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Abstract

The cerebral vasculature has a complex and hierarchical network, ranging from vessels of a

few millimeters to superficial cortical vessels with diameters of a few hundred micrometers,

and to the microvasculature (arteriole/venule) and capillary beds in the cortex. In standard

imaging techniques, it is difficult to segment all vessels in the network, especially in the case

of the human brain. This study proposes a hybrid modeling approach that determines these

networks by explicitly segmenting the large vessels from medical images and employing a

novel vascular generation algorithm. The framework enables vasculatures to be generated

at coarse and fine scales for individual arteries and veins with vascular subregions, following

the personalized anatomy of the brain and macroscale vasculatures. In this study, the vas-

cular structures of superficial cortical (pial) vessels before they penetrate the cortex are

modeled as a mesoscale vasculature. The validity of the present approach is demonstrated

through comparisons with partially observed data from existing measurements of the vessel

distributions on the brain surface, pathway fractal features, and vascular territories of the

major cerebral arteries. Additionally, this validation provides some biological insights: (i) vas-

cular pathways may form to ensure a reasonable supply of blood to the local surface area;

(ii) fractal features of vascular pathways are not sensitive to overall and local brain geome-

tries; and (iii) whole pathways connecting the upstream and downstream entire-scale cere-

bral circulation are highly dependent on the local curvature of the cerebral sulci.

Author summary

Cerebral autoregulation in the complex vascular networks of the brain is an amazing

achievement. We believe that numerical analysis of the cerebral blood circulation using an

anatomically precise vascular model provides a powerful tool for evaluating the direct
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relationships between local- and global-scale blood flows. However, there is a lack of

information about the overall vascular pathways in the human brain, preventing a mono-

lithic model of the human cerebrovasculature from being established. This paper presents

a multiscale model of human cerebrovasculature based on a hybrid approach that uses

image-based geometries and a newly developed mathematical algorithm. One important

argument of this paper is the validity of the cerebrovasculature represented in the model,

which reflects anatomical features of major cerebral vasculatures and brain shape, and has

strong similarities with available data for human superficial cortical vessels. Investigations

of the reconstructed model allow us to derive some biological insights and associated

hypotheses for the cerebral vasculature. The authors believe the present cerebrovascular

model can be applied to numerical simulations of the entire-scale cerebral blood flow.

Introduction

The cerebral circulation plays an important role in the continuous delivery of oxygen and

glucose to brain tissues. An important feature of cerebral circulation is the maintenance of a

constant cerebral blood flow (CBF), regardless of mean arterial pressure, known as cerebral

autoregulation [1–3]. This involves control of local and global CBF in relation to the meta-

bolic demands from neural activities [4–6]. Understanding how this neuro-vascular cou-

pling affects CBF is essential for achieving an understanding of the core of the cerebral

circulation regulation mechanism, and requires the uncovering of physical aspects of the

full-scale cerebral blood circulation and complex networks derived from anatomical struc-

tures. The cerebral vasculature has a hierarchical structure ranging from vessels of a few mil-

limeters, to superficial cortical vessels with diameters of a few hundred micrometers, to the

microvasculature (arteriole/venule) and capillary beds in the cortex. Cerebrovascular mor-

phologies and structures for human cortical and intracortical vessels in arterial and venous

systems were explored in [7], which reported many remarkable features for the pathway

structure, vessel anastomosis, and differences between the arterial and venous systems.

Details of the microvascular features in the human cerebral cortex were later uncovered in

[8, 9]. However, as there is a lack of information about the whole-scale vascular pathway, no

monolithic model of the human cerebrovasculature has yet been established. A complete

cerebrovascular model would enable the computational analysis of the full-scale cerebral cir-

culation, enabling CBF to be evaluated at scales from single vessels to the whole-brain vascu-

lar network.

Medical observations can provide real-world configurations of personalized cerebral vascu-

latures. Recent advances in medical imaging devices enable us to capture both arterial and

venous geometries [10, 11], and a combination of different medical observations with state-of-

the-art image processing techniques has resulted in an integrated subject-specific brain model

[12]. However, the spatial resolution of this model is insufficient to reconstruct the whole-scale

vasculature at both local and entire ranges, with the minimum vessel diameter being approxi-

mately 1 mm. Recently, an inventive measurement using high-resolution micro-CT imaging

of mouse cerebrovasculatures has been reported [13], where the vasculatures at the whole-

brain scale were reconstructed down to the microvascular scale. However, such measurements

are generally difficult to apply to the human brain.

Because of this limitation of medical observations, mathematical and numerical models

based on functional principles have been proposed. One of the more successful models is con-

strained constructive optimization (CCO), which was originally proposed to reproduce arterial
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trees [14] and has several variations [15, 16]. The CCO model updates a tree structure by add-

ing a new vertex to an arbitrary domain, which offers a new terminal end and branches in a

step-by-step manner, so that the evaluation function for the vascular pathway and geometry

associated with the blood circulation is minimized. The CCO model has been developed to

represent the cerebral vasculature both at the macroscale on the brain surface [17] and at

the microscale in the brain cortex [18]. As an alternative, several mathematical models for gen-

erating vascular pathways have been proposed. In [19], terminal pairs of arterial and venous

vasculatures are formed via sequential generation with a tripod junction on a mesh system. In

[20], the global optimality of the vascular systems is achieved using a global constructive opti-

mization method developed from the CCO model. An optimized configuration of the vascula-

tures related to physiological functions has been modeled using a simulated annealing

algorithm [21], and this method has recently been applied to cerebral arteries [22]. However,

the mathematical approach itself is not guaranteed to reproduce the actual features of the vas-

cular pathway and personal particularities such as the circle of Willis.

In this regard, synthetic or hybrid vascular models have been developed using an observed

(actual) morphology and a mathematical algorithm. There are two typical approaches. One

employs a data-driven concept that reproduces the statistical features of the vascular morphol-

ogy evaluated by real-world data [23–27]. Recently, a whole-scale cerebrovascular model of a

mouse that reflects the statistical features of the microvascular morphology has been developed

and used for blood circulation simulations [28]. Although the data-driven approach is strong

when sufficient data are available, it is difficult to apply to cases in which there is less a priori
morphological information and a patient-specific morphology must be addressed. The second

approach uses an image-based geometry, whereby the vascular model is reconstructed accord-

ing to an observed image [29] or small-scale vasculatures are created from the terminal ends of

the image-based large-scale geometry [30]. This approach can easily incorporate a patient-spe-

cific (or personalized) geometry into the modeling, and does not require a priori statistical

information of the vascular morphology. However, to date, no vascular model for the whole-

scale human brain has completely addressed the formation of the end connections of the arte-

rial and venous systems, the hierarchical pathway structures, and particularly the morphologi-

cal features and vessel anastomoses.

This study aims to model a human cerebrovasculature, including both the arterial–venous

systems, and explore the vascular pathway and morphology in the model through comparisons

with available data. We apply a hybrid approach based on image-based geometries for macro-

scale vasculatures (and brain hemispheres) and a newly developed mathematical algorithm for

mesoscale vasculatures to link from the micro to macroscale systems. This multilevel region-

confined (MRC) algorithm is designed to address the image-based vasculature, hierarchical

pathways, and pair-wise coupling of the arterial and venous systems by introducing modeling

ideas such as multiple roots, multiple levels, and vascular subregions. The goal of the mesoscale

modeling is to generate vascular pathways that enable a suitable supply of blood to the brain

tissues while minimizing the vascular volume in the generation region. Although this study

employs an image-based vasculature extracted from CT images obtained by the authors, the

proposed modeling approach can make use of images obtained in other studies. To evaluate

the validity of the present model, we perform a numerical experiment that simulates the pial

vessels on human hemispheres before the microvascular systems, and which also generates the

pathways and geometries of the entire cerebrovasculature. Moreover, we perform an addi-

tional example on a geometrically simplified model to investigate the influence of the cortical

folding of the brain on the vascular pathway and relevant CBF.
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Methods

Ethics statement

(Human Subject Research) Institutional Review Board of Osaka University Hospital No.

