
����������
�������

Citation: Muralidharan, S.; Sahoo, S.;

Saha, A.; Chandran, S.; Majumdar,

S.S.; Mandal, S.; Levine, H.; Jolly, M.K.

Quantifying the Patterns of Metabolic

Plasticity and Heterogeneity along

the Epithelial–Hybrid–Mesenchymal

Spectrum in Cancer. Biomolecules

2022, 12, 297. https://doi.org/

10.3390/biom12020297

Academic Editors: Yoav D. Shaul and

Dana Ronen-Ishay

Received: 18 December 2021

Accepted: 7 February 2022

Published: 12 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Quantifying the Patterns of Metabolic Plasticity and
Heterogeneity along the Epithelial–Hybrid–Mesenchymal
Spectrum in Cancer
Srinath Muralidharan 1 , Sarthak Sahoo 2 , Aryamaan Saha 1,†, Sanjay Chandran 1,†, Sauma Suvra Majumdar 3,†,
Susmita Mandal 2, Herbert Levine 4,* and Mohit Kumar Jolly 2,*

1 Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India;
lsrinath1998@gmail.com (S.M.); be19b014@smail.iitm.ac.in (A.S.); be19b030@smail.iitm.ac.in (S.C.)

2 Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
sarthaksahoo@iisc.ac.in (S.S.); susmitam@iisc.ac.in (S.M.)

3 Department of Biotechnology, National Institute of Technology, Durgapur 713216, India;
ssm18u10669@btech.nitdgp.ac.in

4 Centre for Theoretical Biological Physics, Departments of Physics and Bioengineering,
Northeastern University, Boston, MA 02115, USA

* Correspondence: h.levine@northeastern.edu (H.L.); mkjolly@iisc.ac.in (M.K.J.)
† These authors contributed equally to this work.

Abstract: Cancer metastasis is the leading cause of cancer-related mortality and the process of the
epithelial-to-mesenchymal transition (EMT) is crucial for cancer metastasis. Both partial and complete
EMT have been reported to influence the metabolic plasticity of cancer cells in terms of switching
among the oxidative phosphorylation, fatty acid oxidation and glycolysis pathways. However, a
comprehensive analysis of these major metabolic pathways and their associations with EMT across
different cancers is lacking. Here, we analyse more than 180 cancer cell datasets and show the
diverse associations of these metabolic pathways with the EMT status of cancer cells. Our bulk data
analysis shows that EMT generally positively correlates with glycolysis but negatively with oxidative
phosphorylation and fatty acid metabolism. These correlations are also consistent at the level of their
molecular master regulators, namely AMPK and HIF1α. Yet, these associations are shown to not
be universal. The analysis of single-cell data for EMT induction shows dynamic changes along the
different axes of metabolic pathways, consistent with general trends seen in bulk samples. Further,
assessing the association of EMT and metabolic activity with patient survival shows that a higher
extent of EMT and glycolysis predicts a worse prognosis in many cancers. Together, our results reveal
the underlying patterns of metabolic plasticity and heterogeneity as cancer cells traverse through the
epithelial–hybrid–mesenchymal spectrum of states.

Keywords: cancer metabolism; epithelial–mesenchymal transition; glycolysis; oxidative phosphorylation;
fatty acid metabolism; HIF1α; AMPK

1. Introduction

The epithelial-to-mesenchymal transition (EMT) is a cellular programme that gives rise
to the loss of epithelial phenotypes (reduced expression of cadherins involved in cell–cell
attachment, loss of apical–basal polarity) with a concomitant gain in mesenchymal traits
such as migration and invasion [1]. This programme has long been known to be involved
in embryogenesis and wound healing in adults [2]. Cancer cells are known to activate
the EMT during the metastatic progression of a tumour, allowing the cells to invade and
establish secondary tumours. The EMT is not a binary process; instead, cells can acquire
and maintain one or more hybrid epithelial/mesenchymal (E/M) states [3]. The plasticity
of cancer cells along the epithelial–hybrid–mesenchymal landscape is highly dynamic,
complex, and multi-dimensional in nature [4]. Often, other relevant biological traits, such
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as immune evasion, stemness, anoikis resistance and therapy resistance, are coupled with
this dynamic nature of cancer cells [5–10].

The metabolic status of cancer cells has also been reported to be coupled with the EMT.
Specifically, many EMT-inducing transcription factors (EMT-TFs) regulate the expression of
various metabolic genes involved in glucose, lipid, glutamine, amino acid, and nucleotide
metabolism [11–13]. Furthermore, a change in the metabolic state of cancer cells can induce
a change in their EMT status [13]. The exact modalities by which these two processes
are related are, however, relatively unclear, and have only begun to be investigated. For
instance, the activation of glycolytic enzymes by EMT has been reported in breast and
prostate cancer cells [14]. A similar study reports EMT-driven activation of glycolysis
in non-small cell lung cancer (NSCLC) cells by the transcriptional activation of glucose
transporter 3 (GLUT3) [15]. In the reverse direction, the upregulation of glycolysis has
been shown to promote stemness and the EMT in pancreatic cancer cells [16]. On the
other hand, TGF-β-induced EMT has been shown to inhibit glycolysis and instead acti-
vate oxidative phosphorylation (OXPHOS) via the repression of pyruvate dehydrogenase
kinase 4 (PDK4) [17], an enzyme that prevents the conversion of pyruvate to acetyl-CoA.
Overexpressing PDK4 inhibited the EMT [17], demonstrating the mutual regulation of
these two axes of plasticity. Similarly, TGF-β-induced EMT in colon cancer cells was shown
to suppress glycolysis by the nuclear translocation of pyruvate kinase M2 (PKM2) [18],
a cytosolic enzyme required for pyruvate formation. Finally, the expression of SNAI1,
an EMT-TF, was shown to repress another glycolytic enzyme, fructose-1,6-biphosphatase
(FBP1) [19]. Similar context-dependent trends were observed in the case of the association
of the lipid metabolism with the EMT. While TNFα or TGF-β induced EMT activation
promoted the lipid synthesis pathway in prostate cancer cells [20], the overexpression of
SNAI1 can also lead to the inactivation of lipid synthesis enzymes [21]. Overall, these
studies suggest the context-dependency of EMT-mediated coupling to metabolic networks.

