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Alzheimer’s disease (AD) is a neurodegenerative condition that causes cognitive decline

over time. Because existing diagnostic approaches for AD are limited, improving upon

previously established diagnostic models based on genetic biomarkers is necessary.

Firstly, four AD gene expression datasets were collected from the Gene Expression

Omnibus (GEO) database. Two datasets were used to establish diagnostic models, and

the other two datasets were used to verify the model effect. We merged GSE5281 with

GSE44771 as the training dataset and found 120 DEGs. Then, we used random forest

(RF) to screen 6 key genes (KLF15, MAFF, ITPKB, SST, DDIT4, and NRXN3) as being

critical for separating AD and normal samples. The weights of these key genes were

measured, and a diagnostic model was created using an artificial neural network (ANN).

The area under the curve (AUC) of the model is 0.953, while the accuracy is 0.914.

In the final step, two validation datasets were utilized to assess AUC performance. In

GSE109887, our model had an AUC of 0.854, and in GSE132903, it had an AUC of

0.810. To summarize, we successfully identified key gene biomarkers and developed a

new AD diagnostic model.
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INTRODUCTION

Alzheimer’s disease (AD) is a type of chronic degenerative brain illness marked by central nervous
system disorder that primarily affects people in their forties and fifties (Scheltens et al., 2021).
The main clinical feature of AD is memory impairment, which may be accompanied by aphasia
and personality behavior changes (Scheltens et al., 2016). Pathophysiological changes in AD may
begin years before any clinical symptoms appear and may progress all the way to severe cognitive
impairment (Aisen et al., 2017). As a result, AD cannot be identified just on the basis of clinical
characteristics, and researchers have made exhaustive efforts to identify AD using clinical and
biomarker data (Delaby et al., 2022). Understanding of AD has grown significantly over the past
few decades while also highlighting the disease’s complexity (Chen, 2018). Imaging technologies,
cognitive level identification, and various fluid biomarkers are now used to diagnose AD (Reitz,
2015; Blennow and Zetterberg, 2018; Sun et al., 2018). It is becoming more apparent that AD is a
disease with a complex regulatory network that is becoming increasingly complex (Veitch et al.,
2019). As a result, more precise diagnostic and treatment targets for AD are urgently needed.
The rapid advancement of microarray and high-throughput sequencing technologies in the last

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.921906
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.921906&domain=pdf&date_stamp=2022-06-30
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:drwuppsub@outlook.com
https://doi.org/10.3389/fnagi.2022.921906
https://www.frontiersin.org/articles/10.3389/fnagi.2022.921906/full


Sun et al. A Gene-based AD Diagnostic Model

decade has suggested a reliable and widespread method for
decoding inherited and epigenetic determinants of disease. At the
same time, it also provides a lot of evidence for the diagnosis and
treatment of various diseases (Kulasingam andDiamandis, 2008).
Although genetic risk markers have been identified that can be
used to predict and diagnose AD, their power may be limited
because of the complexity of the genetic structure (Zhu et al.,
2020). In diagnostic models, the use of multiple biomarkers has
been shown to improve success rates significantly (Vilhjálmsson
et al., 2015). In recent years, the primary difficulty in constructing
a classification model based on gene expression data has been
choosing the most significant index or feature for classification.
This problem can be solved using a variety of machine learning
techniques (Kursa, 2014; Tian et al., 2020; Xie et al., 2020).
These algorithms have made significant contributions to the
classification of gene expression data, disease detection, cell
migration, and microbiome research when used alone or in
combination (Hsieh et al., 2011; Kong and Yu, 2018; Zhang et al.,
2018; Janßen et al., 2019).

Using the key genes screened from datasets in the GEO
database, we created an AD diagnosis model. It was first
determined which genes were most important for AD
classification using RF. A genetic diagnostic model for AD
was then built using these key genes by artificial neural
networks. We evaluated the performance of the diagnosis model
with independent validation datasets to confirm its accuracy
and performance.