16496. The data were analyzed anonymously.

Concept of cerebrovascular modeling

We model a human cerebrovasculature that ranges from millimeter-scale major vessels to

micrometer-scale superficial cortical vessels. The vasculature is modeled for the cerebrum,

excepting other components such as the brainstem and cerebellum, and does not include the

microvascular system inside the cortex. A hybrid approach using image-based geometries and

a mathematical algorithm is applied for the modeling. To reflect anatomical features, we first

construct image-based models for the macroscale vasculature and brain shape from medical

images, and prepare the inputs for the mathematical model. We then construct a mathematical

model for the mesoscale vasculature by employing a newly proposed algorithm, in which hier-

archical structures are modeled for a coarse-scale vasculature that broadly spreads over the

brain surface and a fine-scale vasculature that is confined within a subregion. A conceptual

flowchart for the modeling approach is shown in Fig 1.

Image-based models for macroscale vasculature and brain surface

Image processing and shape modeling. Sequential head 4D-CT angiography images of a

Japanese subject were used for the reconstruction of large-sized vessels (Institutional Review

Board of Osaka University Hospital, No. 16496). The image resolution was approximately 0.5

mm, and the number of frames in a cardiac cycle was 22. Fig 2A shows the sequential images

for contrast media streaming from the arterial system to the venous system. Based on these

images, we reconstructed the respective vessel geometries using image-processing software

(Amira 5.4.2, Visage Imaging, Berlin). By comparing the reconstructed vessels, we selected the

vasculatures at frame numbers 5 and 16, which most reasonably represent the morphological

features for the arterial and venous systems (Fig 2B). Note that, at this stage, the venous and

arterial vasculatures have not become isolated from one another. We then isolated the arterial

and venous systems using a semi-automatic method based on a Boolean operation applied to

overlapped domains between the vessel geometries at frames 5 and 16 (Fig 2C). Finally, we

obtained vascular centerlines and radii from the isolated vessels (Fig 2D). For the image pro-

cessing, a threshold-based region-growing method was used to segment the vessel regions.

This method selects a seed pixel from a region of images in which a main vessel appears in an

arbitrary cross-section, and performs 3-D region growing according to the minimum and

maximum thresholds set for the gray values of the images. Skeletonization is then performed

through the following processes: (a) a map of the distances from the boundaries of the seg-

mented regions is formed; (b) the segmented voxels are thinned based on the maximum

value of the distance map; and (c) the centerlines and vessel radii (evaluated from the distance

map) are extracted with the thinned voxels. The edge centerlines are given as a set of discrete

points with the coordinates and radii, and the edge connectivity (which edge is connected

to the others) is determined. Thus, we can evaluate the vessel length and radius and the con-

nectivity of the vascular network. The details are shown in the Amira user guide. Conse-

quently, large-sized vessels with diameters greater than 1 mm were reconstructed. In this

example, the right anterior cerebral artery (ACA) was not extracted accurately because of the

low image resolution. Therefore, we used the mirror-image structure of the left ACA as the

right ACA.
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The brain hemispheres were reconstructed from MRI images. In this example, the data

were acquired from a different subject to the vascular model. The brain surface is recon-

structed via image processing performed using Amira 5.4.2, with the surface being represented

by a set of polygons (planar triangles). The vascular structure arrangement is then manually

adjusted to the brain surface.

Data preparation for the mathematical modeling of mesoscale vasculatures. Some ter-

minal ends of the image-based vasculature are located apart from the brain surface. In this

paper, we extend each of these to the brain surface with a straight edge. The brain surface Γ is

implicitly defined by the signed distance function (SDF) ψ(x) in three-dimensional space

x 2 R3, where ψ is discretely given on background Cartesian meshes. Because of the character-

istics of the SDF, the distance and direction to the brain surface at any position are given as ψ
andrψ/|rψ|, respectively, through an interpolation. Consequently, the straight edges can be

modeled. If the distance of the extended straight edge is longer than a threshold value, the ves-

sel is regarded as not being for the cerebrum, and is neglected in the reconstruction. To intro-

duce the vascular subregions, which are used in the mathematical modeling, the brain surface

Fig 1. Concept of the multiscale modeling of cerebrovasculature. A hybrid approach based on image-based and mathematical models. The brain hemispheres

are extracted from MRI images and the macroscale vasculature is reconstructed from CT images. The vascular subregions and signed distance function (SDF) for

the brain hemispheres are defined in the preparation process as the inputs for the mathematical model. The mesoscale vasculatures at coarse and fine scales are

constructed by a vascular generation (mathematical) algorithm in the multilevel region-confined manner.

https://doi.org/10.1371/journal.pcbi.1007943.g001
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is divided into non-overlapping regions. The seeds of the subregions are randomly distributed

to the triangular meshes of the brain surface, and the region growing method is then applied.

This procedure was performed for the whole region, followed by each subregion, up to a maxi-

mum reconstruction level in the mathematical modeling, i.e., two-level reconstruction in this

paper. See the ‘Preparation’ box and right-hand side figures in Fig 1.

The obtained data for the brain hemispheres (triangular meshes and vascular subregions),

reconstruction domain represented by the SDF, and root vessels of the artery and vein (num-

ber of roots, position and radius) are utilized in the mathematical modeling as input data.

Mathematical modeling of mesoscale vasculatures

Multilevel Region-Confined (MRC) algorithm. A key issue for modeling the cerebrovas-

cular structure is the reproduction of a hierarchical pathway with connection units for arterial

and venous terminals that can cover the surface of the cerebral cortex without excess or defi-

ciency. To accomplish this, we propose a novel vascular generation framework termed the

Multilevel Region-Confined (MRC) algorithm. In MRC generation, a tree-based vascular gen-

eration algorithm creates a set of vascular structures in an arbitrary domain from each root

edge so that several terminal ends share the same subregion and form a vascular unit (known

as a venous unit in a previous work [7]), which we refer to as a vascular subregion in this paper.

Fig 3A shows a schematic of the multilevel region-confined manner. Here, three vascular trees

are created in the domain O, which has vascular subregions Di (i = 1, . . ., Nd) at the first level

(LV1), and further vascular trees are generated in each subregion at the second level (LV2).

Potentially, the MRC generation process has the following features:

Fig 2. Reconstruction procedure of the image-based vasculature. (A) Sequential CT images for bolus injection of contrast media

in the brain. (B) Reconstructed vessel geometries at frame numbers 5 and 16, where the venous vasculature is not yet isolated from

the arterial one. (C) Isolated vessels for arteries (red) and veins (blue), where the isolation is performed semi-automatically based on

a Boolean operation applied to overlapped domains between the vessel geometries at frames 5 and 16. (D) Vascular centerlines (solid

line) with radii and terminal points (square symbol) obtained through a thinning process applied to the vessel geometries extracted

from (C).

https://doi.org/10.1371/journal.pcbi.1007943.g002
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• A hierarchical structure consisting of different scale vascular systems is reproduced in the

multilevel process.

• Local vessel densities are controlled by changing parameters related to the vascular subre-

gion (e.g., location, size, number of terminal ends per region).

• Coupling of vascular systems is addressed through the vascular units from different root

edges (for arteries and veins).