Additionally, several lipid metabolism enzymes such as acetyl-CoA synthetases
(ACSL1 or ACSL4, steroyl-CoA desaturase (SCD) etc.) can activate EMT [22–24]. Notably,
two pathways with links to EMT that have been particularly well studied are glycolysis and
mitochondrial metabolism. For instance, the glycolytic enzyme phosphoglucose isomerase
(PGI) can also act as a cytokine and activate EMT via ZEB1 and ZEB2 stabilization in breast
cancer cells [25]. However, again, this trend may not be ubiquitous across cancer subtypes
and different microenvironments. The glycolytic enzyme FBP1, for instance, blocks the in-
duction of the SNAI1-driven EMT in breast cancer cells and the loss of this enzyme favours
the EMT, as shown in vitro [26]. The downregulation of several mitochondrial metabolic
genes and mutations in TCA cycle enzymes has also been associated with EMT activation.
Mutations in fumarate hydratase, an enzyme that converts fumarate to malate in the TCA
cycle, can induce EMT by inhibiting the activity of miR-200 [27]. Similarly, mutations in
the TCA enzymes succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH)
also induce EMT via the epigenetic suppression of miR-200, leading to alterations in the
miR200-ZEB1 axis [27,28] that regulates the EMT status of cells [29]. Moreover, silencing
of another TCA cycle enzyme, citrate synthase (CS), induces EMT-like cellular changes
in vitro and promotes metastasis in vivo [30]. However, more recent studies reveal that
CS is upregulated in several other tumour types and that its inactivation impedes the
EMT programme in tumour cell lines [31]. While these studies point towards a causal link
between EMT and the metabolic pathways of glycolysis, fatty acid oxidation and oxidative
phosphorylation, the overall interconnection landscape among these pathways is quite
confounding, thereby necessitating further research.

Here, we sought to analyse the association of three main aspects of cellular
metabolism—glycolysis, oxidative phosphorylation and fatty acid synthesis—with the
process of the EMT in more than 180 publicly available microarray/RNA-seq datasets
comprising cell lines and patient tumors. We found that oxidative phosphorylation is
predominantly negatively correlated with the process of EMT, and its primary regulator
AMPK is primarily correlated (positively) specifically with an epithelial programme. Con-
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versely, glycolysis and its key regulator HIF1α predominantly are positively correlated with
a mesenchymal programme and the induction of EMT. However, glycolysis also showed
a positive correlation with the epithelial programme in many datasets, highlighting its
complex interaction with the EMT programme. Fatty acid oxidation was correlated nega-
tively with the acquisition of a mesenchymal phenotype and positively with the epithelial
nature of cancer cells. However, alternative modalities of association of metabolic axes
with the EMT programme were also observed. The analysis of EMT induction in single
cell RNA-seq data showed largely consistent trends with the generic patterns seen in the
analysis of bulk samples. Additionally, survival analysis using the EMT and metabolic
scores to predict disease prognosis across multiple cancer subtypes reveals that patients
with enriched EMT and glycolytic phenotype are associated with worse overall survival in
multiple cancer types.

2. Materials and Methods
2.1. Software and Datasets

Python (version 3.6) and R (version 4.0.2) were used for conducting all computational
and statistical analyses. Microarray datasets were downloaded from NCBI GEO using
GEOquery R Bioconductor package. FASTQ files for RNA sequencing datasets were down-
loaded from the ENA (European Nucleotide Archive) database. A complete list of datasets
used, and the associated metadata has been provided in Supplementary Table S1.

2.2. Pre-Processing of Microarray Datasets

Gene wise expression for each sample was obtained after appropriate pre-processing
of microarray datasets. Probe wise expression matrices downloaded using GEOquery
were log2 normalised and annotation files corresponding to microarray platforms were
utilized for mapping the probes to respective genes. In cases where more than one probe
mapped on to a single gene, the mean of expression values of all these probes was used for
such genes.

2.3. Pre-Processing of RNA-seq Datasets

Adapter contamination and overall quality of sequences were inspected using FastQC.
Sequences were aligned with the hg38 human (or mm10 mouse) reference genome using
the STAR alignment software. Finally, the raw counts for each gene were calculated with
these aligned sequences using htseq-count. These raw counts were then normalised for
gene length and transformed to TPM (transcripts per million) values, which were then log2
normalised to obtain the final values.

2.4. EMT Scoring Methods

EMT scores were calculated using five different methods for each dataset. Each
method requires gene expression data as input. Each method uses a distinct gene set or a
distinct algorithm.

