mapped on promoter, intron and exon regions of the respective

genes. Additionally, when the DMR was not mapped within a

gene coordinate, the closest gene was assigned to the DMR, and

the same was classified as mapped in an intergenic region. In

general, the methylation can occur in three different contexts in

eukaryotes: CG, CHG, CHH (where H is C, T or A) (Bird, 2002;

Cokus et al., 2008; Lister et al., 2009). The CG context is the most

observed with a range of 60%–90% of all CG dinucleotides

methylated in the genome (Ehrlich et al., 1982; Bird, 1986;

Lister et al., 2008). In addition, most of the CG-rich regions,
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also called CpG islands acting in gene silencing activities due to

the overlap with proximal promoters (Suzuki and Bird, 2008).

However, the importance of methylated sites outside promoter

regions for the regulation of gene silencing and activation is not

neglectable due to the activity of regulatory elements such as

silencers and enhancers (Wu et al., 2010; Lou et al., 2014;

Maegawa et al., 2017; Smith et al., 2017; Brandão et al., 2018;

Ordoñez et al., 2019). The sex effect for global methylation in the

CG, CHG and CHH contexts was estimated by Cohen’s D using

the R package lsr.

Integrating multiomics using multiblock
(s)PLS-DA to predict male and female
samples

A supervised learning analysis was conducted to identify

gene expression profiles and the methylation levels for the DMRs

mapped within the three contexts, which better classified the

samples as males or females. This approach is called Data

Integration Analysis for Biomarker discovery using Latent

variable approaches for Omics studies (DIABLO) or

multiblock (s)PLS-DA, and it is implemented in the R

package mixOmics (Rohart et al., 2017). The method applied

by DIABLO is partly based on generalised canonical correlation

analysis to perform an N-integration of datasets (omics or not)

with sparse discriminant analysis to classify discrete outcomes.

For this multiomics integration, all the genes with |log2(Fold-

Change)| > 1 in the RNA-Seq data and the detected DMRs for

WGBS data were used. The analysis was performed with the gene

expression values and the mean methylation level of cytosines

within DMRs. The two main components were used for the

discriminant analysis in both datasets. The function selectVar()

from the mixOmics package was used to identify the selected

variables used to discriminate the samples from each dataset. To

evaluate the potential of these genes to classify males and females,

the area under the curve (AUC) for the discriminant analysis was

estimated using the pairs of expression values and methylation

levels from the abovementioned genes exclusively.

Identification of candidate differentially
coexpressed gene modules correlated
with percentage of fat in different fat
deposits

The DcoExp modules harbouring at least one of the genes

among the selected variables in the discriminant analysis were

selected. From these DcoExp modules, the module eigengenes

(MES) were extracted. The WGCNA R package was used to

estimate the Pearson correlation between the MES for the

selected DcoExp modules and the percentages of renal, pelvic,

pelvic and perirenal, leg subcutaneous, and leg intramuscular fat.

Significant correlations were defined based on a p value threshold

of <0.05. It is important to highlight that the correlations were

estimated between the pairs of modules and traits within the

corresponding group. In other words, only observations from

males were used to estimate the correlation with exclusively male

DcoExp modules and observations from females for exclusively

female DcoExp modules. Finally, DcoExp modules harbouring

genes selected on the DIABLO analysis and significantly

correlated with at least one of the evaluated fat deposits

(percentage of perirenal, subcutaneous and intramuscular fat)

were selected as candidate DcoExp modules.

QTL overlapping and gene ontology
analysis

The list of candidate genes obtained from DIABLO

discriminant analysis was annotated for the overlapping of

quantitative trait loci (QTL) based on the SheepQTLdb from

Animal QTLdb (Hu et al., 2019), and a QTL enrichment analysis

was performed using the GALLO R package (Fonseca et al.,

2020). Additionally, the R packages ClusterProfiler (Yu et al.,

2012) and enrichplot were used for Gene Ontology (GO) term

enrichment analysis, graphic representation and functional

grouping of GO terms. QTL and GO terms were considered

enriched when the False-Discovery Rate (FDR) was <0.05. GO
term enrichment analysis was performed for the list of candidate

genes obtained from DIABLO discriminant analysis and for each

candidate DcoExp module. For GO terms, the function

pairwise_termsim () from enrichplot was used to calculate the

Jaccard correlation coefficient among terms, resulting in a

similarity matrix. Subsequently, the terms were functionally

grouped using the similarity matrix to identify classes of

closely related terms and reduce redundancy across terms. For

the functional grouping, all annotated GO terms were included to

estimate the similarity matrix, disregarding the enrichment

status.

Figure 1 shows a flowchart summarizing the methodology

applied and described here.

Results

Phenotypic comparison between male
and female samples

Themean values of the percentage of perirenal, subcutaneous

and intramuscular fat for males and females are presented in

Supplementary Table S1. There was no significant difference in

age between male and female samples (p value > 0.05). The

Anderson‒Darling test indicated that the percentage of renal (p

value = 0.403), pelvic (p value = 0.483), renal and pelvic (p value =

0.575), leg intramuscular (p value = 0.403), and leg subcutaneous
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FIGURE 1
Flowchart summarizing the methods applied and the respective objectives reached in the current study. The grey boxes highlight the main
results obtained in the methodological pipeline designed and applied in the present study.
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(p value = 0.560) fat followed a normal distribution. Additionally,

the F test for equity of variance indicated an equal variance

between males and females for percentage of renal (p value =

0.950), pelvic (p value = 0.399), renal and pelvic (p value = 0.404),

leg intramuscular (p value = 0.661), and leg subcutaneous (p

value = 0.234 fat. Significant differences (p value <0.05) were

observed only for cavitary fat between males and females, and

males had a higher percentage of pelvic fatness (Supplementary

Table S1).

Differentially expressed genes between
males and females

An average of 23.695 (±1.038) million reads were obtained

during the RNA-Seq analysis, from which, on average, 93.101%

(±0.408%) were uniquely mapped to the ovine reference genome

(Supplementary Table S2). A total of four DEGs were identified

between males and females in the perirenal fat (Table 1). Among

these four genes, two had an assigned gene symbol (GPR143 and

CDH20), and two were lncRNAs (LOC101112291 and

LOC121817091). Interestingly, LOC101112291 is a lncRNA

characterised as the XIST (X inactive specific transcript)

orthologue in sheep. The two most DEGs were mapped to the

ovine X chromosome (LOC101112291 and GPR143), while the

other two genes were mapped to chromosomes 23 (CDH20) and

18 (LOC121817091). Although few genes were differentially

expressed based on the defined threshold, 1,292 genes showed

an |log2 (fold-change)>1|, indicating potential coexpression

differences between males and females (Supplementary

Table S3).

Differentially coexpressed modules of
genes between males and females

All the samples and 6.928 genes were retained after the QC

was performed for the WGCNA analysis. In males and females,

94 and 111 coexpressed modules were identified (Supplementary

Figure S1). The pairwise comparison between males and females

identified 35 and 27 coexpressed modules with a specific

coexpression pattern (FDR<0.05) in each sex. The genes

assigned to each DcoExp module are shown in Supplementary

Table S4.