• Vessel anastomoses at different scales are systematically addressed, making use of the vascu-

lar subregion in each generation level.

Definition of vascular pathways and structures. We introduce general definitions of the

vascular structures based on descriptions of graph theory. Let GðV; EÞ denote a graph structure

with sets of vertices (or nodes) V and edges E:

V ¼ fvm j m ¼ 1; 2; . . .Mg; ð1Þ

E ¼ fen j n ¼ 1; 2; . . .Ng; ð2Þ

Fig 3. Schematic of the MRC algorithm. (A) Vascular generation in the multilevel region-confined manner. In the LV1 reconstruction, two arterial structures

(red) and one venous (blue) structure are generated from their root edges, where the terminal vertices enter into respective vascular subregions Di. The following

arterial and venous structures are then generated while being confined within each subregion Di in the LV2 reconstruction. (B) Definitions of the vascular

structure. A single graph is shown with vertices vm and edges en. Also, a schematic of the edge subdivision for en is shown, where the edge is divided by the line

segments ln,k with subpoints pn,k. In the representation, the edgewise line segment is given as a straight cylinder with the radius an,k and length Ln,k. (C)

Description of the generation of new branches. Four bifurcation patterns (P1, P2, P3, P4) are considered for solving the optimization problem (7) when adding a

new terminal vertex vM+1 to the graph with vertices vm and edges en. In the schematic, the edge en is selected as the closest edge of the new vertex, and a

branching vertex vM+2 and edges eN+1, eN+2 are newly added. (D) Schematic of the relocation of an edge. Here, the vascular subregions are given on a curved

surface Γ, and the reconstruction domainO is defined as the extended domain within the lower limit surface Γlow and upper limit surface Γup. As the edge passes

across the boundary of O (outside of the lower limit Γlow), the edgewise subpoints outside the domain are relocated on the curved surface Γ.

https://doi.org/10.1371/journal.pcbi.1007943.g003
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where vm and en are their elements. Here, M ¼ jVj and N ¼ jEj are the number of vertices and

edges, respectively. It is possible to give each edge as a curved line with an arbitrary function

using several degrees-of-freedom (DOFs). Let p(s;K) denote the edge position in the paramet-

ric representation with the parameter (or local coordinate) s 2 [0, 1], where K denotes the

number of DOFs to represent the edge. The edge length can then be given as
R 1

0
j@p=@sjds.

In this study, we simply apply a piecewise linear polynomial to represent the curved edge.

Fig 3B shows an example of the vascular pathway and geometry for a single graph G. The edge

en linking to two vertices fvn1; vn2g 2 V is divided into non-overlapping line segments ln,k

(k = 1, 2, . . ., Kn), namely,

en ¼ fln;k j k ¼ 1; 2; . . . ;Kng ¼
XKn

k¼1

ln;k; ð3Þ

indicating the edge en, which discretely represents a curved line with a combination of line seg-

ments ln,k. Here, the edgewise subpoints are defined as pn,k (k = 1, 2, . . ., Kn + 1), and the line

segment consists of sequential subpoints, i.e., ln,k = {pn,k, pn,k+1}. Note that pn,1 = vn1 and

pn;Knþ1 ¼ vn2. The edge length Ln is evaluated by

Ln ¼
XKn

k¼1

Ln;k ¼
XKn

k¼1

k pn;k pn;kþ1

������!
k; ð4Þ

where Ln,k is the length of the line segment ln,k. To take account of the vascular thickness, the

line segment is assumed to be a cylinder with known radius. In this study, the edge radius an is

simply defined as

an ¼
1

Kn

XKn

k¼1

an;k; ð5Þ

where an,k is the cylinder radius of the line segment ln,k.

Geometry-prioritized CCO model. We apply a simplified and geometry-prioritized

CCO model for vascular tree generation, which is developed from the original model [14]. The

CCO model updates a tree structure by adding a new vertex to an arbitrary domain that offers

a new terminal end and branches in a step-by-step manner. In the original CCO model, both

local and global optimization problems are solved to minimize the total intravascular volume:

local optimization termed geometric optimization to find a bifurcation point, and global opti-

mization termed structural optimization to find a connecting edge. However, the geometric

optimization requires a nonlinear optimization algorithm with some nonlinear constraints,

and moreover, the structural optimization requires multiple evaluations for neighboring exist-

ing edges, inferring time consuming tree development involving a massive generation level

such as a whole-scale cerebrovascular structure. As the edge closest to the new terminal is the

most probable candidate for a permanent connection (*60%) [14], we choose the closest edge

to the new terminal as the candidate for the connection edge, without considering the struc-
tural optimization.

Because of the above reasons, we only consider the geometric optimization for generation of

a new bifurcation, and this is also much simplified by a combinatorial optimization. We intro-

duce multiple vascular trees with their own roots as Gj ðj ¼ 1; 2; . . . ;N0Þ and vascular subre-

gions Di (i = 1, 2, . . ., Nd), where N0 is the number of tree sets or roots and Nd the number of

vascular subregions. Let us suppose a new terminal vertex is added in any vascular subregion

Di and the closest edge, which is the minimum Euclidean distance between the terminal vertex

and middle point of each existing edge, is found in the graph Gj. Here, two constraints are
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imposed: (1) the distance to the closest edge is less than a threshold length lth and (2) the num-

ber of terminal ends in subregion Di is within the permissible range of the number of terminal

ends per subregion. If these constraints are not satisfied, the added vertex is rejected; a new ter-

minal vertex with a different subregion and position is then added and re-evaluated until these

constraints are satisfied. We define the accepted terminal vertex vM+1 and the closest edge en
that generates a new branching vertex vM+2 and edges eN+1, eN+2 (Fig 3C). As the combinatorial

optimization, we consider four bifurcation patterns P1, P2, P3 and P4, in which the new branch-

ing vertex vM+2 is located on the mid-point of each tentative edge (P1, P2, P3) or centroid of the

bifurcation plane formed by three vertices (P4). We choose a bifurcation pattern that mini-

mizes the evaluation function related to the intravascular volume defined as

E ¼
XNþ2

n0¼1

Ln0a
2

n0 : ð6Þ

The distribution of radii is evaluated by introducing a flow network model, which will be

described later in this paper. It should be noted that as the closest edge is chosen as the con-

necting edge in this study, the difference in the evaluation function (6) is only attributed to the

length and radius for edges en, eN+1 and eN+2. Thus, the geometric optimization can be written

as

Find Pi ði ¼ 1; 2; 3; 4Þ;

such that minE0 ¼ Lna2
n þ LNþ1a2

Nþ1
þ LNþ2a2

Nþ2
:

ð7Þ

The terminal vertex is added to the subregion Di; however, it is not guaranteed that the

bifurcation edges in all patterns are located within the reconstruction domain O. As shown in

Fig 3D, if the bifurcation edges pass across the domain boundary, the edgewise subpoints out-

side the domain are arranged so that they are located in an arbitrary region Γ� O. These mod-

ified edges for en, eN+1 and eN+2 are taken into account in all the bifurcation patterns when

solving the optimization problem (7). Consequently, the graph GjðV j; E jÞ is updated, where

jVjj ¼ M þ 1 and jE jj ¼ N þ 2. The tree generation continues until the number of terminal

edges reaches a preset value.

Here, we describe how the edge radii in the mathematical model are determined. The edge

radii are determined according to some physical and physiological assumptions. In this regard,

although we temporarily introduce an inlet flowrate and a flow network model, the final for-

mulation eliminates the explicit description using the flowrate, and instead only includes a

pathway topology and geometric information for the subregion size and root-edge radius.

