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Disaster Planning for Cosmic Impacts:
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Harold D. Foster

What plagues and what portents, what mutiny
What raging of the sea, shaking of the earth,
Commotion in the winds, frights, changes, horrors,
Divert and crack, rend and deracinate

The unity and married calm of states.

Ulysses in Troilus and Cressida
Act 1, Scene iii
William Shakespeare (1564-1616)

27.1
Introduction

On the evening of June 18, 1178, several witnesses near Canterbury, England saw a spec-
tacular night sky event (Ingram 1999). These observers reported directly to a monk
who was keeping detailed records of events occurring in or around Christ Church
Cathedral. Fortunately, this diary, the Chronicles of Gervase has survived and provides
a detailed description of the strange events of 1178:

This year, on the Sunday before the Birth of Saint John the Baptist, after sunset when the moon had
first become visible, a marvellous phenomenon appeared to five or more men while sitting facing it.
Now there was a bright new moon, and as usual the horns protruded to the east; and lo, suddenly,
the upper horn split in two. From the middle of this division a firebrand burst forth, throwing over
a considerable distance fire, hot coals and sparks. Meanwhile the body of the moon which was lower
[than this] writhed as if troubled, and in the words of those who told this to me and who saw it with
their own eyes, the moon throbbed as a beaten snake. It then returned to its former state. This phe-
nomenon was repeated twelve times and more, the flame assuming various twisting shapes at ran-
dom then returning to normal. And after these vibrations it became semi-dark from horn to horn,
that is, throughout its length. Those men who saw this with their own eyes reported these things to
me who writes them; [they are] prepared to give their word or oath that they have added nothing
false to the above.

Hartung (1976) has argued that this was the first and only sighting, in recorded
history of a large asteroid striking the moon and contended that this collision created
the twenty-two kilometer-wide crater,known as Giordano Bruno. In contrast, Nininger
and Huss (1977) postulated that the twelfth century English eyewitnesses had seen a
meteor in the Earth’s atmosphere that happened to be in the line of sight of the moon.
Calame and Mulholland (1978), however, strongly support Hartung’s position, argu-
ing that the moon was still reverberating from the collision and ringing like a bell. If
these authors are correct, the Canterbury eyewitnesses saw an event releasing some



450

Harold D. Foster

100 000 megatons of energy, that is an event that was ten million times more powerful
than the atomic bombs that destroyed Hiroshima and Nagasaki (Ingram 1999).

In July, 1994 Comet Shoemaker-Levy 9 (S-Lg) fragmented as it entered the dense
atmosphere of Jupiter, creating impact scars the size of the Earth. There is no doubt
about the subsequent comet-planet collisions. These events were the most widely wit-
nessed in astronomical history (Morrison 1996).

On December 8, 1994, less than a day before it was expected to strike the Earth,
astronomers discovered a new asteroid, 1994 XM that had the mass of a large house
and was moving at 108 0oo kilometers per hour. Fortunately, it missed, but only by some
105000 kilometers (Wood 2000). More recently, another asteroid of similar size, 2003
SQ222, came even closer, avoiding our planet by only 88 ooo kilometers (Knocke 2003).

Clearly, not all encounters with near-Earth objects have ended so fortuitously. Un-
like the Moon, the Earth has retained only a small sample of its population of impact
structures as the result of geomorphological processes. Beyond that, since the oceans
occupy about 70 percent of the planet’s surface, many other near-Earth objects must
have struck these areas. Nevertheless, over 160 impact craters have so far been iden-
tified on Earth. A complete listing of their size and location is available at the Earth
Impact Database (2004). A further 15 or so major impacts can be recognized in the
stratigraphic record (Grieve 1997; Kaiho et al. 2001). Impact scars range in size from
the Vredefort (South Africa), Sudbury (Canada) and Chicxulub (Mexico) craters that
are respectively 300, 250 and 170 kilometers in diameter to the 1.5 m Haviland crater
in Kansas (Earth Impact Database 2004, Grieve and Kring n.d.).