Differential methylated regions between
males and females

The average mapping statistics for the WGBS data for all

the samples are available in Supplementary Table S5. An

average mapping rate of 70.46% (±1.21%) was obtained for

the 12 samples analysed. The analysis of differential

methylation between males and females identified

49,314 DMLs (CG = 40,158, CHG = 3,787, CHH = 5,369)

and 27,635 DMRs (CG = 20,185, CHG = 1,342, CHH = 6,108),

as shown in Supplementary Tables S6, S7. In Figure 2, circular

Manhattan plots and density plots showing the distribution of

significant DMLs across the ovine genome are shown for each

methylation context (CG, CHG and CHH). As expected,

higher methylation means were obtained for the DMRs

mapped within CG contexts (males = 0.587 ± 0.252,

females = 0.608 ± 0.234) when compared with CHG

(males = 0.198 ± 0.168, females = 0.206 ± 0.175) and CHH

(males = 0.155 ± 0.117, females = 0.167 ± 0.113) contexts. The

comparison between males and females regarding the

distribution of methylation means showed similar kernel

densities in the three contexts (Figure 3A). The Cohen’s D

obtained for the comparison between males and females in CG

(0.085), CHG (0.044), and CHG (0.108) contexts corroborates

this result, indicating a small sex effect for the global

methylation pattern. Despite this small effect over the

global methylation, interesting site-specific differences were

observed for the identified DMRs, which will be presented

below. Regarding the comparison of DMR lengths across the

three different contexts, similar distributions were obtained

for CG (251.5 ± 472.4), CHG (137.7 ± 210.01) and CHH

(143.6 ± 186.10), as shown in Figure 3B. The Cohen’s D values

obtained for the comparisons of DMR lengths between CG vs

CHG (0.247), CG vs CHH (0.254), and CHG vs CHH (0.031)

suggest small effects of the methylation context on the length

of DMRs. However, higher effects were observed for the

comparisons, including the DMRs within the CG context

compared to CHG vs CHH, indicating longer DRMs.

Regarding the comparison of different genomic

contexts (intergenic, promoter, intron and exon) between

the three methylation contexts, the CG context showed a

higher percentage of DMRs mapped in promoters and

exons (12.37% and 10.32%) than the other contexts

(Figure 3C).

Among the identified DMRs, four were mapped within the

coordinates of DEGs (Table 2). The first DMR (X:

66088104–66090171) was mapped to LOC101112291 (Xist

TABLE 1 Differentially expressed genes (|log2(fold-change)|>2 and
FDR<0.05) between males and females in the perirenal fat of Assaf
suckling lambs.

Gene CHR log2(FC) lfcSE p-value FDR

LOC101112291 X 14.754 0.872 3.30 × 10−64 5.86 × 10−60

GPR143 X −3.280 0.567 7.34 × 10−9 6.53 × 10−5

CDH20 23 −6.914 1.495 3.78 × 10−6 2.24 × 10−2

LOC121817091 18 −4.006 0.906 9.79 × 10−6 4.35 × 10−2

CHR, chromosome; FC, fold change; lfcSE, log2(fold-change) standard error; FDR, false

discovery rate.
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FIGURE 2
Distribution and genomic density of differentially methylated loci (DMLs) across the genome of Assaf lambs in the three evaluated methylation
contexts CG (A), CHG (B), and CHH (C). On the right-hand side, the circular Manhattan plots show the distribution of–DMLs in the comparison
between males and females (log10 (p-values) after false discovery rate adjustment for the detected). On the left-hand side, the bar plots show the
density of DMLs within 1 Mb windows for each sheep chromosome. A darker red shade indicates a higher number of DMLs within the 1 Mb
windows.

Frontiers in Genetics frontiersin.org08

Fonseca et al. 10.3389/fgene.2022.1035063

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1035063


FIGURE 3
Distribution of (A)mean methylation level (B) length, and (C) genomic context (exon, intergenic, intron or promoter region) for the differential
methylation regions (DMRs) detected between males and females in Assaf suckling lambs. (A) Violin plots showing the distribution of mean
methylation levels within DRMs in the three methylation contexts (CG, CHG and CHH) and between males (in blue) and females (in red). (B) Violin
plots showing the distribution of the DMR lengths in the three methylation contexts (CG, CHG and CHH) and between males (in blue) and
females (in red). The length of DMRs was truncated at 500 bp for all three contexts to obtain a clear visualization of the distributions. (C) Pie plots
showing the percentage of DMRs detected within each genomic context (intergenic, exon, intron and promoter).

TABLE 2 Statistics from the Differentiallymethylated regions (DMRs) identifiedwithin the coordinates of differentially expressed genes betweenmale
and female perirenal fat of Assaf suckling lambs. For each DMR, the location in the reference genome (chromosome: coordinates), the annotated
gene in that region, the length in bp, the number of methylated cytosines, the proportion of methylation in females andmales, and the sequence and
genomic context are indicated.

DMR
coordinates

Gene Length
(bp)

Number
of
methylated C

Mean
methylation in
females

Mean
methylation in
males

Context Genomic
context

X:66088104–66090171 LOC101112291 2068 4 0.367 0.934 CG Exon/Intron

X:483776–483832 GPR143 57 11 0.076 0.253 CHH Intron

23:
60160365–60160625

CDH20 261 10 0.846 0.528 CG Intergenic

23:
60216480–60216888

CDH20 409 5 0.611 0.821 CG Intron

DMR, differential methylated regions; bp, base pair.
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lncRNA), and the DMLs mapped within this DMR had a mean

methylation level of 0.934 in males and 0.367 in females. The

other two DMRs are mapped within the coordinates of CDH20

and have contrasting methylation levels between each other. The

DMR located on 23:60160365–60160625 has higher methylation

in females (meanmethylation females = 0.846, meanmethylation

in males = 0.528), while the DMR located on 23:

60216480–60216888 has higher methylation in males (mean

methylation females = 0.611, mean methylation in males =

0.821). The last DMR maps within the coordinates of GPR143

show higher mean methylation in males (0.253) than in females

(0.076).

Discriminant analysis between males and
females by multi-Omics integration

The DIABLO discriminant analysis generated one prediction

per dataset: 1,292 mRNAs (|log2 (fold-change)|>1) with the

expression levels in FPKM and the mean methylation level of

the cytosines within the DMRs. The variable selection procedure

included all the genes and 27,635 mean methylation levels within

DMRs in the list of selected variables. An AUC = 1 (p value =

0.004) was obtained for this selected dataset (for both DMRs and

gene expression in the two principal components), consequently

perfectly classifying the samples between males and females.