Hereafter, we define the variables for each graph and vascular subregion with the superscripts

ðGjÞ and (Dj), respectively. Introducing the inlet flowrate of the root edge QðGjÞroot and the subre-

gion size |Di| (e.g., line, area or volume depending on the dimension of the subregion), the

total flowrate into the domain O is given by

Qtotal ¼
XN0

j¼1

QðGjÞroot; ð8Þ
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and the total subregion size is given by

jDtotalj ¼
XNd

i¼1

jDij: ð9Þ

In this study, we assume that the total inflow is distributed along the vascular pathways

according to the size ratio of the subregion to the total region. The flowrate entering into the

subregion Di is fixed as

qðDiÞ ¼
jDij

jDtotalj
Qtotal: ð10Þ

If the subregion has several terminal ends, the flowrate for each terminal edge is assumed to

be equally divided by the number of terminal ends per subregion Di, N
ðDiÞ
term. Thus, for the graph

Gj, the flowrate on a terminal edge eðGjÞterm entering into an arbitrary vascular subregion Di0 is

given by

QðGjÞterm ¼
qðDi0 Þ

NðDi0 Þterm

; for eðGjÞterm 2 Di0 : ð11Þ

For the graph Gj, the internal flowrate on an arbitrary edge eðGjÞn is evaluated by a summation

of the terminal flowrates of its downstream pathway according to the mass conservation law.

Supposing the terminal edges of the downstream pathways for eðGjÞn enter into single or multiple

subregions Di0 ðe
ðGjÞ
n Þ ði0 ¼ 1; 2; . . . ;Ndðe

ðGjÞ
n ÞÞ, where Ndðe

ðGjÞ
n Þ is the number of downstream

terminal edges for eðGjÞn , the internal flowrate QðGjÞn is given by

QðGjÞn ¼
1

jDtotalj

XNdðe
ðGjÞ
n Þ

i0¼1

jDi0 ðe
ðGjÞ
n Þj

NðDi0 ðe
ðGjÞ
n ÞÞ

term|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼S
ðGjÞ
n

Qtotal;
ð12Þ

where the relation (11) with (10) is used. The edgewise parameter SðGjÞn denotes the total size of

the apparent coverage subregions of the edge eðGjÞn . Assuming that Poiseuille flow is established

in each cylindrical edge, the wall shear stress exerted on the cylinder wall is given by

t
ðGjÞ
n ¼

4mQðGjÞn

pðaðGjÞn Þ
3
; ð13Þ

where μ is the fluid viscosity. We assume that the flow is distributed to each edge so that it

makes all the wall shear stresses equivalent [31]. Thus, the following relation holds:

t
ðGjÞ
root ¼ t

ðGjÞ
n ; )

4mQðGjÞroot

pðaðGjÞrootÞ
3
¼

4mQðGjÞn

pðaðGjÞn Þ
3
: ð14Þ
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Consequently, the edge radii are uniquely determined by using the edgewise subregional

parameters, SðGjÞn and SðGjÞroot, as follows.

aðGjÞn ¼
QðGjÞn

QðGjÞroot

 !1
3

aðGjÞroot ¼
SðGjÞn

SðGjÞroot

 !1
3

aðGjÞroot; ð15Þ

for n 2 ½1;NðGjÞ� and j 2 [1, N0].

Note that the original CCO model determines the edge radii using the pathway tree and the

inlet and outlet flow pressures (or flowrates) through a flow network model with a bifurcation

rule for the radii of parent and daughter vessels. Thus, the root-edge size is not reflected in the

modeling. In our model, the root-vessel sizes obtained by the LV0 model (image-based vascu-

lature) can be incorporated into the modeling, and the edge radii in the model are not depen-

dent on the inflow condition (i.e., total flowrate Qtotal) but are dependent on the size and

number of the terminal ends of the vascular subregions for the pathway structure. Therefore,

we have termed the present modified version the geometry-prioritized CCO model. In this

study, as a main concern was to develop the framework for the cerebrovascular modeling, a

strong constraint for the equivalence of the wall shear stress was employed to easily calculate

the edge radii (15). As further developments, an alternative approach based on the power law

of the bifurcation rule could be considered, to evaluate the edge radii employed in the original

CCO model.

We investigated the validity of the present modification through a numerical experiment

performed using the original CCO model [14] in S1 Supplement. This confirmed that the pres-

ent geometry-prioritized CCO model is in good agreement with the experiments and original

CCO model, indicating that the present modification can be accepted.

Multilevel reconstruction. The abovementioned vascular generation is performed at each

level of the reconstruction. The information about the vascular geometries of terminal edges

(i.e., position and radius) entering the subregion in the lower reconstruction level is inherited

from the higher level as the root-edge geometries in the reconstructed domain. In the present

formulation, further reconstruction in each vascular subregion is independently performed, as

shown in Fig 3A. Thus, the first-level vasculature broadly spreads over the entire domain,

whereas higher-level vasculatures are confined to each subregion, which depends on the given

vascular subregions and multiple roots in each reconstruction level. The generation continues

until the number of terminal edges reaches a preset value.

MRC generation using the inputs from the image-based model. For a human cerebro-

vasculature, the mathematical model is constructed by the MRC algorithm using the inputs

extracted from the image-based model. Under the MRC strategy, the model is continuously

connected from the terminal edges of the LV0 model (image-based vasculature). The MRC

generation is sequentially applied to all arterial and venous vascular systems in each coarse-

scale (LV1) and fine-scale (LV2) vasculature. In the modeling, the difference between arteries

and veins is attributed to the input roots from the LV0 model and the number of terminal ves-

sels, which is a model parameter determined from measurement data. The flowchart in Fig 4

shows the modeling processes in each level, which can be described as follows.

Coarse-scale vascular structures (LV1). The coarse-scale vascular structures are gener-

ated for both arteries and veins. The location and geometries of the root edges are inherited

from the terminal ends of the LV0 model. New terminal vertices are added through the follow-

ing process: first, a vascular subregion is randomly selected, then a triangular mesh in the sub-

region is randomly selected, and finally, a position is randomly determined in the triangular

mesh. First, the venous structures are constructed such that all the subregions have at least one
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terminal end. Next, the arterial structures are constructed using the same set of vascular subre-

gions. With the aim of creating vascular variation, the numbers of terminal arteries and veins

per vascular subregion are defined as controllable parameters. To confine the vascular pathway

to the brain surface, a discrete SDF ψ(x) is again utilized. The edgewise subpoints outside the

domain O are arranged so as to be located on the brain surface Γ = {x | ψ(x) = 0}. As described

in Fig 3D, the reconstruction domain O is defined as the extended domain within the lower

Fig 4. Flowchart of vascular generation in the MRC algorithm. The coarse-scale vasculatures for both arteries and veins are constructed in the LV1 reconstruction,

where the location and geometries of the root edges are inherited from the terminal ends of the LV0 model. The fine-scale vasculatures are then generated in the LV2

reconstruction, where the generation continues from the terminal ends of the arteries and veins in the former level (LV1). The vascular subregions and SDF for the

brain surface are used for the reconstructions at each level. The vascular generation algorithm at each level follows the geometry-prioritized CCO model described in

this paper.

https://doi.org/10.1371/journal.pcbi.1007943.g004
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limit Γlow and upper limit Γup, with these being defined as Γlow = {x | ψ(x) = −ψth}, Γup =

{x | ψ(x) = ψth} andO = {x | −ψth� ψ(x)� ψth}, where ψth is the length of the extended domain.

If the SDF at subpoints xn,k becomes |ψ(xn,k)|> ψth, the related subpoints are moved to the

brain surface Γ through the interpolation of ψ. A similar idea using the SDF for the vascular

generation can be seen in [17], where it was combined with the staged-growth CCO model [15].