Given such enormous range in scale, the consequences of impact must also have
differed dramatically. The Chicxulub crater, located under Mexico’s Yucatdn Peninsula,
is thought to have been created by an asteroid that was roughly 10 kilometers in diam-
eter. It is estimated that it hit the Earth with the energy equivalent to more than 5 bil-
lion Hiroshima atom bombs, that is 100 million megatons (Morrison 1996). Aside from
the initial concussion and heat, two major post-impact events caused massive second-
ary planetary damage. Large quantities of rock and dust blown out of the crater sub-
sequently rained down as meteors, heating the atmosphere and creating worldwide
forest and grassland fires. Not all the dust returned to Earth quickly, however, a finer
layer remained suspended in the atmosphere for months, blocking photosynthesis and
causing plummeting surface temperatures. It is likely also that the ozone layer was
seriously damaged (Birks et al. 2006). These events triggered massive global terrestrial
and marine extinctions, bringing to a close the domination of the dinosaurs and, with
it, the end of the Cretaceous Period and Mesozoic Era. It is possible that a similar col-
lision, creating what is now a buried impact crater offshore of Northwestern Australia,
may have marked the end of the Permian (Becker et al. 2004). The Bedout impact may
have triggered the Permian-Triassic extinction in the same way that the Chicxulub
impact terminated the Cretaceous era (Kerr 2004). Indeed, based on variations in sulfur
isotopes and the presence of a nickel-rich layer in end-Permian limestone, marl and
shale in southern China, Kaiho and colleagues (2001) previously had postulated such
an extinction event, caused by a meteorite of up to 60 kilometers in diameter (Ball
2001). However, controversy continues over whether, or not, the end-Permian ex-tinc-
tion event had an extraterrestrial cause (Koeberl and Farley 2004).
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While it is apparent that on rare occasions in the geological past, huge devastating
asteroids have collided with the Earth, it is probably more relevant to ask the question
“What is the minimum sized near-Earth object that has the capability of causing
serious damage?” This question has been addressed by Hills and Mader (1997) who
wrote:

The fragmentation of a small asteroid in the atmosphere greatly increases its cross section for aero-
dynamic braking, so ground impact damage (craters, earthquakes, and tsunami) from a stone aster-
oid is nearly negligible if it is less than 200 meters in diameter. A larger one impacts the ground at
nearly its velocity at the top of the atmosphere producing considerable impact damage. The protec-
tion offered by Earth’s atmosphere is insidious in that smaller, more frequent impactors such as
Tunguska only produce air blast damage and leave no long-term scars on the Earth’s surface, while
objects 2.5 times larger than it, which hit every few thousand years, cause coherent destruction over
many thousands of kilometers of coast. Smaller impactors give no qualitative warning of the enor-
mous destruction wrought when an asteroid larger than the threshold diameter of 200 meters hits
an ocean. A water wave generated by an impactor has a long range because it is two-dimensional, so
its height falls off inversely with distance from the impact. When the wave strikes a continental shelf,
its speed decreases and its height increases to produce tsunamis. The average run-up in height be-
tween a deep-water wave and its tsunami is more than an order of magnitude. Tsunamis produce
most of the damage from asteroids with diameters between 200 meters and 1 km. An impact any-
where in the Atlantic by an asteroid 400 meters in diameter would devastate the coasts on both sides
of the ocean by tsunamis over 100 meters high. An asteroid 5 km in diameter hitting in mid Atlantic
would produce tsunami that would inundate the entire upper East Coast of the United States to the
Appalachian Mountains.