FIGURE 4
Multi-omics discriminant analysis between males (blue) and females (orange) samples using multiblock (s)PLS-DA. (A) Scatterplot from
plotDiablo displaying the first principal component in RNA-Seq andWGBS datasets (upper diagonal plot), thus, constructed with expression values of
314 discriminant genes between males and females (RNA-Seq data) and 627 mean methylation levels within DMRs mapped within the same genes
(WGBS data), and Pearson correlation (0.98) between each component (lower diagonal plot) (B) Loading values for the top 20 DMRs (left-hand
side) and gene expression values (right-hand side) obtained in the multiblock (s)PLS-DA used to discriminate male and female samples.
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Subsequently, the discriminant analysis was performed again

using the expression levels of 314 genes due to overlapping

between the selected mRNA expression levels and the

methylation levels of cytosines within DMRs. A total of

627 DMRs were mapped within the coordinates of these

314 genes (204, 101, and 302 within CG, CHG and CHH

contexts, respectively). The DIABLO discriminant analysis

exclusively using the 314 genes again resulted in an AUC = 1

FIGURE 5
Functional analysis for the 314 discriminant genes obtained in the (s)PLS-DA discriminant analysis between male and female samples. (A)
Functional grouping tree diagram for the Gene Ontology (GO) terms annotated for the 314 genes selected after the multiblock (s)PLS-DA
discriminant analysis. Each color in the dendrogram represents a functional group obtained after estimating the Jaccard correlation coefficient. The
area of the circles represents the number of genes assigned to each GO term, and the color of the circle indicates the p-value estimated for
each GO term. (B) Pie plot showing the percentage of each QTL type annotated within the genomic coordinate of the 314 discriminant genes and
bubble plot with QTL enrichment analysis results, where the darker the shade of red, the smallest is the enrichment p-value and the area of the circle
represents the number of annotated QTLs.
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(p value = 0.0039) for both datasets and using the two first

principal components for the discriminant analysis. The loading

vectors for all tested variables in the two principal components

are shown in Supplementary Table S8. The components used to

discriminate male and female samples from selected mRNA

expression levels and the methylation levels of cytosines

within DMRs showed a correlation of 0.98 (Figure 4).

The results of the annotation of GO terms for the list of

314 genes selected in the DIABLO discriminant analysis are

shown in Supplementary Table S9. The redundancy reduction

through the Jaccard correlation coefficient resulted in interesting

groups of GO terms associated with the 314 selected genes

(Figure 5A). The major GO term group, i.e., the term

grouping the highest number of significant GO terms, was

“cytokine production involved immune”. Additionally, the

groups of GO terms associated with “calcium fatty acid ion”,

“face body development vitamin”, “embryonic eye development”

and “cytoplasmic translation”were also observed to be associated

with the 314 selected genes.

The annotation of QTLs (previously reported in the

literature) within the genomic coordinates of the 314 genes

selected from the DIABLO discriminant analysis showed that

the largest proportion of reported QTLs in those regions were

associated with meat and carcass QTLs (46.91%). Figure 5B

shows the percentage of all QTL types previously described

within the genomic coordinate of the candidate genes. The

complete list of annotated QTLs is available in Supplementary

Table S10. The QTL enrichment analysis indicated the

enrichment of traits associated with several QTL types

available on the sheep QTL database (Figure 5B). However, it

is interesting to highlight the presence of traits related to the total

amount of fat, such as “age at maximum daily gain”, “body

weight (slaughter)”, “carcass fat percentage”, “fat weight in

carcass”, “internal fat amount”, “lean meat yield percentage”,

and “subcutaneous fat area”. Additionally, QTLs associated with

the content of different fatty acids in the meat were identified as

enriched, such as for the following fatty acids: docosapentaenoic,

eicosapentaenoic, gadoleic, linoleic, and arachidonic.

Candidate DcoExp module of genes
between males and females potentially
associated with production traits

In total, nine male DcoExp and three female DcoExp were

significantly associated with the fat percentage in at least one of

the fat deposits evaluated (Figure 6). Positive correlations were

observed between the percentage of subcutaneous fat in the leg

and the male DcoExp modules lightpink (r2 = 0.92), darkorange

(r2 = 0.90) and lightblue (r2 = 0.88). In contrast, a negative

correlation was observed with the male brown4 module (r2 =

-0.89), magenta (r2 = -0.82) and lightslateblue (r2 = -0.84).

Similarly, two male DcoExp modules, lightblue4 (r2 = 0.89)

and skyblue4 (r2 = 0.82), were positively correlated with the

percentage of intramuscular fat in the leg. Additionally, the male

DcoExp, skyblue4, was positively correlated with the percentage

FIGURE 6
Pearson correlation between module eigengenes and fat percentage in different adipose deposits (Renal, Pelvic, Renal and Pelvic, Leg
subcutaneous, and Leg intramuscular). The modules shown in the figure are the differentially coxpressed modules harboring at least one of the
314 discriminant genes between males and females. For each module, after the color identification of the module, it is indicated if the coexpressed
gene module was identified in males or females. The Pearson correlation between the fat percentage and the module is shown in the figure for
each specific fat deposit, and the p-value assigned for each correlation coefficient is shown between parenthesis (**p-value<0.05). The color scale
represents the signal of the correlation coefficient, where green shades represent negative correlations and red shades positive correlations.
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TABLE 3 Sex discriminant genes identified by the multiblock (s)PLS-DA* discriminant analysis. These genes were allocated in differentially
coexpressed modules from the weighted correlation network analysis (WGCNA)*, and were significantly correlated with the fat percentage in
different adipose deposits (Renal, Pelvic, Renal and Pelvic, Leg subcutaneous, and Leg intramuscular). For each gene is indicated: their symbol, the
description, the coexpression module, the fold change (base 2 logarithm), the DMR location in the reference genome (chromosome: coordinates),
the proportion of methylation in females and males, and the sequence and genomic context.