Fine-scale vascular structures (LV2). The fine-scale vascular structures are indepen-

dently generated within each LV1-subregion, with the pial vessels being reproduced before

they penetrate the cerebral cortex. The generation is continued from the terminal ends of the

arteries and veins in the former level (LV1). The number of vascular subregions for the level

NðLV2Þ

d is set to the same value as that for the LV1-subregions. Analogous to the LV1 process,

we enforce each fine-scale vascular subregion so that it has at least one terminal end for both

an artery and vein.

Evaluation metrics for mesoscale vasculatures

Diameter distribution for terminal vessels. The data for the terminal edge diameters

were collected from all arteries and veins in each LV1 and LV2 reconstruction. The box-whis-

ker plots presented here are based on the collected data. The diameter distributions given in

the box-whisker plots were compared with observed data for human cortical and intracortical

vessels [7]. Note that the measurement data are characterized using the minimum and maxi-

mum diameters for different vessel-type groups. Here, the present data for terminal vessels in

the LV1 model are compared with the measurement data for the central and peripheral vessels

of the superficial cortical vessels, whereas those in the LV2 model are compared with those for

the intracortical vessels before penetration into the cerebral cortex.

Diameter-defined Strahler order. To evaluate the vascular pathways, we introduce the

diameter-defined Strahler orders [32]. In this ordering, the terminal edges are assigned an

order of 0. The remaining edges are then iteratively ordered, with statistical information about

the diameter in each order used as an additive rule to the standard Strahler order. After assign-

ing the orders, continuous edges with the same order are defined as elements. For further

details, readers are referred to the original paper [32]. To apply this ordering to our recon-

structed models, we first connected the LV2 model to the LV1 model for arterial and venous

systems, respectively. We then assigned the ordering to each connected arterial and venous

vasculature. In the original ordering process, capillary vessels were assigned an order of 0.

However, as our approach does not model the capillaries, we set the order of all terminal edges

to 1. In this study, we independently evaluate the arterial and venous systems.

Morphological structures along vascular pathways. As morphological structures along

vascular pathways related to the abovementioned diameter-defined Strahler order, the diame-

ter d, length l, and number of elements Nelem were collected for each element order. Their

means and standard deviations are evaluated. We also evaluated regression lines with the form

log10 q = a + bn, where n is the element order, q is either the diameter, length, or number of

elements (q = d, l, Nelem), and a, b are the intercept and slope for the corresponding variables.

These regression lines were also used for quantitative comparisons with the available data for

rat (intra-)cortical vessels [33].

Configuration of vascular whole-pathways. To investigate the 3-D configurations of vas-

cular whole-pathways, we calculated the Euclidean distance L and path length C of the whole

pathways between the root vertex and terminal ends. The path length C is the summation of

the length of all edges in the whole pathway from the root to the terminal edges. We also intro-

duce an index of the whole-pathway tortuosity, given as C/L − 1. The evaluation was per-

formed for sequential vasculatures given by the LV1 and LV2 models. The relationships
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between L and C are shown in the form of scatter plots, and the respective distributions are

shown as histograms.

Vascular territories of the major cerebral arteries. In our modeling, it is easy to iden-

tify which vascular subregion has which pathway (end) and the associated root cerebral

artery. Based on this information, we determined the vascular territories on the brain sur-

face occupied by the ACA, middle cerebral artery (MCA), and posterior cerebral artery

(PCA). We also evaluated each territorial area by summing the area of the vascular

subregions.

Results/Discussion

Model parameters

The model parameters are summarized in Table 1. The number-density of the terminal vessels

over the brain surface area [34] and the artery-vein ratio [9, 27] are obtained from the observa-

tional data. However, there are no clear data for the other parameters, and we therefore intro-

duce some assumptions. We set the total number of vascular subregions to be the same as the

number of terminal veins from the standpoint of the blood flow supply to the brain surface

and associated cortical tissue. As it is hard to determine the ratio between the coarse and fine-

scale vascular structures in advance, we first show a model reconstructed under one parameter

for the number of coarse-scale vascular subregions NðLV1Þ

d , then move on to discuss the influ-

ences of the parameter on the vascular structures.

Table 1. Mathematical model parameters.

Parameter Attribute Value

Surface area of hemispheres, |Dtotal| 102086 mm2

Number of input roots, N0 artery, vein 129, 121

Number of total terminal edges, NðtotalÞterm artery & vein 888000�A

Ratio of total terminal arteries to veins, α artery/vein 2�B

Number of total terminal arteries and veins artery, vein a

aþ1
NðtotalÞterm , 1

aþ1
NðtotalÞterm

�B

Number of total vascular subregions, NðtotalÞd
1

aþ1
NðtotalÞterm

�C

(LV1)

–Number of vascular subregions, NðLV1Þ

d
4000�D

–Number of terminal edges artery, vein aNðLV1Þ

d , NðLV1Þ

d

–Permitted number of terminals per subregion artery, vein 1*6, 1

(LV2 per LV1 subregion)

–Number of vascular subregions, NðLV2Þ

d NðtotalÞd =NðLV1Þ

d

–Number of terminal edges artery, vein aNðLV2Þ

d , NðLV2Þ

d

–Permitted number of terminals per subregion artery, vein 2, 1

Length of the extended domain, ψth 1 mm

Threshold length to the nearest edge, lth 20 mm

�A We refer to the number density of major penetrating vessels (8.7 num/mm2 [34]) and regard it as the present

number density of the terminal edges for the pial vessels before they penetrate the cerebral cortex.

�B The numbers of terminal arteries and veins are determined so that the ratio between them is 2:1 [9, 27].

�C The total number of subregions is set to be the same as the number of terminal veins from the standpoint of the

blood flow to the brain surface and associated cortical tissue.

�D This parameter determines the ratio between the coarse- and fine-scale vascular structures.

https://doi.org/10.1371/journal.pcbi.1007943.t001
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Model overviews

A reconstructed model is shown in Fig 5. The model forms a complex pathway spreading over

the cerebral surface with changing vessel diameters, with finer vascular structures being

observable in higher levels. In the present MRC modeling, as the vascular pathways are gener-

ated while confined within the vascular subregion of the brain surface, a set of terminal ends of

arteries and veins reaches the same subregion in LV1, which we regard as having formed a vas-

cular unit. Fig 6 visualizes a set of vascular structures reaching the same subregion. Here, there

are two arterial pathways and one venous pathway entering the subregion from different root

vessels (terminal branches in LV0). As expected, a hierarchical pathway from broad region to

local is constructed with respect to the vascular subregion.

The complex cerebrovascular structure is reproduced by the proposed framework. Particu-

lar geometric features such as the circle of Willis and the following major cerebral arteries, and

the superior/inferior sagittal sinuses and the following cerebral veins, are captured using the

Fig 5. The reconstructed model for arteries (red) and veins (blue). (A) Superimposed views of the image-based

reconstruction (LV0) and mathematical generation (LV1 and LV2). (B) Respective vascular structures in the different

levels.

https://doi.org/10.1371/journal.pcbi.1007943.g005
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medical images in the LV0 process down to a diameter of Oð1 mmÞ. The hierarchical vascular

structure is then addressed by the MRC generation, where the central and peripheral branches

down to a diameter of Oð100 mmÞ are modeled in the LV1 process, followed by the confined

network structures of the pial vessels with a diameter around or less than 100 μm being mod-

eled in the LV2 process. The proposed multilevel reconstruction enables adjustment of a ratio

between brief and detailed geometric features of the vascular pathway. The terminal ends of

the pathways are always located in any vascular subregion that brings a success of forming a

pair candidate of arterial and venous systems through a (micro-)vascular unit in the cerebral

cortex.