2.4.1. 76GS

The 76-gene EMT scoring method (76GS) was developed using transcriptomic data
from NSCLC cell lines and patient samples [32,33]. As the name suggests, it utilizes 76 gene
signatures. The weighted sum of gene expression values of 76 genes was calculated for
each sample, where the weighting factors are correlation coefficients with CDH1 expression
levels. The values obtained through this method have no specific range. EMT score for
each sample was subtracted by the mean obtained from all samples such that the resultant
mean score was zero. As per this new scale, negative scores indicate an M phenotype, and
positive scores indicate an E phenotype.
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2.4.2. KS

KS method uses the two-sample Kolmogorov–Smirnov test (KS) to score EMT for
cell lines and tumor samples [34]. It uses 218 gene signatures for cell line samples and
315 gene signatures for tumor samples. Briefly, cumulative distribution functions (CDFs)
are obtained for each of the two signatures (E and M) and the maximum distance between
these CDFs is used as the test statistic for a two-sample KS test to obtain the EMT scores.
The final EMT scores lie in the range [−1, 1]. Positive and negative scores represent
mesenchymal and epithelial phenotypes, respectively.

2.4.3. Hallmark EMT

This method uses the hallmark geneset for EMT available (Supplementary Table S2)
in the MSigDB [35] repository. For each sample, ssGSEA (single sample gene set enrich-
ment analysis) [36] analysis was performed using this geneset to obtain the normalized
enrichment score (NES). All calculations were performed using the GSEAPY python library.

2.4.4. Epithelial and Mesenchymal Scores

These metrics use the KS epithelial and mesenchymal gene signatures to quantify
E & M status separately. A rank-based single sample scoring method called Singscore [37]
was used for quantifying the enrichment level of these gene sets in a given sample. The
final value obtained from this method has a range of [−1, 1]. For the epithelial score, a
higher value indicates a more epithelial phenotype. The mesenchymal score also operates
in a similar manner.

2.4.5. Metabolic Pathways Scoring Methods

ssGSEA scores were calculated using the hallmark oxidative phosphorylation and
glycolysis gene sets (MSigDB) to obtain OXPHOS and glycolysis signatures respectively
(Supplementary Table S2). AMPK and HIF-1 signatures were quantified using expression
levels of their downstream target genes as previously reported [38]. In total, 33 downstream
genes for AMPK and 23 downstream genes for HIF-1 were used. The final scores were
obtained using the Singscore method [37] performed on these gene sets. The FAO scores
were calculated based on equations previously reported [39], which use the expression
levels of 14 FAO enzyme genes.

2.5. Survival Analysis

Overall survival data were obtained from the TCGA cohort of patients from 32 different
cancer types. All samples were divided into EMT high and EMT low, Glycolysis high and
Glycolysis low, OXPHOS high and OXPHOS low groups based on the median of the
respective ssGSEA scores of the samples. Kaplan-Meier analysis was performed using
R package “survival”. A log-rank test was used to calculate the p-values. The reported
hazard ratio (HR) and confidence interval (95% CI) were estimated using Cox regression
using “coxph” function. Statistical analysis, survival analysis and plots were all conducted
in R version 4.0.3. Heatmaps were plotted using the “heatmap” function and using RdBu
color scale from the RcolorBrewer package.

3. Results
3.1. EMT Scoring Metrics Are Largely Consistent across Datasets

Multiple transcriptomic-based scoring metrics have been used to quantify the EMT
status of biological samples [40]. We used five different approaches to quantify the EMT
status of biological samples in a set of 182 datasets. The 76GS [32,33] and KS [34] EMT
scoring methods use two different sets of gene lists (including epithelial and/or mesenchy-
mal genes) to score a sample along the epithelial–hybrid–mesenchymal spectrum. We
further used ssGSEA (single-sample Gene Set Enrichment Analysis) and/or Singscore to
calculate the activity of epithelial and mesenchymal gene lists (see Methods) to estimate
the epithelial and mesenchymal nature of the samples, respectively.



Biomolecules 2022, 12, 297 5 of 18

For 114 out of 182 datasets, the KS score (a higher KS score implies a more mesenchy-
mal state) is positively correlated with the enrichment of hallmark EMT signature; in only
eight datasets, this correlation is significantly negative (Figure 1A, left). The KS metric
also positively correlated with a mesenchymal signature (Figure 1A, right) and negatively
with an epithelial signature (Figure S1). On the other hand, the 76GS EMT score (a higher
76GS score indicates a more epithelial state) largely correlates with this epithelial signature
(Figure 1A, middle), but negatively correlates with the abovementioned mesenchymal sig-
nature (Figure S1). The enrichment of epithelial and mesenchymal signatures also showed
expected trends with that of the hallmark EMT signature (Figure S1).

Figure 1. Consistency between different EMT scoring metrics. (A) Volcano plots depicting the Pearson
correlation coefficient and the −log10(p-value) for 3 pairs of EMT scoring metrics: KS vs Hallmark
EMT, 76GS vs epithelial and KS vs mesenchymal. Vertical boundaries are set at correlation coefficients
−0.3 and 0.3. The cut-off for p-value is set at 0.05. (B) Four-way Venn diagram for comparison of
4 representative pairs of EMT scoring metrics. (C) Probability of a dataset having a positive (blue) or
a negative (red) correlation (correlation coefficient > 0.3) given that it is significant (p-value < 0.05)
for different pairs of EMT scoring metrics. (D) Probability of a dataset having a positive (blue) or
a negative (red) correlation (correlation coefficient > 0.3) given that it is significant (p-value < 0.05)
weighted by the fraction of significant cases for different pairs of EMT scoring metrics.