Gene Description Module
WGCNAa

log2(FC)
a DMR coordinate Mean

female
methylation

Mean
male
methylation

Nucleotide
context

Genomic
context

COL6A6 Collagen type VI
alpha 6 chain

Cyan-Female −1.134 1:
272857035–272858265

0.511 0.934 CG Intron

BUB1 BUB1 mitotic
checkpoint serine/
threonine kinase

Cyan-Female −1.185 3:
104905951–104906039

0.203 0.068 CG Promoter

3:
104906340–104906756

0.413 0.076 CG Promoter

SKA1 Spindle and
kinetochore
associated complex
subunit 1

Cyan-Female −1.182 23:
50315601–50315664

0.712 0.172 CHH Intron

LOC121819057 Uncharacterized
LOC121819057

Cyan-Female 1.147 3:79227975–79228136 0.086 0.230 CHH Intergenic

3:79164130–79164185 0.560 0.340 CG Intergenic

LOC101113771 C-C motif
chemokine 3-like

Lightcoral-
Female

1.235 11:
13965372–13965500

0.504 0.895 CG Intron

LOC114113921 KATNB1-like
protein 1

Lightcoral-
Female

1.004 3:53093129–53093208 0.764 0.905 CG Intergenic

3:53428831–53431256 0.423 0.526 CG Intergenic

3:53749953–53750047 0.908 0.328 CG Intergenic

3:53914562–53914855 0.802 0.575 CG Intergenic

3: 53536355–53536428 0.179 0.527 CHH Intergenic

3: 53263175–53263232 0.227 0.081 CHH Intergenic

3: 53338513–53338574 0.270 0.102 CHH Intergenic

LOC105605978 Tumor necrosis
factor receptor
superfamily
member 26-like

Palevioletred2-
Female

−1.236 21:
44932535–44932634

0.140 0.080 CHG Intron

PLA2G5 Phospholipase
A2 group V

Brown4-Male −1.064 2:
246336958–246337395

0.528 0.909 CG Intergenic

2:
246357555–246357847

0.811 0.484 CG Intron

BCL2L14 BCL2 like 14 Darkorange-
Male

−1.227 3:
203381087–203381150

0.906 0.653 CG Intergenic

3:
203398094–203398169

0.152 0.631 CG Intron

3:
203402162–203402245

0.225 0.715 CG Intron

3:
203370171–203370245

0.254 0.100 CHH Intergenic

CLEC2D C-type lectin
domain family 2-
member D

Darkorange-
Male

1.403 3:
206065407–206065635

0.351 0.642 CG Intergenic

3:
206089993–206090043

0.149 0.086 CHH Intron

VSTM5 V-set and
transmembrane
domain
containing 5

Darkorange-
Male

−1.130 21:561263–561315 0.245 0.094 CHH Intron

21:472974–473091 0.396 0.175 CG Intergenic

BFSP2 Beaded filament
structural protein 2

Lightblue4-
Male

−1.522 1:
256647462–256647584

0.248 0.452 CG Intron

1:
256784172–256784621

0.932 0.490 CG Intron

0.226 0.083 CHG Intron

(Continued on following page)
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TABLE 3 (Continued) Sex discriminant genes identified by the multiblock (s)PLS-DA* discriminant analysis. These genes were allocated in differentially
coexpressedmodules from theweighted correlation network analysis (WGCNA)*, andwere significantly correlated with the fat percentage in different
adipose deposits (Renal, Pelvic, Renal and Pelvic, Leg subcutaneous, and Leg intramuscular). For each gene is indicated: their symbol, the description,
the coexpression module, the fold change (base 2 logarithm), the DMR location in the reference genome (chromosome: coordinates), the proportion
of methylation in females and males, and the sequence and genomic context.

Gene Description Module
WGCNAa

log2(FC)
a DMR coordinate Mean

female
methylation

Mean
male
methylation

Nucleotide
context

Genomic
context

1:
256737014–256737067

LOC101107700 Uncharacterized
protein C4orf19-
like

Lightblue4-
Male

1.549 23:
40021734–40021852

0.575 0.338 CG Intergenic

23:
40128687–40129173

0.609 0.889 CG Intergenic

23:
40143977–40144111

0.206 0.081 CHH Intergenic

BUB1 BUB1 mitotic
checkpoint Serine/
threonine kinase

Lightslateblue-
Male

−1.185 3:
104905951–104906039

0.203 0.068 CG Promoter

3:
104906340–104906756

0.413 0.076 CG Promoter

LOC114111438 Uncharacterized
LOC114111438

Lightslateblue-
Male

−1.021 X:99973590–99973672 0.720 0.830 CG Exon

X:99975373–99975613 0.053 0.092 CHG Exon

EMX2 Empty spiracles
homeobox 2

Skyblue4-Male −1.021 22:
37376592–37376681

0.374 0.826 CG Intergenic

22:
37386811–37386967

0.797 0.417 CG Intergenic

22:
37429072–37429186

0.942 0.795 CG Intergenic

ARG2 Arginase 2 Skyblue4-Male 1.428 7:77567672–77567760 0.172 0.077 CHH Intron

LOC101120997 Anaphase-
promoting
complex subunit
15-like

Skyblue4-Male 1.167 3:
110380188.110380337

0.695 0.295 CHG Intergenic

3:
110440297.110440384

0.841 0.547 CG Intergenic

3:
110442593.110442698

0.710 0.930 CG Intergenic

RASSF5 Ras association
domain family
member 5

Coral1-Male 1.085 12:
44932535–44932634

0.141 0.321 CG Intergenic

12:
44932535–44932634

0.110 0.069 CHH Intron

LOC114112700 Translation
initiation factor IF-
2-like

Magenta-Male 1.008 2:
250131883–250132043

0.067 0.050 CHG Promoter/
Exon

2:
250132404–250132465

0.082 0.061 CHG Promoter/
Exon

2:
250139818–250139925

0.047 0.029 CHG Intergenic

2:
250148659–250148782

0.075 0.058 CHH Intergenic

2:
250139850–250140333

0.046 0.031 CHH Intergenic

2:
250139994–250140087

0.047 0.030 CHG Intergenic

2:
250149933–250150397

0.225 0.140 CHH Intergenic

LOC114112008a Liprin-alpha-1-like Orangered1-
Male

−2.420 24:206621–206706 0.462 0.701 CG Exon/Intron

24:163454–163594 0.676 0.807 CG Intergenic

24:81541–81684 0.100 0.052 CHG Intergenic

24:81740–81805 0.095 0.050 CHG Intergenic

24:154547–155044 0.112 0.068 CHH Intergenic

(Continued on following page)
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of pelvic fat (r2 = 0.86). Regarding the female DcoExp modules,

the cyan female module was negatively correlated with the

percentage of renal fat (r2 = -0.81), while the lightcoral female

module was positively correlated with the percentage of renal and

pelvic fat (r2 = 0.84). In addition, the palevioletred2 female

module was positively correlated with the percentage of

intramuscular fat in the leg (r2 = 0.85).

Interestingly, all the DcoExp modules showing significant

correlations with the fat percentage in the different fat deposits

evaluated harboured at least one of the genes selected through the

DIABLO discriminant analysis (Table 3). The top 10 enriched

GO terms for each DcoExp module selected (when more than

10 terms were enriched) are shown in Table 4. Additionally, all of

the associated GO terms are available in Supplementary Table

S11. The analysis of redundancy reduction through the similarity

matrix calculated using the Jaccard correlation coefficient

resulted in identifying interesting biological processes

associated with the selected DcoExp modules (Supplementary

Figure S2).

Discussion

Differential gene expression analysis

LOC101112291 was the transcript with the highest

differential expression between females and males in the

perirenal fat (FDR = 5.86 × 10−60), showing higher

expression in female samples (log2(Fold-Change) = 14.754).

This locus encodes an orthologous gene in sheep for the human

XIST gene, a crucial lncRNA acting in the X-chromosome

activation and expression balance of X-linked genes between

males and females (Payer and Lee, 2008). In humans, XIST is

more highly expressed in female subcutaneous fat than in males

and in the subcutaneous fat of cortisol-producing adenoma

female patients than in controls (Wu et al., 2019, Wu et al.,

2022). Interestingly, a sex-specific expression pattern exclusive

to females was observed in the subcutaneous and visceral

adipose tissues of ob/ob mice (Shinozaki et al., 2007).