Superficial cortical vessels

Fig 7 shows an overview and enlarged view of the gyral surface for the LV1 and LV2 vessels

given by the present model. The diameters of the terminal edges in the present LV2 model are

also shown alongside measurement data for the major intracortical vessels [7]. The present

Fig 6. Vascular pathways to/in a single vascular subregion. (A) Configuration of the vascular subregion on the brain surface in LV1, with the color indicating

the subregion number (ID). (B) Vascular structures in the LV1 reconstruction. Here, there are two arterial pathways and one venous pathway entering an

arbitrary vascular subregion Di0. (C) LV2 reconstruction within the above subregion Di0. The vascular pathways have continued from previous terminal vertices.

In each figure for an artery/vein, the terminal ends of another vessel are shown as dots. (D) Configurations of terminal ends for arterial (red) and venous (blue)

pathways to the introduced subregions on the brain surface. Note that, owing to modeling constraints, all subregions in LV2 have two arterial ends and one

venous end.

https://doi.org/10.1371/journal.pcbi.1007943.g006
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model exhibits some remarkable features, such as mixtures of large and small vessels, periph-

eral vessels that suddenly or gradually bifurcate from a large vessel, and large or middle-sized

vessels passing across the gyrus.

It can be confirmed that the vessel distribution agrees well with a sketch of the superficial

cortical vessels of the human brain (Fig 2 in [7]). Although a straightforward comparison is

difficult because of the variation in vascular structures, the present model shows similar ten-

dencies to those observed in actual human vessels [7]: arteries arise from a principal trunk at

the sulcus or a hidden origin within the sulcus; a central artery frequently reaches the center

region on the gyral surface and divides into numerous sinuous branches; peripheral arteries

cover the rest of the gyrus with an angular pathway consisting of a succession of straight edges

and angles; the pial venous network is composed of veins larger than the corresponding arter-

ies, including both central and peripheral vessels; the central vein of the gyrus has a star-like

pathway; the arterial network covers the venous network on the gyrus with few exceptions.

These characteristics might be attributed to some aspects of the present framework: the use of

medical information to reconstruct the large vessels and brain surface allows reflection of the

overall morphological features of each artery and vein; the multilevel reconstruction leads to

different types of vessels such as central or peripheral vessels with various pathways; the region

confined reconstruction forms a set of vascular units of arteries and veins within a certain

region such as the surface of a cerebral gyrus; adjusting the number of terminal ends on each

arterial and venous vascular reconstruction changes the local features of the vascular pathway

such as the angular pathway of an artery or the star-like pathway of a vein.

A quantitative agreement of terminal vessel diameters, including their variations, has thus

been confirmed. In the present model, the variations in vascular diameter are attributed to the

apparent area ratio between the terminal subregion and the total subregions belonging to the

same pathway (15). Thus, the diameter depends on the vascular generation process; some

pathways might cover many vascular subregions whereas others might not, resulting in a dis-

tribution of vascular branch diameters, followed by terminal edges. Although statistical com-

parisons between the model and actual human vasculature are hard to make because of a few

available data in the literature, the present model shows reasonable values, including variation

in the terminal edge diameters of the pial vessels, which mainly reflects the data for the pial

vessels before they penetrate the cortex. We have also confirmed that the present results agree

well in a qualitative manner with other observations of human cortical vessels [35]. The

Fig 7. Comparison of superficial cortical vessels. (A) Overview of the vascular structure in the present model for the LV1 and LV2 processes and enlarged view of the

present model around a gyral surface. (B) Distributions of the vessel diameter for the terminal edges in the present LV2 model and human pial vessel measurements [7].

Note that the measurement data are characterized by the minimum and maximum diameters of the major intracortical vessels, which can be regarded as the terminal

points of the pial vessels before penetration into the cerebral cortex.

https://doi.org/10.1371/journal.pcbi.1007943.g007
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acceptable agreement with the measurements corroborates our assumption that the vascular

pathway and geometry is constructed to supply blood flow to the local surface area as required.

Morphological structures along vascular pathways

Fig 8A visualizes an example of the arterial pathways from a single root edge with the diame-

ter-defined Strahler order number. The order 1 for terminal edges is increased up to 14 at the

root edge going upstream on the pathway, and vascular edges with similar diameters are

assigned to the same orders. The relationships between the order number and morphological

data are shown in Fig 8B and 8C for arteries and veins, respectively. With the aim of making

quantitative comparisons with the measurements, we introduce two different regression lines

with respect to the data for n 2 [1, 5] and n� 6 excepting the last order number because of too

little data for statistical analysis. It can be observed that the exponential law makes a reasonable

fit to the data, with high determination coefficients R2. Although the values for the arteries and

veins differ slightly, the overall tendencies are not remarkably different. For the arteries, the

slope b given by the present model for the first regression line (n 2 [1, 5]) and that from the

available data for the rat (intra-)cortical vessel [33] is compared in Table 2, and also shown in

Fig 8 with the form/nb. Note that we could not find available data for human vessels, and

therefore we refer to the data for rat vessels.

All the morphological data follow an exponential relationship with the diameter-defined

Strahler order, which is known as Horton’s law. Here, the slope in the low order is different

from that in the higher order. There are three reasons that can be considered for this. First, in

Fig 8. Morphological features along vascular pathways. (A) Example of the arterial pathway from a single root with a diameter-defined Strahler order, where the

color denotes the order number. (B, C) Morphological features of the diameter, length, and number of elements with respect to the element order for arteries (B) and

veins (C). The symbols denote the evaluated values and the solids denote regression lines of the form log10 q = a + bn, where two regression lines are fitted for the data

from n 2 [1, 5] and n� 6 excepting the last order number. The values of the intercept a, slope b, and determination coefficient R2 are shown in the graphs. In (B), the

fitting curve given by the measurement of rat vessels [33] is also plotted by/nb.

https://doi.org/10.1371/journal.pcbi.1007943.g008
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the original idea of the diameter-defined Strahler ordering, the order 0 is assigned to capillary

vessels and the order 1 is iteratively assigned according to a diameter distribution; however, in

this study, the order 1 is fixed to terminal edges. This gives a large variation in diameter in the

order 1, which may lead to different characteristics in the low and high orders. The second rea-

son is a characteristic of the diameter-defined Strahler ordering, which reflects the diameter

distribution in each order. We have confirmed that a similar tendency, that is, the order-

dependence slope difference, is observed in existing studies using the same ordering (e.g., [32,

36]). It can also be supposed that the original (non-diameter-defined) Strahler ordering would

offer a complete linear relationship without any kink with our data. The third reason is that

the cerebral vasculature actually has such a two-level fractal feature with respect to the pathway

order.

Our slope is in good agreement with the values reported for the rat pial artery [33], where

both slopes were obtained by fitting to the data for n 2 [1, 5]. Note that there are some devia-

tions for the element length and number. The present model connects the branching vertices

with a straight line, and does not accept tortuosity without bifurcation or modification of the

signed distance function, and thus differences in the element length and number may appear.

Nevertheless, the present study is a first attempt to investigate the vascular structure with

respect to high branching orders up to 14. Further investigations of real-world data should

reveal the fractal nature of the whole-scale cerebrovasculature, and the present outcome may

indicate this consideration.