Even though smaller, more frequent impactors do not create large tsunamis or long-
preserved impact craters, they are far from harmless. On June 30, 1908 a near-Earth
object, some 50 to 70 meters in diameter, exploded 8 km above the Stony Tunguska
River, in Siberia. Whether it was an asteroid or comet is still in dispute, but the result-
ing air blast devastated an area of some 2150 square kilometers. In the hot central
epicenter the forest flashed into a huge ascending column of flame that was visible for
several hundred kilometers. Fires burned for weeks destroying 1 0oo square kilometers
of forest. Ash and powdered fragments of tundra were drawn skywards by the fiery
vortex and carried around the world by the global air circulation (Gallant n.d.). The
blast felled trees outwards in a radial pattern over an area half the size of Rhode Is-
land. The mass of the object involved was probably about 100 0ooo tons and the explo-
sion’s force some 40 megatons of TNT, that is 2000 times the energy of the Hiroshima
atomic bomb. St. Petersburg seismograph station, 4000 kilometers to the west recorded
tremors associated with the blast.

Fortunately, the Tunguska region was a very sparsely inhabited. Nevertheless, the
event instantly incinerated a local herdsman, Vasily Dzhenkoul, together with his
hunting dogs,and 600 to 700 reindeer (Gallant n.d.). Despite the extraterrestrial object’s
relatively small size, as Chapman (1998) has pointed out, its associated destruction
covered an area larger than either New York City or Washington, D.C. Had such a
cosmic body exploded over a densely populated area of Europe instead of the desolate
region of Siberia, the number of human victims would have been 500 000 or more,
not to mention the ensuing ecological catastrophe and geopolitical ramifications
(Galland 2004).
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27.2
Probabilities

Every significant hazard has its own lobby groups consisting of those who have the
most to gain from various levels of mitigation. Such organizations compete to increase,
or decrease, government attention to particular threats. Clearly, before logical mitiga-
tion strategies can be implemented, a hazard hierarchy must be established. Cosmic
impacts can be realistically compared with thousands of other natural and man-made
hazards only after their frequency of occurrence and associated damage consequences
have been established. Chapman (2003) has attempted to do this and Table 27.1 draws
heavily on his assessment.

Earth is constantly being bombarded with cosmic debris. While estimates of scale
and frequency should not be treated as exact, it is known that some ten pea-sized
meteoroids and one walnut-sized impactor enter our atmosphere every hour. These
are followed by one grapefruit-sized meteoroid every 10 hours. A basketball-sized
impactor enters the Earth’s atmosphere roughly once a month, whereas a rock with a
diameter of 50 meters can be expected once a century (Gallant 2004). During the next
century there is also a 0.2 percent chance of a cosmic impact with a near-Earth object
having a diameter greater than 300 meters. In contrast, the probability of a collision
with an object over 1 kilometer in diameter, during the next one hundred years is roughly
0.02 percent (Chapman 2003).

Although they can damage satellites and spacecraft, small meteoroids burn up in
the atmosphere and so cause no problems on the Earth’s surface. From a disaster plan-
ning point of view, the most worrisome meteoroids are those that range in size from
greater than ten to hundreds of meters in diameter. As pointed out by Chapman (2003),
although impact rates and their consequences vary enormously, they have several
important characteristics in common. Whether explosion occurs in the atmosphere,
ground surface or ocean they can have devastating consequences. Despite this threat,
they are too small to be easily detected or tracked by existing telescope programs, and
their impacts are too infrequent and too unpredictable to be studied in detail. As a
consequence, their nature and effects are not well understood. This means that “scien-
tific uncertainties are greatest for just those objects whose sizes and impact frequen-
cies should be of greatest practical concern to public officials” (Chapman 2003).