MATERIALS AND METHODS

Study Design
For the differentially expressed genes (DEGs) screening, the
GSE5281 dataset was merged with the GSE44771 dataset as the
training dataset (step 1). We went on to analyse gene ontology
and pathway enrichment (step 2). Then, we screened the key
genes using RF classification (step 3). Following the computation
of gene weights (step 4), an ANN model was developed (step 5).
In the end, GSE109887 and GSE132903 datasets were used to
conduct further validation (step 6). All statistics are computed by
R software version 4.1.3. Figure 1 depicts the entire research flow.

Data Selection and Processing
Datasets in this study were obtained from the GEO database,
which stores information about how genes are expressed using
high-throughput methods. It was created by the National Center
for Biotechnology Information (NCBI) (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi). The keywords “AD, normal” or “AD,
health” were used in this study to conduct a broad search through
the NCBI database platform. The type of datasets we chose was
expression profiling by array, and the type of organisms was
homo sapiens. The sample size of the dataset is greater than 60.
We used the ComBat function in R package sva (Varma, 2020)
to remove the batch effect of data from different platforms. The
log2-transformed quantile-normalized signal intensity of these
datasets was rectified, and the corrected results were outputted.

Screening for DEGs
Using traditional Bayesian data analysis, the R package limma
(Ritchie et al., 2015) was utilized to screen DEGs of the training
dataset. Adjusted P values less than 0.05 and logFoldChang
(logFC) greater than 1 were established as the significance criteria
for DEGs. The DEGs heatmap was created using the R package
pheatmap. The volcano plot was created using the R package
ggplot2 (Ito and Murphy, 2013).

Analysis of Gene Ontology and Pathway
Enrichment
Gene ontology and pathway analysis are utilized for the purpose
of interpreting gene expression data. An online comprehensive
gene set enrichment web tool, EnrichR (https://maayanlab.
cloud/EnrichR), was used in our study to conduct gene ontology
and pathway enrichment analyses. Gene ontology, including
biological processes, cellular components, and molecular
functions, was analyzed using EnrichR. In addition, we used
KEGG pathway 2021, WikiPathways 2021, and Retcome 2016
as classification sources for pathways to identify gene common
pathways. EnrichR used the logarithm of the P-value and the
z-score to create a combined score. We ranked them in order of
the combined score and showed them in bar charts.

Random Forest Screening for Key Genes
We screened the key genes using random forest by R package
random Forest (R project, 2022). In order to determine the
lowest error rate and best stability tree number as the optimal
parameter, each error rate for 1–200 trees was calculated.
After that, a random forest was used to screen key genes,
and the Gini coefficient method was used to calculate the
dimensional significance value. The AD key genes for ANN
model development were selected from the top 30 DEGs with a
significance value greater than 6. The key genes in the training
dataset were put into new groups based on their unsupervised
hierarchical clusters, and the heatmap was generated using the R
package pheatmap (Hu, 2021).

Artificial Neural Network for Building an
AD Classification Model
First, the DEG expression data was converted to a Gene Score
table based on the expression level. A comparison was made
between the median of all sample expression values and the
expression value of a single gene in a given sample. If the
expression value of the up-regulated gene is greater than 0, it will
be given a 1; otherwise, it will be given a 0. Likewise, if a down-
regulated gene’s expression value is higher, it will be given a value
of 0; otherwise, it will be given a value of 1. AD was the outcome
variable, and cases were assigned a 1 while controls were assigned
a 0. The R package neuralnet (Beck, 2018) was used to create
an ANN model based on the Gene Score table we constructed.
The model parameter was set to 5 hidden layers. R package Caret
(Nachid and Boussiala, 2021) was used to calculate 5-fold cross-
validation of the ANN model in order to optimize the model
and reduce overfitting. The confusion matrix function calculated
the accuracy of the results. Using the R package pROC (Robin
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FIGURE 1 | The flow chart of the study.

et al., 2011), we calculated the areas under the receiver operating
characteristic curve (AUC).

Verification Using Validation Datasets
On two separate validation datasets (GSE109887 and
GSE132903), the ANN model was tested for effectiveness
verification. The AUC was calculated using the R package pROC.