In the present model, no obvious difference in the fractal feature was found between the

arterial and venous pathways. To the authors’ knowledge, there is no appropriate study of the

fractal nature of cerebral venous pathways, and hence, in this regard, we follow an observation

on the human pulmonary vasculature [36]. According to this observation, there is little differ-

ence in the slope b between the arterial and venous pathways, whereas the intercept a shows

clear differences; this is quite similar to the present result. Thus, we can hypothesize that the

broad vascular structure and the differences between the arteries and veins, as observed in

medical images, are not primary to determine fractal features of vascular pathways.

Vascular territories of the major cerebral arteries

The vascular territories in the brain hemispheres for the major cerebral arteries (ACA, MCA,

and PCA) are shown in Fig 9, where L and R denote the territories for the left and right sides

of the brain. Each territory roughly obeys the major cerebral artery, and the territory size varies

depending on the arterial type and left or right hemisphere. The area ratios to the PCA are

shown in Table 3, where the data for a volume ratio of the vascular territory [37] are also

summarized.

The present vascular generation starts from the terminal branches labeled as major cerebral

arteries in the image-based model. Thus, although the networks emerge as part of the branch-

ing strategy, it can be presumed that the configuration of the image-based model constrains

the distribution of the vascular territories. Table 4 shows the number of root edges in the arte-

rial generation of LV1 (i.e., terminal edges of the image-based model). Analogous to the

Table 2. The comparison of slope b in the regression line log10 q = a + bn (n 2 [1, 5]) for morphological features

(diameter d, length l and number of elements Nelem) along arterial pathways.

d l Nelem

Present (n 2 [1, 5]) 0.150 0.190 -0.461

Measurement [33] 0.146 0.241 -0.361

https://doi.org/10.1371/journal.pcbi.1007943.t002
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territory size in the present model, the number of vessels is ordered MCA>ACA>PCA. How-

ever, the ratios to the PCA do not completely correspond with the area ratios. We suppose that

other factors also constrain the vascular territories, such as the spatial distribution of large arte-

rial structures.

Although the evaluated territories are for an area in the present model, they have similar

values to the volumetric space of the human brain [37]. This supports our presumption that

the overall vascular territory follows the macroscale vascular structures in terms of both vol-

ume and area. The dependency of territory on macroscale vasculature provides a justification

for the present framework, which uses personalized vascular morphology information.

Fig 9. Vascular territories occupied by major cerebral arteries. (A) Superimposed views of all the arterial territories. (B) Respective territories with

the image-based vascular structures. The vascular territory is classified into anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior

cerebral artery (PCA) for the left(L) and right(R) hemispheres.

https://doi.org/10.1371/journal.pcbi.1007943.g009

Table 3. Relative sizes of arterial territories (ACA and MCA to PCA).

Territory Area (present) Volume [37]

LACA� 1.53 1.28

RACA� 1.88 1.59

LMCA� 2.09 2.53

RMCA� 3.27 2.99

ACA: anterior cerebral artery, MCA: middle cerebral artery, PCA: posterior cerebral artery. L(R): left(right)

hemispheres.

https://doi.org/10.1371/journal.pcbi.1007943.t003
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Even though the territories roughly follow the configurations of the image-based model,

they are indeterministic and unpredictable, because the final configuration is given through

the generation process in the modeling. Our preliminary examples have shown that the territo-

ries vary with changes to the configuration of the vascular subregion, although the magnitude

relation among arterial territories is not altered. This variability in the results for the arterial

territories is an interesting feature from the viewpoints of both modeling and physiology. It

has been argued that territory patterns are not constant, because of not only interindividual

hemodynamic circumstances, but also intraindividual and time-related variabilities in the

alteration of hemodynamic circumstances [38]. Furthermore, it has been shown that anasto-

moses between the arterial territories play an important role in collateral blood flows [39],

which may relate to alteration of the demarcation between arterial territories. A quantitative

evaluation of territorial variability is beyond the scope of this study; nevertheless, numerical

experiments will elucidate essential components of the variability of vascular territories by

allowing analysis of different configurations based on different personal data.

Effects of coarse-scale vascular subregions on vascular structures

We compared vascular structures using different numbers of coarse-scale vascular subregions,

Nu � NðLV1Þ

d ¼ 1000; 2000 and 4000.

Fig 10A shows arterial structures from a single root as an example, where the vessels are

individually visualized for the different reconstruction levels. As described above, coarse-scale

vascular structures are first generated in the LV1 reconstruction, followed by the generation of

fine-scale vascular structures in LV2. Although this trend is commonly observed in all the

models, the coarse-scale degree differs according to the parameter Nu. With a decrease in Nu,

each coarse-scale subregion area becomes larger, and thus the coarse-scale vascular model con-

sisting of large-size vessels must cover a broader region of the brain surface.

To evaluate how such a hierarchical difference appearing in the modeling influences conse-

quent vascular pathways and geometries, we investigated pathway features as shown in Fig 8.

Contrary to expectations, there was no remarkable difference in the parameters of Horton’s

law among the models using different Nu.

In addition, we evaluated the path length C. Fig 10B shows that although we could find a

slight difference in the frequency around 60� C� 120, where the condition of Nu = 1000

increases the probability of generating a larger path length (* 80 mm), there is no obvious dif-

ference in the overall distribution.

To investigate the anatomical relationship between the coarse-scale vasculature in the pres-

ent model and the actual cerebral vasculature, we evaluated the distribution of terminal edge

diameters for the LV1 model and compared them with the measurement data for the human

Table 4. The numbers of root arteries with respect to each arterial territory (ACA, MCA and PCA) and their ratios

to the PCA. Here, the total number of terminal edges is 129, as has been already listed in Table 1.

Territory Root artery in LV1

Num of edges Ratio to PCA

LACA 18 2.25

RACA 18 1.64

LMCA 33 4.13

RMCA 41 3.73

LPCA 8 –

RPCA 11 –

https://doi.org/10.1371/journal.pcbi.1007943.t004
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cortical vessels [7] (Fig 10C). Here, the measurement data is referred to using the diameters of

the central and peripheral vessels of the superficial cortical vessels as a coarse-scale vasculature,

with these being relatively larger than the diameters shown in Fig 7. With an increase in Nu the

diameters decrease, and the values approach the measurements for these parameters. This

indicates that morphological features of the vasculature can be explicitly modeled at an ana-

tomical level.

Unfortunately, we could not provide a proper parameter for Nu at this time, because there

is no physiological evidence to determine the configuration of the vascular subregions. In

other words, the model has the flexibility to provide multiple situations of blood flow simula-

tion, and the relationship between local and entire flows can be controlled by varying the

coarse-scale subregion parameter Nu.

We must emphasize that the coarse-scale subregion parameter Nu influences the computa-

tional time of the modeling (Table 5). The reconstruction is carried out using a single CPU-

core (Intel Xeon E5-2600 v3 processor). The major computational cost occurs in searching for

Fig 10. A relationship between vascular pathways and geometries and the number of coarse-scale vascular subregions. (A)

An example of arterial structures from a single root. The color differentiates the reconstruction level of the vascular generation.

(B) The relative frequency of the path length C, the summation of length for all the edges consisting of the whole pathway from

the root to terminal edges. (C) The distribution of terminal edge diameters for the LV1 model and comparison with the

measurement data for the human cortical vessels [7]. The measurement data are referred to as the minimum and maximum

diameters of central and peripheral vessels.

https://doi.org/10.1371/journal.pcbi.1007943.g010
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the closest edge when adding a new terminal vertex (note that in our coding, it is reduced by

utilizing background voxel meshes). In the LV1 process, as Nu increases, the number of vascu-

lar edges also increases, which results in a non-linear increase in the cost and time required to

find the closest edge. The vascular generation in the LV2 process is completely independent

within each LV1-subregion, and thus a computational cost occurs as a result of the multiplica-

tion of the number of LV2-subregions and the cost per LV2-subregion. Therefore, the non-

monotonic behavior between the computational time and parameter Nu appears in the total

reconstruction. If we employ larger values for the parameter Nu (using the same number of

vascular subregions in total), the computational time becomes huge. The multilevel recon-

struction has the additional advantage that it circumvents such a huge increase in total compu-

tational time. We also remark that a parallel computing technology promises to reduce the

modeling time because of the independence of the LV2 reconstruction, and this could be

enhanced with a smaller Nu.