In 1994, Chapman and Morrison compared the chance of being killed directly or
indirectly by the impact of an asteroid or comet, in the United States, to those of other
potential causes of death. This is a useful concept, although it must be admitted that it
lacks precision. The average American has a 11in 100 chance of dying in a motor vehicle
accident. Other hazards with high probability include homicides, fires and firearm
accidents and are likely to be the cause of death of 1 in 300, 800 and 2500 Americans
respectively. Americans have a 1 chance in 20 000 of being killed directly, or indirectly,
by the impact of an asteroid or comet. A similar probability is given for the likelihood
of death in a passenger aircraft crash. In contrast, floods and tornadoes can be ex-
pected to kill roughly 1 in 30000 and 1 in 60000 Americans respectively (Chapman
and Morrison 1994). If these figures are even of the right order of magnitude, it can be
argued that mitigating the adverse impacts of cosmic impacts should be paid at least
as much attention as reducing flood and tornado losses.
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Table 27.1. Frequency of cosmic impacts of various magnitudes

Asteroid/
comet
diameter

>10 km

>3 km

>1km

>300m

>100 m

>30m

>10m

>3m

>1m

>0.3m

Energy and
where deposited

100 million MT;
global

1.5 million MT;
global

80000 MT; major
regional destruc-
tion; some global
atmospheric effects

2000 MT; will form
local crater,and
cause regional de-
struction

80 MT:; lower at-
mosphere or sur-
face explosion af-
fecting small region

2 MT; stratosphere

100 KT; upper
atmosphere

2 kT; upper
atmosphere

100 t TNT; upper
atmosphere

2 t TNT; upper
atmosphere

Chance

this century

(world)

<lin
a million®

<lin
50000°

Potential damage and required response

Mass extinction, potential eradication of human spe-
cies; little can be done about this extraordinarily un-
likely eventuality, except the establishment of bases
on other planets

Worldwide, multi-year climate/ecological disaster; civi-
lization destroyed (a new Dark Age), most people
killed in aftermath; chances of having to deal with
such a comet impact are extremely remote

T Of no practical concern T

0.02%

0.2%

1%

40%

6 per
century

2 per year

Destruction of region or ocean rim; potential world-
wide climate shock — approaches global civilization-
destruction level; consider mitigation measures
(deflection or planning for unprecedented world ca-
tastrophe); probable collapse of global economy

Crater ~5 km across and devastation of region the size
of a small nation or unprecedented tsunami;advance
warning or no notice equally likely; internationally
coordinated disaster management required; probably
exceed current capacity to effectively respond

Low-altitude or ground burst larger than biggest-ever
thermonuclear weapon, regionally devastating, shal-
low crater ~1 km across; after-the-fact national crisis
management

Huge stratospheric explosion; shock wave topples trees,
wooden structures and ignites fires within 10 km; nu-
merous deaths likely if in populated region, especially an
urban area (Tunguska,in 1908, was several times more
energetic);advance warning unlikely,advance planning
for after-event local crisis management desirable

Extraordinary explosion in sky; broken windows, but
little damage on ground

Blinding explosion in sky; could be mistaken for
atomic bomb triggering retaliation

! Of no practical concern |

40 per year

1000 per
year

Bolide explosion approaching brilliance of the Sun for
a second or so;harmless

Dazzling, memorable bolide or "fireball" seen; harmless

? Frequency from Morrison et al. (2002); but no asteroid of this size is in an Earth-intersecting orbit;
only comets (a fraction of the cited frequency) contribute to the hazard, hence “<.” This table is based
on that of Chapman (2003).
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27.3
Goal Setting

The Earth is an intricate risk mosaic. On a daily basis, television and radio broadcast-
ers and newspapers provide a deluge of information about recent disasters. From epi-
demics to invasions, each headline is accompanied by graphic descriptions of death,
suffering and destruction. Since it is impossible to avoid all risk, societies have evolved
to permit operation within specific levels of tolerance for natural and anthropogenic
events. Typically limits to what can be successfully accommodated are defined either
by law or by common practice. Usually regulations, such as building or public health
codes, identify the maximum event that must be guarded against. As a result, the level
of socially accepted safety reflects such factors as needs, wants, wealth and past expe-
rience (Foster 1980). This process works quite well for repetitive hazards, like earth-
quakes, heavy rainfall, tornadoes or fires. It does not necessarily provide an adequate
level of safety for those hazards, such as moderate or large asteroids, that may rarely
but catastrophically impact with the Earth.