RESULTS

Identification of DEGs
GSE5281 was a dataset including 74 AD samples and 87 control
samples. Brain samples were collected from three Alzheimer’s
Disease Centers. Gene expression was analyzed using Affymetrix
U133 Plus 2.0. GSE44771 was a dataset including 101 AD samples
and 129 control samples. Brain samples were collected through
the Harvard Brain Tissue Resource Center. Gene expression
was analyzed using Rosetta/Merck Human 44k 1.1 microarray.
GSE109887 was a dataset including 32 AD samples and 46
control samples. Brain and blood samples were collected through
University Medical Center Göttingen. Gene expression was
analyzed using Illumina HumanHT-12 v4 BeadChip. GSE132903
was a dataset including 98 AD samples and 97 control samples.

Brain samples were collected through America Translational
Genomic Research Institute. Gene expression was analyzed
using Illumina Human HT-12 v4 arrays. Details about four
datasets are shown in Table 1. Two datasets (GSE5281 and
GSE44771) were combined to create a training dataset with a
large sample size. Meanwhile, GSE109887 and GSE132903 were
set as validation datasets. The training dataset was screened and
eventually identified 120 significant DEGs related to AD based
on logFC>1 and adjusted P-value < 0.05. A volcano map was
used to depict the expression status of all DEGs in the training
dataset (Figure 2A). The difference between upregulated and
downregulated genes were distinct. Using the heatmap, we can
see which of the DEGs have themost upregulated gene expression
compared to the control group (Figure 2B).

Analysis of Gene Ontology and Pathway
Enrichment
We analyzed the ontology and pathway enrichment for the
120 DEGs. For the Biological Process subsection, the results
demonstrate that the DEGs were significantly enhanced in
cellular response to zinc ion. Molecular function subsection
data indicated a zinc ion transmembrane transporter activity
involved in the DEGs. The Cellular Component analysis revealed
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that clathrin-sculpted monoamine transport vesicle played a
significant role. It showed the Phenylalanine, tyrosine and
tryptophan biosynthesis, Zinc homeostasis and Response to
metal ions interaction with the most important genes according
to the KEGG, WikiPathway and Reactome pathway. The
combined scores rank for GO terms and analysis results from
various pathway databases are shown in Figure 3.

Random Forest Screening for Key Genes
To obtain key genes, we fed the 120 DEGs listed above into the
RF classifier. Based on the correlation plot between the number
of RF trees and model error (Figure 4A), we chose 190 trees as
the final model’s parameter. We then identified six genes with a
significance>6 as candidate genes for further analysis. According
to Figure 4B, KLF15 was the most significant variable, followed
by MAFF, ITPKB, SST, DDIT4, and NRXN3. Figure 4C show
that in 120 DEGs from the training dataset, the six genes were
able to identify AD samples. MAFF, DDIT4, KLF15, and ITPKB
genes were a group of genes whose expression was low in normal
samples and high in AD samples. On the other hand, SST and
NRXN3 belonged to a different cluster. In normal samples, they

TABLE 1 | The information of training/validation datasets.

Dataset ID Platform AD Normal Total Group

GSE5281 GPL570 74 87 161 Training

GSE44771 GPL4372 101 129 230 Training

GSE109887 GPL10904 32 46 78 Validation

GSE132903 GPL10558 98 97 255 Validation

were expressed at high levels, but in AD samples, they were
expressed at low levels.

Construction of the ANN Model
We got a Gene Score table with 6 lines of samples, 391 columns,
and a column for the AD outcome variable (case/control). We
built an ANN model based on the Gene Score table. Six input
layers, five hidden layers, and two output layers were set for the
ANN. Each result of the 5-fold cross-validation is presented by
ROC curves (Figure 5), while the accuracy is shown in Table 2.
The model’s reliability was demonstrated by the fact that the
average AUC of the 5-fold cross-validation results exceeded 0.90.
Finally, we built an ANN model for classifying gene expression
data between AD and control samples based on the information
presented above (Figure 6). The overall AUC of this model is
0.953, and its accuracy is 0.914 (Figure 7A).