Influence of brain shape on vascular structures

We discuss here how brain shape affects the vascular structure, and show the importance of

using real-world geometry. We create a simplified model for the shape of the hemispheres

actual by artificially eliminating major folds (cerebral sulcus) in the brain, as shown in Fig

11A. Thus, the overall shape is similar to the actual shape, while the local geometry is not. The

surface area of the simplified model is 73270 mm2, which is approximately 0.72 times smaller

than that of the actual model, due to elimination of the cerebral sulci. All the parameters are

set to be the same as in Table 1, except for the surface area of the hemispheres, resulting in dif-

ferent number-densities for the terminal ends to those used in the actual model. The same

number of total terminal edges are employed so that the graph characteristics in both the

actual and simplified models are equivalent.

The superficial vessels follow the concave surface of the simplified model (Fig 11B). The

relationships between the Euclidean distance L and path length C between the root vertex and

terminal ends for the whole-pathways are shown in Fig 11C. Here, a linear regression line is

also plotted for each model. A proportional relationship holds between C and L in both the

actual and simplified models, although the slopes are different. The relative frequencies of C
and L are shown in Fig 11D and 11E, respectively. The path length C for the actual model

tends to provide slightly larger values, whereas no remarkable difference is observed for the

Euclidean distance L between the models. Furthermore, there is no obvious difference in the

number of bifurcations on the whole pathways of the actual and simplified models (Fig 11F).

Even under these circumstances, the tortuosity C/L − 1 shows a considerable difference in the

relative frequency (Fig 11G). The data are fitted to logarithmic normal distributions. The

actual model tends to provide larger degrees of tortuosity in the vascular pathways.

The simplified model roughly duplicates the actual brain shape, with the elimination of the

cortical folding pattern. Moreover, we set the parameters to be the same, except for the surface

Table 5. Comparison of execution time for the reconstruction at different Nu.

Nu Execution time (s) �

LV1(artery/vein) LV2(artery/vein) total

1000 70/27 2931/611 3639

2000 434/71 1029/246 1780

4000 3397/427 483/258 4565

� Note that the current code is not optimized sufficiently, and thus the execution time is possibly to be reduced.

https://doi.org/10.1371/journal.pcbi.1007943.t005
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Fig 11. Comparisons of statistical features for vascular structures of whole-pathways in the models reconstructed with actual and simplified brain hemisphere

shapes. (A) Hemisphere shapes for the actual model (orange) and simplified model (white), in which the major folds (cerebral sulcus) were artificially eliminated.

(B) Reconstructed vessels in the simplified model for arteries (red) and veins (blue). (C) Relationships between the Euclidean distance L and path length C of the

whole pathways between the root vertex and terminal ends. A linear regression line is also plotted for each model. (D,E) The relative frequencies of the path length C
(D) and Euclidean distance (E) for the whole pathways. (F) Relative frequencies of the number of bifurcations on the whole pathways. (G) Relative frequencies of the

index of whole-pathway tortuosity given as C/L − 1, where curves fitted using logarithmic normal distributions are shown.

https://doi.org/10.1371/journal.pcbi.1007943.g011
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area in the modeling. Thus, the basic vascular structure of the simplified model follows that of

the actual model. We have confirmed that the pathway characteristics based on Horton’s law

do not vary between the models. Therefore, we again confirm that the pathway characteristics

are not sensitive to the brain shape.

Nevertheless, some considerable differences arise in the whole-level pathways. The path

length C becomes longer, and we could also find a similar tendency for the Euclidean distance

L around the peak (*15 mm), although it is not obvious. This is not surprising, because the

surface area differs between the models. It is easy to suppose that the larger surface area pro-

vides larger C with the same number of terminal ends.

The important thing is that the models provide different magnitudes for the non-dimen-

sional relationship between C and L. The slope of the linear regression line between C and L
shows a larger value in the actual model, and a considerable difference can be seen in the distri-

bution of the ratio defined as the tortuosity index. This indicates that the whole pathways from

upstream to downstream on the brain surface (for the arteries, or vice versa: downstream to

upstream for the veins) obey the local curvature of the cortical folds, and that the associated

blood flows undergo frictional resistance in the tortuous pathways. This is also an important

reason to employ real-world geometry in the modeling, to appropriately address the three-

dimensional spatial distribution of the cerebrovasculature for the blood flow simulations.

Model limitations and future considerations

In the present formulation, the vascular generation in a certain level only reflects the terminal

edges in the former level as the root edges. Additionally, the arterial generation does not take

into account the midstream pathway and geometry of the vein. This admits overlapping vascu-

lar structures among the different reconstruction levels and types of vessels. It has been found

that the venous network is disposed on the cerebral surface, and that the cortical arteries cross

over the veins [7, 35]. This arrangement could change the vascular pathway, and therefore

comparisons with or without a constraint considering the existing vasculature will be needed.

There are many anastomoses among the arteries and veins of the human cortical vessels

[7], and the roles of anastomoses have been discussed under the condition of arterial occlu-

sions [39, 40]. The present formulation may be able to address several types of anastomoses

based on information on vascular subregions, either on-line or post-reconstruction. For

instance, by connecting the pathways entering different vascular subregions, we can model a

set of anastomoses to produce a vasculature that broadly spreads over the brain surface.

In this study, the geometries of the brain hemispheres and macroscale vasculatures were

extracted from different subjects according to data accessibility. This might result in the loss of

information regarding personal specificity, and therefore further modeling using the same

subject-specific geometries is desirable. Moreover, the personalized geometries were extracted

from different imaging modalities (MRI and CT). Although we manually adjusted the posi-

tions, a sophisticated position adjustment algorithm, such as nonrigid multimodal registration,

is required to ensure generality and avoid systematic errors in the modeling. In addition, com-

parisons among the models with different subject-specific data are necessary to understand the

commonalities and variabilities of cerebrovascular systems.

Concluding remarks

We have provided a multiscale model of the human cerebrovasculature using a novel frame-

work based on a hybrid combining image-based geometries and a mathematical algorithm.

The resulting MRC algorithm enables the generation of tree structures representing arterial

and venous systems in a multilevel manner according to the brain shape and large vessels
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obtained from medical images. A set of vascular units corresponding to the arterial and venous

systems is then synthesized. The model was applied to the reconstruction of superficial cortical

vessels as the mesoscale vasculature linking the micro and macroscale vasculatures. We vali-

dated the model by comparing the geometrical features obtained with those of actual cortical

vessels, and some remarkable features and hypotheses were derived: (i) vascular pathways

form to ensure a reasonable supply of blood to the local surface area; (ii) the fractal features of

vascular pathways are not sensitive to the overall or local brain geometries; and (iii) whole

pathways connecting the upstream and downstream entire-scale cerebral circulation are highly

dependent on the local curvature of the cerebral sulci.

Although the current model does not involve a microvascular system, we believe the present

framework will provide a way to generate a complete set of cerebrovascular structures by com-

bining it with an existing microvascular model. Flow simulations using the full-scale cerebro-

vascular model will reveal many physical aspects of the cerebral blood flow.
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