Mitigation costs money and this is generally allotted by politicians and bureaucrats
who have to select which hazards will be given the most attention and where related
mitigation effects will take place. Unfortunately, all too often, decision-makers respond
to more exotic threats only after a disaster has occurred. Even major ongoing catastro-
phes, such as the global spread of HIV-1, Hepatitis B and C viruses and the Coxsackie-
virus B that are currently killing some 7 million people annually and have infected
over 2 billion in total have been very inadequately addressed (Foster 2002, 2004).

What is needed in the near-Earth-object debate is a comprehensive plan for risk
reduction. At the very least a safety program should include six major elements: risk
mapping, greater safety by improved design, disaster simulation and prediction, ad-
equate warning systems, disaster planning and planning for reconstruction (Foster
1980). Naturally, few if any of these strategies will be adequately implemented until
those in power can be convinced of the reality of the dangers of cosmic impacts.

27.4
Risk Mapping

Most natural hazards are spatially selective so there is nothing random about the
deaths, injuries and damage they cause. While the chaos brought about by river floods,
seiches, avalanches, storm surges, earthquakes and tsunamis traditionally has been a
stimulus for belief in the supernatural, such decimation reflects differences in the
distribution of factors controlling risk rather than any plan of divine retribution. Map-
ping risk factors that are often geological, geomorphological or hydrological in na-
ture, allows spatial predictions of future destruction and so plays a key role in disas-
ter planning.

Cosmic hazards are unusual in that they are not spatially selective. They will either
miss the Earth, or they will not. In the latter case, the location of the impact will be
random. This makes traditional risk mapping of the land surface irrelevant since any
point on the planet appears to have a similar chance of being struck by a near-Earth
object. Naturally, the larger the country, the greater its chance of being impacted. This
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means, of course, that the next asteroid striking the planet is more likely to crater Canada,
the United States, Brazil, Australia and Russia than it is Luxemburg or Switzerland.

If one takes the fraction of the Earth that was badly damaged by the Tunguska impact,
about one-millionth of the surface area of the planet, and multiply it by the global
population, it can be argued that such a relatively small impact would, on average, kill
about 10 0ooo people (Harris n.d.). This figure, however, is meaningless because if such
an air blast occurred above New York, London or Tokyo, millions would probably die.
In contrast, if it took place above the Sahara Desert, there might be no casualties.
However, given that the oceans cover the majority of the Earth’s surface, and that they
are interconnected, it is quite possible that the next hit by a near-Earth object could
generate a tsunami.

Numerous tsunami risk maps already have been produced. Typically they portray the
areas that have been, or will probably be, inundated by earthquake-generated waves. They
can be used, for example, as a tool to reduce construction in low-lying zones at high risk,
plan evacuation routes and model expected damage for tsunamis of differing magnitudes.
As part of the activities of the U.S. National Tsunami Hazard Mitigation Program (2004),
for example, such maps are being produced for communities in Alaska, Washington, Oregon,
California and Hawaii. THAMS, (Tsunami Hazard Assessment and Mitigation Studies) is
a collaborative effort, begun in 1992, among three European institutes and Tohuku Uni-
versity, Japan. Much of THAMS effort has been directed towards identifying European
tsunami risk and the improvement of tsunami mapping methodology (THAMS n.d.).

Certainly, tsunamis are not rare events. The Global Tsunami DataBase Project covers
the period from 1628 BC until the present (Gusiakov 2003, 2006). It contains evidence
of almost 2250 tsunami or tsunami-like events, 1206 of which occurred in the Pacific
Ocean. A further 263 and 126 have been experienced in the Atlantic and Indian Oceans
respectively, whereas 545 have occurred in the Mediterranean Sea. Beyond this, Bryant
(2004) has provided depositional and erosional geographic evidence from the South
Coast of New South Wales, North-eastern Queensland and Northwest Australia that is
suggestive of cosmogenic mega-tsunamis.