Validation of the ANN Model
The model’s prediction accuracy was 0.854 in GSE109887 and
0.810 in GSE132903, indicating that the ANN is stable in
diagnosing AD (Figure 7). These findings demonstrate that we
successfully developed an AD diagnostic model based on the
differential gene expression of AD and normal samples.

DISCUSSION

Over the last century, advances in AD research have led to
the development of increasingly effective treatments (Sun et al.,
2018). However, the specific mechanisms of AD development
remain unknown. It is almost impossible to make an early
clinical diagnosis of AD because the symptoms overlap with
those of other neuropathological diseases. Identifying critical
diagnostic and prognostic biomarkers for AD remains critical.

FIGURE 2 | (A) Volcano plots of all DEGs in the training dataset. Green spots represent down-regulated genes, while red spots represent up-regulated genes. (B) All

of the DEGs are represented as a heatmap. Up- and down-regulated genes are marked on the map. Red samples indicate AD, while blue samples indicate normal.

Red blocks indicate high-expressed genes, and blue blocks low-expressed genes.
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FIGURE 3 | The bar charts of ontological and pathway enrichment analysis of DEGs. (A) Go biological processes; (B) Go molecular function; (C) Go cellular

component; (D) KEGG human pathway 2021; (E) Wikipathway 2021; (F) Reactome pathway 2016.

Advancements in machine learning and public gene expression
data make it feasible to infer biomarkers for disease diagnosis and
prognosis (Ramakrishnan et al., 2019).

In our study, we combined an AD diagnostic model with
random forest and an artificial neural network that could
distinguish AD samples from normal samples. Diagnostic
evidence for diseases like AD is being bolstered by advances

in high-speed bioinformatics. To identify DEGs of AD, we first
combined two GEO datasets (GSE5281 and GSE44771). Then
analyzed the gene ontology and pathway enrichment. According
to the GO and pathway enrichment analysis, the DEGs are
related to a vast array of GO terms and pathways, reflecting the
pathogenesis’ dynamics and complexity. There are already many
studies supporting our findings. Prior research has suggested
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FIGURE 4 | (A) The correlation plot between the number of RF trees and model error. The error rate is stable when the number of RF trees is around 190. (B) The Gini

coefficient method in a random forest classifier yielded the following results. The importance index is on the x-axis, and the genetic variable is on the y-axis. (C) The

heatmap of six key genes generated by random forest. The red band indicate AD, while the blue band indicate normal. Red blocks indicate high-expressed genes,

and blue blocks low-expressed genes.
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FIGURE 5 | Five-fold cross-validation verifies ROC curve results.

TABLE 2 | Five-fold cross-validation results.

Accuracy AUC

Cross validation 1 0.9231 0.925

Cross validation 2 0.9231 0.9167

Cross validation 3 0.8718 0.873

Cross validation 4 0.95 0.9474

Cross validation 5 0.9487 0.95

a connection between zinc ion and the occurrence of AD.
The new research has uncovered a list of essential zinc ion
transmembrane transporters whose mRNA or protein levels were
found to be abnormally altered at various stages of AD (Xu et al.,
2019). Changing zinc levels, especially at the synapses, have been
suggested as a possible cause of cognitive changes that come
with aging and AD (Hancock et al., 2014). Aged brains have
been predicted to have less efficient homeostasis mechanisms and
molecules for zinc ions (Bertoni-Freddari et al., 2006). The best
way to understand an organism’s internal changes is to conduct a
pathway analysis. The disruption of phenylalanine metabolism in
the hippocampus could be an important factor in the progression
of AD (Liu et al., 2021). In AD, the peripheral modulation
of tyrosine phosphorylation signaling could be investigated as
a potential diagnostic marker (Mallozzi et al., 2020). It is
possible that the pathogenesis of AD is influenced by immune
activation-induced tryptophan degradation (Widner et al., 2000).
Dyshomeostasis of zinc in the brain contributes to AD. Excess
zinc is toxic to neuronal cells (Li and Wang, 2016). Homeostasis
of metal ion levels is essential for normal physiological processes.
Researchers have discovered a link between AD and an imbalance
in the metal ions in the brain (Wang L. et al., 2020).