Additionally, this gene has been associated with brown

adipose tissue. For instance, the knockdown of XIST in

human perirenal and subcutaneous tissues resulted in an

inhibition of differentiation of brown preadipocytes. On the

other hand, its overexpression promoted the full differentiation

of brown preadipocytes (Wu et al., 2022). In the same study, the

results indicate that XIST acts through direct binding to

C/EBPα and BAT activation, consequently combating high-

fat diet-induced obesity (Wu et al., 2022). It is interesting to

highlight that a DMR was identified within the coordinates of

LOC101112291, showing higher methylation mean for the

DMLs within this DMR in male samples. The other DEGs

were GPR143 (log2(Fold-Change) = -3.280 and FDR = 6.53 ×

10−5), CDH20 (log2(Fold-Change) = -4.006 and FDR = 4.35 ×

10−2), and LOC121817091 (log2(Fold-Change) = -4.006 and

FDR = 4.35 × 10−2). The functions of GPR143 are related

with regulation of whole-body metabolism and adipose

tissue function (GPR143) (Premont and Gainetdinov, 2007;

Amisten et al., 2008). The CDH20 encodes a member of a

cadherin superfamily and it was previously associated with

backfat thickness at 100 kg in pigs through a genome-wide

association study (Zhang et al., 2021). To the best of our

knowledge, no link between LOC121817091 and fat tissue

and/or sex differences was previously described in the

literature.

It is interesting to highlight that in the current study, healthy

animals in an early stage of post-natal development were

compared. Here, a small number of DEG was observed

between males and females. The same expression pattern

between males and females was previously described in other

species, such as humans and cattle, in adipocytes and other

tissues (Seo et al., 2016; Anderson et al., 2020; Rey et al., 2021).

Consequently, slighter differences in the expression pattern

TABLE 3 (Continued) Sex discriminant genes identified by the multiblock (s)PLS-DA* discriminant analysis. These genes were allocated in differentially
coexpressedmodules from theweighted correlation network analysis (WGCNA)*, andwere significantly correlated with the fat percentage in different
adipose deposits (Renal, Pelvic, Renal and Pelvic, Leg subcutaneous, and Leg intramuscular). For each gene is indicated: their symbol, the description,
the coexpression module, the fold change (base 2 logarithm), the DMR location in the reference genome (chromosome: coordinates), the proportion
of methylation in females and males, and the sequence and genomic context.

Gene Description Module
WGCNAa

log2(FC)
a DMR coordinate Mean

female
methylation

Mean
male
methylation

Nucleotide
context

Genomic
context

LOC121818175 Small integral
membrane protein
13-like

Orangered1-
Male

−1.217 X:79759026–79759116 0.101 0.516 CHH Intergenic
X:79759026–79759116 0.101 0.516 CHH Intergenic

LOC121818524 Collagen alpha-
1(I) chain-like

Lightpink4-
Male

1.115 2:
250122227–250122458

0.062 0.047 CHG Intergenic

aOnly the top five DMRs, with the highest absolute methylation mean between males and females are shown for the gene LOC114112008, as 74 DMRs, were annotated within the

coordinates of this gene.
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TABLE 4 Top ten enriched (FDR< 0.05) gene ontology terms (when available) for genes allocated within the differentially coexpressed modules
between males and females Assaf suckling lambs correlated with the fat percentage in different fat deposits (Renal, Pelvic, Renal and Pelvic, Leg
subcutaneous, and Leg intramuscular). For each module, the gene ontology process (see table footnote), its specific description, the nominal
p-value, the adjusted FDR p-value, and the genes involved in the GO term are indicated.