There is roughly a 1-in-1000 chance of an asteroid, with a diameter greater than
200 meters, striking the Earth during the 21° century. If it does, the most likely point
of impact would be the Pacific Ocean. While there is still disagreement about the size
of the resulting tsunami, there can be no doubt that it would cause immense damage
around the ocean’s rim and beyond (Hills and Mader 1977; Ward and Asphaug 2000).
If the impact point of the asteroid were in the center of the Pacific Ocean, within twenty-
four hours or so, hundreds of port cities, ranging from Melbourne and Sydney through
Hong Kong, Shanghai and Tokyo to Vancouver, Seattle, Portland, San Francisco and
Valparaiso would have been seriously damaged, if not completely destroyed. Financial
losses would inevitably be in the tens if not hundreds of trillions of dollars, causing a
collapse of the world’s economy. If the Tsunami Warning System in the Pacific and its
26 member states functioned exceptionally well, life loss might be kept in the millions
but, if not, or if the impact site was close to one shore or the other, relative mortality
rate in coastal areas could exceed that of the Black Death. Obviously, computer generated
tsunami risk maps, showing potential inundation from an asteroid strike should be
prepared and used to plan evacuation routes and reduce construction on high risk
sites. They would not completely prevent either large-scale destruction or loss of life,
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but they would help in their reduction. They also may be useful tools in encouraging
politicians to take cosmic threat seriously. A lack of such tools and associated mitigation
planning were responsible for much of the life loss around the Indian Ocean, caused by
the Great Sumatra-Andaman earthquake on the 26" December 2004 (Lay et al. 2005).

27.5
Safety by Improved Design

Given the enormous kinetic energy of an impacting asteroid or comet, none of the
standard architectural and engineering techniques for increasing integrity, improving
operational compatibility, or for creating forgiving environments appear relevant to
the debate (Foster 1980). Improved building codes to strengthen roofs, for example,
may reduce hurricane damage, but are hardly relevant to discussions of a flying moun-
tain, bigger “than the world’s largest domed stadium ... crashing to Earth at a speed of
a hundred times faster than that of a jet airliner” (Chapman 2003).

Nevertheless, for many reasons including, but not limited to cosmic impacts, society
should pay far more attention to the ways in which our increasingly integrated, tech-
nological-dominated world is becoming more susceptible to catastrophic failures. The
Ozymandias Principles (Foster 1997), outlines thirty-one dimensions of resilience (Ta-
ble 27.2) and describes how their application can produce systems that are far less subject
to dramatic collapse. Those dimensions that seem most pertinent here are the need for
functional redundancy, the requirement for rapid response to stimuli, autonomous
operation, mobility and early fault detection.

There seems to be a 1-in-1000 chance that, during this century, many of the major
coastal cities of the planet will be badly damaged, if not destroyed, by what would be,
by astronomical standards, a relatively small near-Earth-object. If this is the case, then
electrical power systems, oil and gas pipelines, telecommunications grids and other
social networks should be designed so that, given such a cosmic impact, they can still
function. That is, those parts of these grids that are unlikely to suffer tsunami damage
should be capable of autonomous operation. Such design would make them far less
susceptible to other hazards, including earthquakes, hurricanes and terrorist attack.
Greater functional redundancy would also help to protect against total collapse given
serious damage to coastal areas. Beyond this, as little as possible that is irreplaceable
should be immobile, especially if it is normally located in a high risk zone. Early detec-
tion of near Earth objects speaks for itself. The greater the length of forewarning of an
impending impact, the more time society has either to prevent it, or at least to prepare
to reduce its associated damage. In summary, it is not the strongest or the most intel-
ligent species that ultimately survives, but rather the one that is most adaptable (Foster
1997). For this reason, it is suggested that the first Moon, or other extraterrestrial base
include an egg and sperm bank for humans and other animals, and a seed depository.