After evaluating these pairwise comparisons, we identified overlaps among the
datasets that showed the expected trends, given the pro-epithelial trends for 76GS [32,33]
and pro-mesenchymal comparisons for KS [34] (positive correlation for KS vs. hallmark
EMT or mesenchymal, positive correlation for 76GS vs. epithelial, negative correlation for
other pairwise comparisons: 76GS vs. KS, 76GS vs. hallmark EMT, 76GS vs. mesenchymal,
KS vs. epithelial, epithelial vs. mesenchymal). We used Venn diagrams (Figure 1D) to
assess the overall consistency (in terms of specific assignments of E versus M) for each of the
EMT scoring methods applied to our set of datasets. Each ellipse in the Venn diagram has a
total number equal to the expected correlation between any two EMT scoring metrics; for
instance, the green ellipse with a sum of 114 corresponds to number of datasets showing a
positive correlation for KS vs. hallmark EMT (Figure 1A). The regions with overlap between
the ellipses indicate the number of datasets in which multiple such pairwise correlations
yielded the same result. For example, the number 65 in the region of intersection of all
four ellipses indicates that 65 datasets show complete consistency among the four pairwise
correlations; in those 65 datasets, KS scores correlated positively with hallmark EMT scores
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but negatively with 76GS scores, and 76GS scores correlated positively with epithelial
signature scores but negatively with the Hallmark EMT scores. Similarly, in 25 (the sum
of the numbers in the overlap regions for three ellipses) datasets, 3 out of 4 pairwise cor-
relations are in agreement. Additional combinations of such pairwise correlations also
show consistent trends (Figure S2). Together, these results show that all these EMT scoring
metrics are largely consistent with one another across a large cohort of datasets.

Next, we wanted to quantify the consistency of pairs of metrics if they were signifi-
cantly correlated. To quantify that trend, we computed a “probability” score for a given
pair of metrics by considering the number of datasets correlated significantly (p < 0.05)
either positively (r > 0.3) or negatively (r < −0.3). We computed the ratio of the number
of positively or negatively correlated datasets (depending on the trend seen) to the total
number of datasets that showed a significant (p < 0.05) association (irrespective of the
direction of association). The higher this ratio, the better the concordance between these
two metrics in a given direction. We found that (a) KS score vs. mesenchymal, (b) KS
score vs. epithelial and (c) mesenchymal signature vs. hallmark EMT signatures were most
consistent with one another in positive, negative and positive directions, respectively (Fig-
ure 1C). When these probabilities were further weighted by a fraction of significant cases
out of all datasets considered, we saw that (a) KS score vs. epithelial, (b) 76GS score vs. KS
score and (c) 76GS vs. epithelial were most consistent with each other in negative, negative
and positive directions, respectively, as expected (Figure 1D). KS score vs. mesenchymal
and KS score vs. hallmark EMT correlations also maintained their trends as seen in earlier
scenarios (compare Figure 1D with Figure 1C). Put together, these results show that the
EMT metrics considered here show highly concordant trends with respect to one another
in a majority of the datasets.

3.2. OXPHOS Is More Likely to Be Negatively Correlated with A Mesenchymal Program and
Positively with An Epithelial Program

Having assessed the consistency of different EMT scoring metrics among themselves
on a cohort of datasets, we next wanted to understand how the different axes of metabolism
associated with the EMT metrics. Oxidative phosphorylation is the predominant process by
which cells generate energy for survival. To study how the biological process of oxidative
phosphorylation associates with different EMT metrics, we correlated the ssGSEA activ-
ity scores calculated for the hallmark oxidative phosphorylation gene set with different
EMT metrics.

Upon correlating the OXPHOS signature with the hallmark EMT scores, we found that
although there were significant correlations both in the positive and negative directions,
there were many more datasets correlated negatively (56 vs. 24) with hallmark EMT than
positively (Figure 2A). This overall observation is in accordance with many experimental
studies that point towards a negative association between oxidative phosphorylation
and the EMT [41–44]. However, this relationship is not exclusive, i.e., these quantities
could be positively correlated in a variety of contexts, as reported in other experimental
studies [45–47]. Among all pairs of correlations between OXPHOS signature and EMT
metrics, the OXPHOS-hallmark EMT pair showed the strongest propensity of negative
association with one another, among all pairwise comparisons that showed a significant
trend in either direction (Figure 2B). Furthermore, the OXPHOS-hallmark EMT pair was
also the top scoring pair when weighted with the fraction of significant cases (Figure 2C),
further highlighting the finding that the acquisition of the mesenchymal features was more
likely to result in a decline in activity of the OXPHOS gene set.

Oxidative phosphorylation in cells has been reported to be positively regulated by
AMPK activity levels in cells. To assess AMPK activity, we considered a list of AMPK target
genes used as a proxy for the activity of the phosphorylated active form of AMPK (see
Methods). We found that the AMPK signature was more likely to be positively correlated
with the epithelial signature (41 datasets showing positive correlations vs. 12 showing neg-
ative correlations) (Figure 2D). However, the AMPK signature did not show a strong skew
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towards being either positively or negatively correlated with the separate mesenchymal
signature (Figure 2E). Together, these trends could indicate towards the fact that the active
form of AMPK is likely more strongly correlated with the presence of an epithelial signature
rather than with the absence of a mesenchymal signature, especially if we deconvolute the
EMT into two-dimensional process where loss of epithelial traits and gain of mesenchymal
traits can be treated semi-independently.