Module Gene
ontology*

Description p-value FDR Gene symbol

Brown4-Male CC ISGF3 Complex 6.81 ×
10−05

0.014 STAT1, STAT2

BP Response to Virus 1.47 ×
10−05

0.026 CCDC92, HYAL1, IFI44, IFIT2, TRIM5,
RNASEL, SAMHD1, STAT1, STAT2, TNFSF4

CC HOPS Complex 4.70 ×
10−04

0.048 VPS18, VPS33B

Darkorange-
Male

CC Spindle Pole 5.65 ×
10−05

0.022 BIRC6, CEP128, CUL3, DYNC1LI1, GPSM2,
CALM1, NDE1, NIN, SPDL1, TOPBP1

MF Adenylylsulfate Kinase Activity 1.74 ×
10−04

0.027 PAPSS1, PAPSS2

MF Sulfate Adenylyltransferase Activity 1.74 ×
10−04

0.027 PAPSS1, PAPSS2

MF Sulfate Adenylyltransferase (ATP) Activity 1.74 ×
10−04

0.027 PAPSS1, PAPSS2

MF 2-Acylglycerol-3-Phosphate O-Acyltransferase Activity 1.82 ×
10−04

0.027 LPCAT2, LPCAT4, LPGAT1

CC Nem1-Spo7 Phosphatase Complex 1.56 ×
10−04

0.031 CNEP1R1, CTDNEP1

MF Serine Transmembrane Transporter Activity 3.59 ×
10−04

0.042 SFXN1, SFXN3, SLC38A2

Lightblue4-Male CC Mitochondrial Inner Membrane 9.84 ×
10−06

0.001 DNAJC30, ATAD3A, CYC1, SLC25A12,
TIMM22, TIMM29, TIMMDC1, TMEM186

CC Mitochondrial Matrix 6.94 ×
10−05

0.003 ATAD3A, METTL17, MMAB, PARS2,
SDHAF2, TFB2M, TRUB2

CC TIM22 Mitochondrial Import Inner Membrane Insertion
Complex

9.81 ×
10−05

0.003 TIMM22, TIMM29

MF Pseudouridine Synthase Activity 3.90 ×
10−04

0.048 RPUSD2, TRUB2

MF Nuclear Steroid Receptor Activity 0.001 0.048 GPER1, PGR

MF Intramolecular Transferase Activity 0.001 0.048 RPUSD2, TRUB2

MF Protein Transporter Activity 0.002 0.048 TIMM22, TIMM29

MF N-Acetylglucosamine-6-Phosphate Deacetylase Activity 0.002 0.048 AMDHD2

MF Cob(I)yrinic Acid a,c-Diamide Adenosyltransferase
Activity

0.002 0.048 MMAB

MF N6-Isopentenyladenosine Methylthiotransferase Activity 0.002 0.048 CDK5RAP1

Lightslateblue-
Male

MF 3′-5′-Exoribonuclease Activity 8.19 ×
10−05

0.021 EXOSC3, EXOSC7, NOCT, PNPT1

MF Exoribonuclease Activity, Producing 5′-
Phosphomonoesters

1.14 ×
10−04

0.021 EXOSC3, EXOSC7, NOCT, PNPT1

MF Exoribonuclease Activity 1.39 ×
10−04

0.021 EXOSC3, EXOSC7, NOCT, PNPT1

CC Cytoplasmic Exosome (Rnase Complex) 7.42 ×
10−05

0.021 EXOSC3, EXOSC7, PNPT1

CC Exosome (Rnase Complex) 2.44 ×
10−04

0.027 EXOSC3, EXOSC7, PNPT1

CC Exoribonuclease Complex 2.86 ×
10−04

0.027 EXOSC3, EXOSC7, PNPT1

BP Polyadenylation-Dependent RNA Catabolic Process 1.45 ×
10−05

0.038 EXOSC3, EXOSC7, PNPT1

CC Specific Granule 6.45 ×
10-04

0.046 HPSE, VAMP8, BST1, PTPN6, SLC2A5,
VAMP1

(Continued on following page)
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TABLE 4 (Continued) Top ten enriched (FDR< 0.05) gene ontology terms (when available) for genes allocated within the differentially coexpressed
modules between males and females Assaf suckling lambs correlated with the fat percentage in different fat deposits (Renal, Pelvic, Renal and Pelvic,
Leg subcutaneous, and Leg intramuscular). For each module, the gene ontology process (see table footnote), its specific description, the nominal
p-value, the adjusted FDR p-value, and the genes involved in the GO term are indicated.

Module Gene
ontology*

Description p-value FDR Gene symbol

MF 3′-5′ Exonuclease Activity 4.49 ×
10−04

0.049 EXOSC3, EXOSC7, NOCT, PNPT1

MF Exonuclease Activity, Active with Either Ribo- Or
Deoxyribonucleic Acids and Producing 5′-
Phosphomonoesters

6.30 ×
10−04

0.049 EXOSC3, EXOSC7, NOCT, PNPT1

Skyblue4-Male CC Cytosolic Ribosome 2.32 ×
10−07

4.92 ×
10−05

RPL13, RPS3A, RPL36A, RPS15A, RPL35A,
RPL6, RPL37A

CC Cytosolic Large Ribosomal Subunit 4.36 ×
10−06

4.00 ×
10−03

RPL13, RPL36A, RPL35A, RPL6, RPL37A

CC Ribosomal Subunit 9.71 ×
10−06

6.86 ×
10−04

RPL13, RPS3A, RPL36A, RPS15A, RPL35A,
RPL6, RPL37A

CC Ribosome 4.90 ×
10−05

0.002 RPL13, RPS3A, RPL36A, RPS15A, RPL35A,
RPL6, RPL37A

CC Large Ribosomal Subunit 1.07 ×
10−04

0.004 RPL13, RPL36A, RPL35A, RPL6, RPL37A

BP Cytoplasmic Translation 2.91 ×
10−06

0.004 RPL13, RPS3A, RPL36A, RPS15A, RPL35A,
RPL6, RPL37A

MF Structural Constituent of Ribosome 1.89 ×
10−05

0.005 RPL13, RPS3A, RPL36A, RPS15A, RPL35A,
RPL6, RPL37A

Orangered1-
Male

BP Response to insulin 1.18 ×
10−07

2.27 ×
10−04

AKT2, CPEB2, CRY2, GHSR, KLF15,
SLC2A4, SORBS1, SREBF1, TRIB3, VWA2,
WDTC1

BP Cellular response to insulin stimulus 1.35 ×
10−06

9.023 ×
10−04

AKT2, CPEB2, GHSR, SLC2A4, SORBS1,
SREBF1, TRIB3, VWA2, WDTC1

BP Response to peptide hormone 1.41 ×
10−06

9.023 ×
10−04

AKT2, CPEB2, CRY2, GHSR, KLF15, LTA4H,
SLC2A4, SORBS1, SREBF1, TRIB3, VWA2,
WDTC1

BP Response to peptide 1.04 ×
10−05

4.97 ×
10−04

AKT2, CPEB2, CRY2, GHSR, KLF15, LTA4H,
SLC2A4, SORBS1, SREBF1, TRIB3, VWA2,
WDTC1

BP Cellular response to peptide 2.06 ×
10−05

7.88 ×
10−03

AKT2, CPEB2, GHSR, KLF15, SLC2A4,
SORBS1, SREBF1, TRIB3, VWA2, WDTC1

BP Cellular response to peptide hormone stimulus 2.50 ×
10−05

0.008 AKT2, CPEB2, GHSR, SLC2A4, SORBS1,
SREBF1, TRIB3, VWA2, WDTC1

BP Hexose metabolic process 4.19 ×
10−05

0.011 AKT2, DCXR, OMA1, PFKFB3, PFKFB4,
PPP1R3B, SORBS1, WDTC1

BP Base-excision repair, gap-filling 4.94 ×
10−05

0.011 LIG1, PARG, POLE

BP Monosaccharide metabolic process 7.13 ×
10−05

0.015 AKT2, DCXR, OMA1, PFKFB3, PFKFB4,
PPP1R3B, SORBS1, WDTC1

BP Regulation of fatty acid metabolic process 1.25 ×
10−04

0.023 AKT2, GHSR, SREBF1, TRIB3, WDTC1

Cyan-Female BP Chromosome Segregation 4.46 ×
10−08

7.00 ×
10−05

BRIP1, BUB1, CCNE1, CENPW, DLGAP5,
UBE2I, MEIOB, PRC1, SKA1, TOP2A,
UBE2C

BP Nuclear Division 5.37 ×
10−07

4.21 ×
10−04

BRIP1, BUB1, CCNE1, DLGAP5, KIF11,
UBE2I, MEIOB, PRC1, TDRD9, TOP2A,
UBE2C

BP Organelle Fission 1.43 ×
10−06

7.50 ×
10−04

BRIP1, BUB1, CCNE1, DLGAP5, KIF11,
UBE2I, MEIOB, PRC1, TDRD9, TOP2A,
UBE2C

CC Condensed Chromosome 2.87 ×
10−05

2.98 ×
10−04

BUB1, CENPW, HMGB2, UBE2I, SETMAR,
SKA1, TOP2A

(Continued on following page)
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might be expected. However, despite the small number of DEG, it

is impossible to disregard potential differences between sexes

caused by other mechanisms such as differential co-expression

patterns, post-transcriptional mechanisms and environmental

response.

Discriminant analysis between male and
female samples using expression profiles
and DMRs

The functional grouping of the GO terms associated with the

314 genes selected in the DIABLO analysis indicated the presence

of biological processes related to cytokine production and

response to interleukin, as well as response to fatty acids

(Figure 4).