27.6
Disaster Simulation and Prediction

Attempting to predict and respond to potential disasters is essentially a branch of
futurology. There are at least 27 methodologies that have been used to predict the fu-
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Table 27.2. Dimensions of Resilience (after Foster 1997)

Social dimensions . Compatibility with diverse value systems

. Capacity to satisfy several goals

. Equitable distribution of benefits and costs
. Generous compensation for major losers

. Accessibility

U~ wN =

Systems characteristics . Significance of internal variables
. Impact of external variables
. Diversity of components

. Functional redundancy

A w N —

Economic dimensions . Incremental funding

. Wide range of potential financial support
. High benefit-cost ratio

. Early return on investments

. Equitable division of benefits and costs

b w N =

Environmental characteristics . Minimal adverse impacts

. Replenishable or extensive resource base

N —

Time and timing 1. Short lead time and rapid response to stimuli
2. Open-end life span
Operational characteristics . Efficient
. Reversible

. Incremental operation
Autonomous operation

A wN —

Physical dimensions . Not site specific

. Fine grained and modular
. Standardization

Mobile

. No esoteric components

. Unique skills unnecessary
Stable

. Fail-safe design

. Early fault detection

O ONOUA WN =

ture (Foster 1980). Many of them, for example, scenario building, the Delphi technique,
scale modeling and computer simulation could be applied in efforts to understand the
implications of cosmic impacts more fully. To illustrate, simulation models are impor-
tant methods of investigating the development of potential disasters through time. These
are normally of three types: scale, analog and mathematical (Chorley and Kennedy
1971). In 1970, for example, Whalin and coworkers described a scale representation of
the harbor at San Diego, California. This model was built to investigate the impact of
deep-water wave heights from about 4 to 15 meters. Such waves could be generated by
localized seismic disturbances, an explosion, a massive landslide, or the impact of a
meteorite. They concluded, as the result of experiments conducted with their scale
model, that waves of this magnitude would cause extensive inundation of the Silver
Strand, the city of Coronado, and parts of the North Island. It was thought unlikely
that any vessel would survive them in the surf zone.
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Computer simulations that permit relatively accurate predictions of potential disaster
losses are extremely valuable managements tools. Regardless of the hazard involved,
the construction of such models require four common steps. The first is an analysis of
the physical characteristics of the hazard. This allows the subsequent development of
a mathematical model capable of forecasting the severity and frequency of its impact.
The approach taken is to develop a model that can produce a spatial representation of
intensities with properly spaced contours, which are consistent with the size, shape and
configuration of observed patterns. This distribution will be controlled by the magnitude
of the event, modified by the impact of certain local variables. In the case of a tsunami
generated by an asteroid, the scale of inundation and associated damage would reflect
size and speed of the impactor, its location in the ocean, and the presence or absence
of local features such as bays, reefs, submarine ridges, canyons and the width of the
continental shelf.

To predict the damage and casualties caused by such an event, it is also necessary
to know the geographical location and characteristics of the population, and the type
and value of the infrastructure at risk. Such information is used to produce a
geographical representation of the society threatened by the hazard. In the United
States, for example, the Travelers Insurance Company collected such information for
some 85000 grid areas that completely covered the 48 contiguous states of the United
States. These data were used in computer simulations that permitted the setting of
realistic premiums for policies covering a variety of natural hazards (Friedman 1973).

Once these first two steps have been taken, the models of the disaster agent and of
the infrastructure and its inhabitants must be linked by a matrix representing the loss
relationship between property type and intensity of impact. This is usually designed
by historical research, based on known disasters and the damage caused by hazard
impacts of differing magnitude. Foster and Carey (1976), for example, produced such
a matrix for the simulations of earthquake damage in Victoria, British Columbia. Given
the completion of these three steps, it is possible to apply the mathematical represen-
tation of the hazards to the geographical distribution of inhabitants and infrastructure.
This produces a synthetic, computer simulation of the disaster experience that can be
represented in terms of economic loss, degree of damage to particular buildings, and
fatalities and injuries sustained.