Figure 2. OXPHOS is more likely to correlate negatively with EMT. (A) Volcano plots depicting
the Pearson correlation coefficient and the −log10(p-value) for hallmark OXPHOS and hallmark
EMT signatures. (B) Probability of a dataset having a positive (blue) or a negative (red) correlation
(correlation coefficient > 0.3) given that it is significant (p-value < 0.05) for OXPHOS and different EMT
scoring metrics. (C) Probability of a dataset having a positive (blue) or a negative (red) correlation
(correlation coefficient > 0.3) given that it is significant (p-value < 0.05) weighted by the fraction of
significant cases for OXPHOS and different EMT scoring metrics. Volcano plots depicting the Pearson
correlation coefficient and the −log10(p-value) for (D) AMPK signature and epithelial signature,
(E) AMPK signature and mesenchymal signature. (F) Probability of a dataset having a positive (blue)
or a negative (red) correlation (correlation coefficient > 0.3) given that it is significant (p-value < 0.05)
weighted by the fraction of significant cases for AMPK signature and different EMT scoring metrics.
Vertical boundaries for volcano plots are set at correlation coefficients −0.3 and 0.3. The cut-off for
p-value is set at 0.05.

Through quantifying the trends of association of the AMPK signature with various
EMT metrics, we noticed that the probability of a positive correlation between AMPK and
epithelial metrics (epithelial signature, 76GS scores) was higher than that of a negative
correlation between AMPK and mesenchymal ones (KS score, hallmark EMT, mesenchymal
signature) (Figure 2F). These observations suggest that AMPK is strongly coupled with
epithelial traits of cells, rather than with their mesenchymal ones. However, we noticed
OXPHOS is strongly negatively correlated with both hallmark EMT signature as well as the
mesenchymal signature (Figure 2A,B). This difference seen between trends in AMPK and
OXPHOS may be due to additional context-specific factors, apart from AMPK, that might
also mediate the crosstalk between the EMT and OXPHOS [48], thus leading to an overall
stronger negative association of OXPHOS with the hallmark EMT program (Figure S3).

3.3. Glycolysis Is More Likely to Be Positively Correlated with A (Partial) EMT Programme

Next, we wanted to check how the glycolytic process was associated with the EMT
programme in the datasets we had considered. To assess this association, we correlated the
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enrichment (ssGSEA) scores for the hallmark EMT and hallmark glycolysis signatures across
our datasets. We observed that glycolysis was more likely to be significantly positively
correlated with EMT than to be significantly negatively correlated (66 vs. 13, respectively)
(Figure 3A). One would therefore expect that glycolysis should be negatively correlated
with the epithelial programme or with the 76GS EMT scoring metric that assigns epithelial
samples a higher score. This is, however, not what we observed. Instead, glycolysis was
also found to be positively correlated with scoring metrics that report an enriched epithelial
program (Epithelial gene list, as well as 76GS scores), to a comparable extent with which it
correlated with a mesenchymal program (Figure 3B). Similar trends are also seen when the
association probability values were further weighted by number of significant datasets in
which a given trend was observed (Figure 3C). Here, the association of glycolysis with the
hallmark EMT programme was stronger, albeit not to a large degree, than that seen for the
epithelial gene list and 76GS score, suggesting its putative association with a partial EMT
state and/or other context-specific factors not included in our analysis.

Figure 3. Glycolysis is more likely to correlate positively with EMT. (A) Volcano plots depicting
the Pearson correlation coefficient and the −log10(p-value) for hallmark glycolysis and hallmark
EMT signatures. (B) Probability of a dataset having a positive (blue) or a negative (red) correlation
(correlation coefficient > 0.3) given that it is significant (p-value < 0.05) for glycolysis and different EMT
scoring metrics. (C) Probability of a dataset having a positive (blue) or a negative (red) correlation
(correlation coefficient > 0.3) given that it is significant (p-value < 0.05) weighted by the fraction of
significant cases for glycolysis and different EMT scoring metrics. Volcano plots depicting the Pearson
correlation coefficient and the −log10(p-value) for (D) HIF1α signature and epithelial signature,
(E) HIF1α signature and mesenchymal signature. (F) Probability of a dataset having a positive (blue)
or a negative (red) correlation (correlation coefficient > 0.3) given that it is significant (p-value < 0.05)
weighted by the fraction of significant cases for HIF1α signature and different EMT scoring metrics.
Vertical boundaries for volcano plots are set at correlation coefficients −0.3 and 0.3. The cut-off for
p-value is set at 0.05.

HIF1α is a known mediator of the glycolytic pathway [49] and in modulating the
EMT status of cells [50]. Thus, next we probed how the HIF1α signature was associ-
ated with epithelial and mesenchymal programmes. Intriguingly, we found that both
the volcano plots showed a skew towards the positive side (Figure 3D,E), suggesting
that HIF1α activation may be associated with a partial EMT state exhibiting both epithe-
lial and mesenchymal features [51]. It should be noted that in the case of mesenchymal
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programme, the HIF1α signature was somewhat more strongly skewed towards to the
positive side in comparison to the positive skew present in the case of epithelial programme
(47 out of 60 datasets vs. 31 datasets out of 46, respectively) (Figure 3D,E). The positive as-
sociation of glycolysis, as well as its known regulator HIF1α, with both the epithelial and
mesenchymal axes may indicate that glycolysis is a hallmark feature of hybrid E/M states.
Recent observations about glycolysis accompanying collective cell migration endorse this
association of glycolytic shift in partial EMT state(s) [52,53]; however, how metabolic hetero-
geneity maps on to leader–follower dynamic switching remains to be investigated in more
detail [54–56]. Nevertheless, stronger trends, as measured by weighted probability scores
for HIF1α vs. hallmark EMT and HIF1α vs. mesenchymal compared to HIF1α vs. 76GS or
HIF1α vs. epithelial, indicate the enrichment of HIF1α in being associated with a relatively
more mesenchymal phenotype (Figure 3F and Figure S4). The degree of coupling of the
gain of mesenchymal traits with the loss of epithelial traits in a given scenario [57] may
play a key role in associating HIF1α with a partial or complete EMT.