The BAT secretes several molecules responsible for

regulating functions in several organs by autocrine, paracrine

and endocrine actions (Villarroya et al., 2017). These molecules

are called batokines, and their activities have been associated with

protectivity against obesity and metabolic diseases (Lowell et al.,

1993). Among the main batokines, interleukin-6 (IL-6) and

adiponectin can be highlighted due to their functional

relevance. IL-6 is among the 314 genes selected from the

discriminant analysis. Recently, the specific action of IL-6-type

cytokine signalling in adipocytes has been associated with the

development of obesity-associated insulin resistance and

steatosis (Allen and Febbraio, 2010). Additionally, evidence

TABLE 4 (Continued) Top ten enriched (FDR< 0.05) gene ontology terms (when available) for genes allocated within the differentially coexpressed
modules between males and females Assaf suckling lambs correlated with the fat percentage in different fat deposits (Renal, Pelvic, Renal and Pelvic,
Leg subcutaneous, and Leg intramuscular). For each module, the gene ontology process (see table footnote), its specific description, the nominal
p-value, the adjusted FDR p-value, and the genes involved in the GO term are indicated.

Module Gene
ontology*

Description p-value FDR Gene symbol

CC Chromosomal Region 3.82 ×
10−05

2.98 ×
10−04

BUB1, CDK1, CENPW, ORC1, RPA1, SKA1,
TOP2A, ZNF827

MF NADPH Dehydrogenase (Quinone) Activity 1.26 ×
10−05

3.27 ×
10−04

CBR4, NQ O 1

BP Nuclear Chromosome Segregation 8.94 ×
10−06

3.50 ×
10−04

BRIP1, BUB1, CCNE1, DLGAP5, MEIOB,
PRC1, TOP2A, UBE2C

BP Regulation of Cell Cycle Phase Transition 1.77 ×
10−05

5.52 ×
10−04

BRIP1, BUB1, CDK1, CDKN2C, DLGAP5,
MDM2, ORC1, SETMAR, UBE2C

BP Meiotic Chromosome Segregation 2.52 ×
10−05

5.52 ×
10−04

BRIP1, BUB1, CCNE1, MEIOB, TOP2A

BP Chromosome Separation 2.65 ×
10−05

5.52 ×
10−04

BUB1, DLGAP5, MEIOB, TOP2A, UBE2C

Lightcoral-
Female

MF Type I Transforming Growth Factor Beta Receptor
Binding

8.59 ×
10−06

2.68 ×
10−04

ENG, SMAD6, SMAD7

MF Transcription Regulator Inhibitor Activity 9.21 ×
10−05

0.014 MDFI, SMAD6, SMAD7

MF Transforming Growth Factor Beta Receptor Binding 1.38 ×
10−04

0.014 ENG, SMAD6, SMAD7

BP Cardiac Septum Morphogenesis 1.20 ×
10−05

0.022 ENG, MSX2, SMAD6, SMAD7, TBX3

CC Heteromeric SMAD Protein Complex 4.53 ×
10−04

0.040 SMAD6, SMAD7

CC SMAD Protein Complex 5.81 ×
10−04

0.040 SMAD6, SMAD7

CC Postsynaptic Cytoskeleton 5.81 ×
10−04

0.040 ACTB, SPTBN2

MF Adrenergic Receptor Activity 6.25 ×
10−04

0.048 ADRA2B, ADRB1

Palevioletred2-
Female

MF delta24 (24–1) sterol reductase activity 0.0021 0.0490 DHCR24

MF UDP-N-acetylglucosamine 4-epimerase activity 0.0021 0.0490 GALE

MF UDP-glucose 4-epimerase activity 0.0021 0.0490 GALE

MF Arylformamidase activity 0.0021 0.0490 AFMID

MF Mevalonate kinase activity 0.0021 0.0490 MVK

MF delta24-sterol reductase activity 0.0021 0.0490 DHCR24
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suggests that adipocyte-specific IL-6 induces the release of free

fatty acids and leptin through an insulin effect, subsequently

affecting liver metabolism and pancreatic β-cell function (Wueest

and Konrad, 2018). Even though adiponectin was not among the

314 genes selected in the discriminant analysis, the genes

C1QTNF3 and IL1B were associated with biological processes

related to the regulation of adiponectin secretion.

The genes AKR1C2, CD36, CPS1, PCSK1, PON1, and UCP1

were among the 314 genes selected in the discriminant analysis

and were associated with the biological process “response to fatty

acids”. Among these genes, it is important to highlight the key

function ofUCP1 in the thermogenesis of BAT in lambs, showing

a fast decrease in the mRNA levels after birth as well as the BAT

(Clarke et al., 1997; Saely et al., 2011). Consequently, UCP1 is a

classical biomarker for BAT. Recently, our research group

demonstrated that the expression of UCP1 mRNA follows the

percentage of multilocular adipocytes (another BAT marker) in

Assaf suckling lambs (Suárez-Vega et al., 2018). Here, UCP1,

despite not being differentially expressed between males and

females, showed a log2(FC) of 2.17. This finding indicates a

higher expression in female Assaf suckling lambs, which

corroborates the literature (Rodríguez et al., 2001; Rodríguez-

Cuenca et al., 2002; Oliver et al., 2007).

The QTL enrichment analysis performed using the QTLs

previously reported within the genomic coordinates of the

314 selected genes suggested that the regions harbouring these

genes were frequently reported to be associated with relevant fat-

related traits. For example, the “lean meat yield percentage” and

“body weight (slaughter)” were the most enriched QTLs in this

analysis, with 11 out of the 13 and nine out of nine QTLs reported

in the sheep QTL database mapped within the coordinates of the

314 selected genes, respectively. A total of 64 and 59 genes out the

314 genes selected in the discriminant analysis were mapped

within QTLs for “lean meat yield percentage” and “body weight

(slaughter)”, respectively. The presence of other QTLs, such as

“fat weight carcass” and “subcutaneous fat area”, reinforce the

recurrent association of these regions with the total amount of fat

in the individual. Additionally, the annotation of QTLs

associated with the content of FA in the meat highlights the

potential of these genes to be involved with meat quality traits.

Differentially coexpressed gene modules
between male and female samples
significantly correlated with the
percentage of fat in different fat deposits

Interestingly, after the DIABLO discriminant analysis, 12 of

the DcoExp modules (nine for males and three for females)

harboured 22 genes from the list of selected genes (Table 3). In

addition, these DcoExp modules were significantly correlated

with the fat percentage in at least one of the evaluated fat deposits.

Differentially from a single gene differential expression analysis, a

co-expression analysis has the potential to identify alterations in

biological processes between groups even when small differences

are observed individually for each gene expression profile.

Therefore, here the biological processes associated with the

differentially co-expressed modules between males and females

were used to better understand the potential role of the candidate

genes harboring DMRs and selected in the DIABLO analysis over

meat quality traits.

It is important to highlight that results from DMRs and

expression patterns must be interpreted carefully. The presence

of a DMR near or within a gene coordinate not necessarily

implicates in a differential expression pattern. A DMR must

effectively change the accessibility of the transcriptional

machinery to the DNA to change the expression pattern of a

gene. In addition, it is interesting to mention that, for example,

the same gene might have two or more DMRs with contrasting

methylation patterns, which makes the interpretability even

more complex. Therefore, this effective potential to module

the expression profile should be validated using other

techniques, such as ATAC-seq (Luo et al., 2022).