Further performance of RF classification screened out 6
key genes, namely, KLF15, MAFF, ITPKB, SST, DDIT4, and
NRXN3. Previous research has supported our findings. Kruppel
Like Factor 15 (KLF15) is a member of the Sp/KLF family of
zinc-finger transcription factors. This family has been linked
to controlling many cellular processes, such as cell growth,
differentiation, normal development, and even cancer. It inhibits
the growth of neurons (Otteson et al., 2004; Wang X. et al.,
2020). MAF BZIP Transcription Factor F (MAFF) is upregulated
in all tissues in AD. It can potentiate antioxidation inhibition
and may be a potential therapeutic target in AD (Wang et al.,

2017; Wang X. et al., 2020). Inositol (1,4,5) trisphosphate 3-
kinase B (ITPKB) is an essential regulator in AD that plays
a role in the apoptosis of neuronal cells, the processing of
APP and the phosphorylation of tau (Stygelbout et al., 2014).
Somatostatin (SST) receptor levels are lower in AD. SST-releasing
neurons are often found near plaques. Its’ expression levels
decline with age (Beal et al., 1985; Roberts et al., 1985; Saito et al.,
2005; Koivisto et al., 2007; Xue et al., 2009; Lau et al., 2017).
Upregulation of DNA damage-inducible transcript 4 (DDIT4),
a stress-regulated protein, can cause neuronal trigger death.
It has been identified as a biomarker for AD (Pérez-Sisqués
et al., 2021). Neurexin 3 (NRXN3) is a type of presynaptic
adhesion molecule that regulates neurotransmitter release and
specifies neuron synapses. In AD patients, NRXN3 expression
is reduced. Dysregulation of presynaptic NRXN3 expression
and splicing may promote neuron inflammation in the AD
brain (Hishimoto et al., 2019). These studies demonstrated
that the 6 key genes could be used as key biomarkers
of AD.

The highlight of our study is the innovative combination of
RF and ANN methods which yielded excellent results in terms
of predictive power. Several other diseases, including ulcerative
colitis, heart failure, and polycystic ovary syndrome, have already
benefited from this innovative research technique (Li et al.,
2020; Tian et al., 2020; Xie et al., 2020). Prior to this, a few
AD prediction models based on methylated gene biomarkers
had been developed (Ren et al., 2020; Mahendran and PM,
2022). However, some problems exist in these studies, such as
small sample size or general prediction effect of the established
models. Our model performed better on the validation datasets
GSE109887 and GSE132903, with AUC of 0.854 and 0.810,
indicating it is more suitable for AD classification.

Even so, there are some limitations in our research. Although
we used two datasets withmore samples to build amodel, it is still
not a big data sample for machine learning, and we can include
more research data in the training set in the future. Overfitting
in machine learning is objective and cannot be eliminated, even
if we use 5-fold cross-validation in the modeling process to
minimize overfitting. Checking for overfitting is helpful, but it
does not solve the problem. This means that although we get a
good model effect on the validation set, the actual generalization
ability may not be good due to the appearance of noise in reality.
So this still means that we need to include more research data to
test the reliability of the model in the future.
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FIGURE 6 | Visualization of artificial neural networks’ results.

FIGURE 7 | The ROC curves and their respective AUC values are utilized to evaluate the performance of the ANN model in training and validation datasets. (A)

GSE5281 and GSE44771 datasets. (B) GSE109887 dataset. (C) GSE132903 dataset.

CONCLUSIONS

To summarize, our thorough examination of AD datasets from
GEO revealed KLF15, MAFF, ITPKB, SST, DDIT4, and NRXN3
as potential diagnostic biomarkers. Based on machine learning
algorithms employing RF and ANN, a diagnostic model for AD
was created that demonstrated excellent prediction performance.
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