3.4. FAO Is More Likely to Positively Correlate with An Epithelial Program and Negatively with A
Mesenchymal Program

Fatty acid oxidation (FAO) is a catabolic process in which fatty acids are broken down
and is another key mechanism by which cancer cells can generate energy for survival [58].
Genes involved in fatty acid oxidation have been characterised previously [58]. We used
one such gene set as a proxy for the activity of the FAO pathway in our datasets (see Meth-
ods). We found that as with OXPHOS, FAO was most likely to be negatively correlated with
the hallmark EMT programme (52 significantly negative vs. 11 significantly positive cases)
(Figure 4A). The epithelial programme alone was more likely to be correlated positively
(37 positive vs. 17 negative) (Figure 4B) while the mesenchymal programme alone was
likely to be correlated negatively (30 negative vs. 18 positive) (Figure 4C). These results
show that FAO is more likely to be associated negatively with the acquisition of a mes-
enchymal phenotype. Upon calculation of the probability of positive/ negative correlations
when the correlation is significant as well as the overall weighted probability, we observed
that the mesenchymal metrics (hallmark EMT, mesenchymal signature and KS) were all
skewed towards the negative side, while the more epithelial metrics (76GS and epithelial
signature) were positively correlated with FAO (Figure 4D). Collectively, these results
show that while OXPHOS and FAO are more likely to be associated negatively with the
mesenchymal programme and the EMT process, glycolysis is more likely to be positively
associated with the mesenchymal characteristics of cells. These associations, at least in part,
are supported by the activity of molecular regulators such as AMPK and HIF1α.

3.5. Different Modalities of Association between Pairs of Metabolic Pathways and the EMT

After exploring the three major metabolic axes (OXPHOS, glycolysis and FAO) inde-
pendently in terms of their association with EMT, we wanted to investigate the pair-wise
associations between the metabolic pathways in the context of EMT. For datasets under
consideration, we first computed the fractions of datasets that had none, one, two or
all three axes of metabolism associated significantly with the hallmark EMT signature
(Figure 5A). Most datasets (~60%) had a maximum of one axis of metabolism correlated
with the hallmark EMT programme (Figure 5A). In about 25% of the datasets, hallmark
EMT was not correlated with any of the metabolic axes, probably indicative of biological
scenarios where these metabolic axes are not coupled directly with the EMT spectrum.
In the remaining 40% of datasets, where two or more than two axes were significantly
correlated with the hallmark EMT signature, we investigated if certain combinations of
associations were more likely than others in context of their correlations with the EMT.
To answer this question, we first plotted all 45 datasets that had significant correlations
with the EMT axis and either OXPHOS or glycolysis (Figure 5B). Among those, 21 (46.67%)
datasets showed a positive correlation between glycolysis and hallmark EMT programme,
while OXPHOS was negatively correlated with the hallmark EMT programme (Figure 5B,
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green box). This co-occurring association of OXPHOS and glycolysis with EMT in inverse
directions has been reported earlier experimentally [59,60].

Figure 4. Fatty acid oxidation is more likely to correlate negatively with EMT. (A) Volcano plots
depicting the Pearson correlation coefficient and the −log10(p-value) for fatty acid oxidation (FAO)
and hallmark EMT signatures. (B) Same as (A) but for FAO and epithelial signature. (C) Same as (A)
but for FAO and mesenchymal signature. (D) (top) Probability of a dataset having a positive (blue) or
a negative (red) correlation (correlation coefficient > 0.3) given that it is significant (p-value < 0.05) for
FAO and different EMT scoring metrics. (bottom) Probability of a dataset having a positive (blue) or
a negative (red) correlation (correlation coefficient > 0.3) given that it is significant (p-value < 0.05)
weighted by the fraction of significant cases for FAO and different EMT scoring metrics. Vertical
boundaries for volcano plots are set at correlation coefficients −0.3 and 0.3. The cut-off for p-value is
set at 0.05.

However, this co-occurrence is not the only mode of association between these three
axes. The next most predominant modality of association is the scenario in which both gly-
colysis and OXPHOS are positively correlated with EMT; this trend is shown in 14 (31.11%)
datasets (Figure 5B, red box). This could be indicative of the EMT associating positively
with a hybrid metabolic state in which both OXPHOS and glycolysis are high [59]. The
other two cases—both OXPHOS and glycolysis correlating negatively with EMT (Figure 5B,
yellow box) and OXPHOS being positively associated while glycolysis being negatively
associated (Figure 5B, blue box)—were 15.55% and 6.67%, respectively. Collectively, this
analysis shows that besides predominant modalities of association between OXPHOS and
glycolysis in the context of EMT, other modalities also exist although less frequently.