Enriched GO terms were not identified for the male DcoExp

modules coral1, magenta, and lightpink4. The 314 selected genes

from the discriminant analysis list and allocated within these

modules were RASSF5, LOC114112700, and LOC121818524,

respectively. RASSF5, also known as NORE1A, acts as an

effector of the Ras protein (Donninger et al., 2016). The RAS

protein is a strong activator of the ERK pathway, which is

suggested to play a positive role in adipogenesis (Bost et al.,

2005). LOC114112700 is reported to be an orthologue of the

translation initiation factor (IF-2) gene. However, no direct link

between IF-2 and adipocytes was found. LOC121818524 encodes

an orthologue of the collagen alpha-1(I) chain (COL1A1) gene.

COL1A1 is a major component of the extracellular matrix in

adipose tissue and is significantly suppressed by adipogenesis

induction (Okada et al., 2012). Additionally, the expression of

COL1A1 and other collagen family members was low in beef

cattle showing high marbling in the longissimus dorsi muscle

(Chen et al., 2019).

The male module brown4 harboured the gene

phosphatidylcholine 2-acylhydrolase 5 (PLA2G5), a member

of the secretory phospholipase A2 family. PLA2G5 protects

against diet-induced obesity and insulin resistance with an

additional function in the translation of macrophages from

adipose tissue from the M1 to M2 state (Sato et al., 2014). In

addition, PLA2G5 knockout mice have hyperlipidaemia,

increased obesity, hepatic steatosis, lower insulin sensitivity,

greater infiltration of M1 macrophages, and a higher

expression of proinflammatory cytokines (Sato et al., 2014).

In the lightblue4 male module are the genes Beaded filament

structural protein 2 (BFSP2) and LOC101107700

(uncharacterised protein C4orf19-like). To the best of our

knowledge, there is not a direct association between these

genes and adipocyte-related biological processes.
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The darkorange module, DCoExp in males, harboured the

genes Apoptosis Facilitator Bcl-2-Like Protein 14 (BCL2L14) and

C-Type Lectin Domain Family 2 Member D (CLEC2D).

BCL2L14 is a proapoptotic member of the bcl-2 family, which

seems to be associated with an important role in the GSK3β-
mediated osteoblast apoptosis process (Guo et al., 2001; Nie et al.,

2018). However, no direct link between BCL2L14 and biological

processes associated with lipid metabolism were identified.

The male modules lightslateblue and skyblue4 harboured the

genes BUB1 mitotic checkpoint serine/threonine kinase (BUB1)

and Empty spiracles homeobox 2 (EMX2), respectively.

Interestingly, the dysregulation of BUB1 signalling drives

increased proliferation of lipoedema in adipose-derived stem

cells, which suggests a potential role in the regulation of

adipogenesis (Ishaq et al., 2022). The EMEX2 gene is a

homeobox gene that encodes a transcription factor initially

associated with cerebral development (Cecchi, 2002). In

humans, EMX2 was previously identified as differentially

expressed in subcutaneous fat versus visceral adipose tissue,

subcutaneous fat versus omental preadipocytes, and

subcutaneous versus perirenal and perivascular adipocytes

(Tchkonia et al., 2007; Omar et al., 2014; Keller et al., 2017).

Interestingly, EMX2 was identified as upregulated in abdominal

subcutaneous tissue after fat loss in humans (Dankel et al., 2010).

Additionally, EMX2 was identified as differentially methylated

between human subcutaneous tissue and visceral adipose tissue

(Keller et al., 2017).

The male DcoExp orangered1 module harboured one gene

from the list of selected genes in the discriminant analysis:

LOC121818175 (small integral membrane protein 13-like).

SMIM13 was previously reported to be mapped within

selection signature regions in Chinese Wagyu cattle (Wang

et al., 2019). Several enriched GO terms associated with the

response to insulin and regulation of fatty acids were obtained for

the list of genes allocated within this module.

In total, five genes were allocated within the three female

DcoExp modules. Only one gene was assigned to the

palevioletred2 module, LOC10560597 (tumour necrosis factor

receptor superfamily member 26-like) and no direct association

between LOC10560597 and fat metabolism was found. Collagen

type VI alpha 6 chain (COL6A6) and BUB1 were present on the

cyan module. In the lightcoral module, the genes LOC101113771

(C-C motif chemokine 3-like) and LOC114113921 (KATNB1-

like protein 1) were present.

The BUB1 gene was previously discussed, as this gene was

also allocated to the lightslateblue male module. In humans, the

COL6A6 gene was identified as differentially expressed between

insulin-resistant versus insulin-sensitive obese humans, obese

individuals with macrophage crown-like structures versus

obese individuals without macrophage crown-like structures,

and obese versus nonobese individuals (Hardy et al., 2011; Lê

et al., 2011; García-Alonso et al., 2016).

For the lightcoral female module, LOC101113771 is

predicted to be a chemokine-like gene, specifically, C-C

motif chemokine 3 (CCL3). Chemokines are associated with

the function of adipocytes as immune regulatory cells, showing

an interesting expression pattern in adipose tissue (Bruun et al.,

2005; Dahlman et al., 2005; Tilg and Moschen, 2006; Maury

et al., 2007; Vielma et al., 2013). In humans, the expression of

CCL3 was higher in subcutaneous and visceral fat of obese

patients, and its expression in subcutaneous tissue was

positively correlated with fasting insulin concentration in

serum (Huber et al., 2008).

In summary, 22 genes were simultaneously presented in

the DcoExp modules significantly correlated with the fat

percentage in different deposits and in the list of 314 genes

selected in the DIABLO analysis. Among these 22 genes, eight

were identified as potential functional candidate genes for fat

metabolism-related processes through literature review

(RASSF5, COL1A1, PLA2G5, BUB1, EMEX2,

LOC121818175, COL6A6 and LOC10111377). It is

important to mention that the results obtained here may be

interpreted carefully due to the sample size, which might affect

the detection power. However, using different omics

technologies with similar results and the criteria applied to

the selection of candidate genes has the potential to reduce the

sample size impact. Consequently, the methodology employed

in the current study provides a link between genes that

efficiently discriminate males and females (based on the

expression and methylation pattern) with biological

functions and production traits associated with meat and

carcass quality in sheep.

Conclusion

In the current study, the discriminant analysis performed

using methylation patterns and expression values of genes

harboring DMRs allowed perfect discrimination between

male and female samples. The functional investigation of

these genes in the context of co-expressed gene modules

suggested an association with relevant biological processes

involved in regulating production and meat quality traits.

Indeed, these modules were associated with percentages of

fat in different body deposits, reinforcing the potential

functionality of these modules and the relevance of these

genes. These results corroborate the initial hypothesis that

an experimental design contrasting sexes might help identify

candidate genes responsible for controlling meat quality traits

of sheep products due to the importance of adipose deposits and

the differences observed between males and females.

Consequently, the results presented here pinpointed

interesting functional candidate genes for fat percentage in

different fat deposits in sheep.
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