Next, we wanted to explore how FAO and OXPHOS are associated with each other
in the context of their correlations with EMT. The produced scatter plots, similar to those
prepared for glycolysis and OXPHOS, show that only three quadrants are populated with
different propensities (Figure 5C). The most predominant modality was the scenario in
which the EMT was negatively correlated with both OXPHOS and FAO in 30 (73.17%)
datasets (Figure 5C, yellow box). In 7 (17.07%) datasets, OXPHOS and FAO were both posi-
tively correlated with the hallmark EMT signature (Figure 5C, red box). In the remaining
four datasets, OXPHOS was positively correlated with the EMT while FAO was signifi-
cantly negatively correlated with the EMT (Figure 5C, blue box). These results show that
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FAO and OXPHOS are more likely to be coordinated in a similar manner, either positively
or negatively correlated to the EMT.

Figure 5. Varied associations between different metabolic axes with the EMT. (A) Proportion of
datasets that have a given number of metabolic axes significantly correlated with the hallmark EMT
signature (p-value < 0.05). Scatter plot of correlation coefficients of (B) OXPHOS with the EMT and
glycolysis with the EMT, (C) OXPHOS with the EMT and FAO with the EMT and (D) glycolysis with
the EMT and FAO with the EMT.

Similarly, when we compared glycolysis with FAO, we found that the major modality
of action was the scenario in which glycolysis was positively correlated with the EMT
while FAO was negatively correlated with the EMT programme (Figure 5D, blue box).
This association was observed in 25 (69.44%) datasets. The other two observed modali-
ties of regulation were the cases in which both FAO and glycolysis were both positively
(Figure 5D, red box) or both negatively (Figure 5D, yellow box) correlated with the EMT.
Overall, our analysis uncovers the different possibilities and propensities by which these
three axes of metabolism might associate with one another in terms of their connection
with EMT.

3.6. Heterogeneity in Associations between Different Axes of Metabolism in Relation to the EMT Is
Also Reflected in Single Cell RNA-seq Data

Until now, our analysis had focused on bulk samples. We next examined whether there
was also evidence for the observed heterogeneity of association of metabolic axes with the
EMT present in single-cell data. To do so, we analysed single-cell data for different cell lines
induced to undergo the EMT by TGFβ for 7 days, followed by (partial) MET by withdrawal
of TGFβ for 3 days [61], to determine (a) if there was a shift along any of the metabolic axis
upon the induction of EMT/MET, and (b) whether the different modalities of associations
were seen across different biological conditions. For the cell line DU145, when the EMT
was induced for 7 days, there was a distinct rise in the hallmark EMT scores of the cells at
day 7 compared to day 0. Upon withdrawal of TGFβ for 3 days, the hallmark EMT score
decreased (Figure 6A). As the hallmark EMT scores for cells increased at day 7 compared
to day 0, a significant increase in the level of glycolysis, but a significant shift towards
reduced levels of OXPHOS as well as FAO was noted, as expected from the most dominant
trend seen in bulk datasets (Figure 6A). In the case of OVCA420 cells, the hallmark EMT
scores increased upon EMT induction followed by a decrease on withdrawal of TGFβ,
as expected (Figure 6B). Interestingly, along with decrease in FAO and OXPHOS, there
was also a decrease in glycolysis scores upon EMT induction. Upon withdrawal of TGFβ,
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while the OXPHOS increased again, there was no significant change in glycolysis or FAO
enrichment (Figure 6B). These results demonstrate possible heterogeneity in the modalities
by which pairs of metabolic axes associate contingent upon the biological context; in this
case, the cell line considered and extent to which EMT was induced (a stronger response in
OVCA420 vs. that in DU145).

Figure 6. Metabolic signatures in single cell RNA-seq data upon EMT induction. Box plots for
ssGSEA scores of hallmark EMT and metabolic signatures—glycolysis, OXPHOS and fatty acid
oxidation—at day 0 (untreated) and day 7 (upon TGFβ treatment) and day 3 withdrawal of TGFβ
(after 7 day treatment) for different cell lines: (A) DU145 (B) OVCA420. ‘ns’ indicates non-significant
(p > 0.05); *: p < 0.05 using a Students’ t-test.

3.7. Survival Analysis Reveals Association of EMT and Glycolysis with Worse Patient Survival

Finally, we evaluated the association of the EMT and metabolic axes (glycolysis, OX-
PHOS) gene lists with patient overall survival (OS) across TCGA cancer types (Table S3).
The enrichment of hallmark EMT signatures was associated with worse OS in many cancers:
bladder cancer (BLCA), cervical squamous cell carcinoma (CESC), colon adenocarcinoma
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(COAD), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), low grade glioma (LGG), liver hepatocellular carcinoma (LIHC), mesothelioma
(MESO) and uveal melanoma (UVM) (Figure 7A, top). Further, the enrichment of gly-
colysis associated with worse OS in multiple cancer types: CESC, cholangiocarcinoma
(CHOL), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH),
KIRP, LGG, UVM, lung adenocarcinoma (LUAD) and pancreatic adenocarcinoma (PAAD)
(Figure 7A, middle). Conversely, in KIRP and MESO, the enrichment of OXPHOS corre-
lated with a better survival, in contrast to trends in HNSC and UVM (Figure 7A, bottom).
Thus, overall, an enrichment of glycolysis with/without significant changes in OXPHOS
associated with worse patient survival (Figure 7A). Next, we tested combinatorial scenarios,
i.e., EMT high or low, glycolysis high or low, and OXPHOS high or low, based on segrega-
tion of ssGSEA scores by median across the samples for a given cancer. We observed that
across many cancers, the simultaneous enrichment of the EMT and glycolysis, irrespective
of changes in OXPHOS (columns E+G+O- and E+G+O+ in Figure 7B), was associated with
worse survival. Together, these trends show that an enrichment of glycolysis together with
a (partial or complete) EMT can often indicate a more aggressive disease outcome.
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4. Discussion

Metabolic reprogramming in cancer cells is a key step in the adaptation and survival
of cancer cells in the changing milieu of the tumour microenvironment. Metabolic reactions
are more likely to act on a smaller time scale compared to transcriptional and translational
processes. This difference in time scales makes metabolic remodelling an attractive mode
for the instantaneous adaptation of cancer cells. However, changes to the metabolic
programmes in cells also happens at a timescale longer than such immediate adaptations.
Long-term changes in metabolic programmes can happen due to crosstalk with other
dynamic biological process in cells. In the context of the EMT, cells switch from an epithelial



Biomolecules 2022, 12, 297 14 of 18

to a more mesenchymal phenotype through multiple intermediate states, which facilitate
metastasis. Changes in cellular motility and stresses arising from new microenvironments
during metastasis may require more energy to adapt and survive and thus necessitate
altered metabolism. Such metabolic alterations that affect the overall energy balance in the
cell ultimately determine its fitness. Thus, it is not surprising that EMT and metabolism
have been shown to influence one another [59,62].

In this study, we have focused on three major energy producing metabolic processes:
glycolysis, oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Cancer
cells typically facilitate glycolysis as their primary energy source, irrespective of the pres-
ence of oxygen [63]. This process is referred to as the Warburg effect or aerobic glycolysis.
Conversely, the role of oxidative phosphorylation has also been observed to be important
in cancer cells and cannot be ignored [64,65]. EMT-induced metabolic alterations have
been an active field of research with the identification of numerous mechanisms by which
the metabolic state of cells is altered. Several EMT-inducing signals and EMT-TFs have
been shown to activate glycolysis [15,19,66]. Further, glycolysis has been shown, in turn,
to promote EMT, thus forming a positive feedback loop [67–70]. In addition, several stud-
ies have shown that EMT-TFs can also inhibit mitochondrial respiration and oxidative
phosphorylation [71,72]. Thus, EMT has been consistently shown to be associated with
activation of glycolysis and inhibition of OXPHOS, as also noted in scenarios of EMT
induction [41]. However, in contrast to these studies, other pieces of evidence suggest that
cancer cells with an activated EMT may also have increased levels of OXPHOS in some
cases [21,65]. Such conflicting findings [21,65] regarding glycolysis vs. OXPHOS may be
due to differing tumor microenvironments in these studies or due to differences in the cell
lines or patient samples used. Another possible explanation is that cancer cells may exhibit
a hybrid metabolic phenotype [38] where both glycolysis and OXPHOS states co-exist,
which allows high metabolic adaptability.

Consistent with the existing literature, our analysis of more than 180 gene expression
datasets revealed that the process of EMT is more likely to be positively associated with the
glycolytic process and negatively with the OXPHOS programme. We also report here that
FAO is also likely to be negatively associated with EMT progression, similar to OXPHOS.
These broad trends are, however, not binding, but rather probabilistic in nature given
different biological contexts. In other words, the absence of a universal rule indicates that
cancer cells may favour glycolysis or oxidative metabolism depending on factors present
in the tumor microenvironment (TME), such as availability of glucose, hypoxia, reactive
oxygen species, etc. Such an ability to shift the metabolic balance dynamically may provide
an advantage amidst the shifting energy demands inherent in an evolving TME. Upon
analysis of pairs of metabolic pathways in the context of their associations with EMT, we
observed that while glycolysis and OXPHOS are more likely to be antagonistic in their
associations with the EMT, OXPHOS and FAO were more likely to be both associated
negatively with the EMT. The other modalities of associations were also observed, albeit in
lower propensities. The observed heterogeneities were also seen in single cell RNA-seq
data upon the induction of EMT.

Transcriptomic analysis of metabolic genes for given pathways, as performed here,
is one of the ways to estimate the level of activity of a pathway and its corresponding
associations with the EMT programme. However, the analysis of metabolomic data would
give a more precise picture of the actual metabolic state of cells. Furthermore, there is a need
to better characterise the molecular players and associated mechanisms that could allow
for heterogeneity in the various modalities of associations between the different metabolic
pathways and if there are feedback loops/networks that might allow a switch from one
modality of association to another. Identifying such a mechanistic basis would be important
to develop this understanding for any therapeutic strategies. Based on the current study, we
cannot state if the observed associations are likely to hold in the context of EMT induction
only or also hold in the context of the mesenchymal to epithelial transition (MET). The



Biomolecules 2022, 12, 297 15 of 18

EMT/MET dynamics have been shown to be hysteretic (non-symmetric) in nature [73–75];
whether that feature extends to metabolic reprogramming remains to be seen.

Despite these limitations, our work sheds light upon the underlying patterns in terms
of metabolic plasticity and heterogeneity along the epithelial–hybrid–mesenchymal spec-
trum in cancer cells. Understanding this coupling between the EMT/MET and metabolic
plasticity will enable effective targeting of cells in heterogeneous tumor populations.
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low, glycolysis-low, OXPHOS-low with other combinatorial groups. Figure S1: Consistency between
different EMT scoring metrics, Figure S2: Different pairs of EMT scoring metrics show a strong
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