Risk Management Solutions Inc. (1995 a,b and c) for example, has produced computer
simulations for major earthquakes striking Los Angeles, San Francisco Bay and the
Tokyo region that seem particularly relevant in this discussion. They concluded that if
an earthquake having the same characteristics as that occurring in 1923 were again to
strike Tokyo, it would cause between 30 000 to 60 000 deaths and 80 000 to 100 000 se-
rious injuries. Total expected economic losses would range from US$ 2100000 to
US$ 3300 000 million and undermine the entire global economy. Dore (2006) has begun
this simulation process for cosmic hazards by examining the economic impact on the
global economy of potential strikes by asteroids and comets of differing sizes.

Computer simulations of tsunami damage associated with cosmic impacts could be
used to argue for greater investment in mitigation strategies, better design of evacuation
routes and near-Earth-object and tsunami warning systems, and more realistic disaster
exercises and gaming. They would be relatively easy to produce, especially for cities
such as Los Angeles, San Franciso and Tokyo for which earthquake models already
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exist (Risk Management Solutions Inc. 1995 a,b and c). The only major obstacle seems
to be the great difference in opinion expressed by researchers about the size of the
deep ocean waves likely to be generated (Ward and Asphaug 2000; Hills and Mader
1997). Clearly, this issue should be resolved before computer simulations of damage
can be realistically attempted.

27.7
Warning Systems

During the Cold War, in the event of a nuclear attack, Canadians were advised to “duck,
hide, hope and pray” (Stirton 1971). They were expected to take these actions only
after sirens have sounded and every radio and television station in the country had
broadcast the Attack Warning. How effective this would have been following this advice
is highly debatable, but it does illustrate that, like chains, warning systems are only as
strong as their weakest links. For this reason, such networks have to be designed with
great care. Attention should be paid to both technical and social components, to their
interactions and to the networks’ roles in the social system of which they are merely
a small part.

Arthur C. Clarke, noted for his excellence as a science fiction writer, introduced the
concept of a “Spaceguard Survey” in his 1973 novel Rendezvous with Rama. This system
searched the heavens for asteroids that threatened the Earth (Chapman 1998). Since
then, progress by small under funded search groups, like that at the University of Vic-
toria, British Columbia, has been slow. In 1990, Congress requested that NASA speed up
discovery of potentially threatening near-Earth asteroids, beginning with those larger
than 1 kilometer in diameter that were considered the most dangerous (Morrison 1996).
A team of international astronomers suggested setting up a program to obtain a com-
plete census of these larger asteroids called the Spaceguard Survey. In 1992 these re-
sults were reported to Congress and NASA provided $ 1 million in additional funds so
that existing search programs could be updated. Simultaneously, the International
Astronomical Union appointed a working group to promote more cooperation in the
search for cosmic threats.

After the dramatic impacts of fragments of Comet Shoemaker-Levy 9 into Jupiter in
1994, public awareness and support for a cosmic impact warning system increased and,
as a result, the Spaceguard Survey was formally endorsed by NASA in 1998. The goal
was set of discovering, within a decade, 9o percent of near-Earth asteroids larger than
one kilometer in diameter.

Currently, Spaceguard consists of a network of professional laboratories, dominated
by two 1-meter aperture telescopes near Socorro, New Mexico (operated by MIT Lin-
coln Laboratory) and numerous amateur and professional observers who follow up
discoveries and attempt to refine knowledge of their orbits. Members of the Spaceguard
search programs include the Lowell Observatory’s LONEOS in Flagstaff, Arizona, Jet
Propulsion Laboratory’s near-Earth Asteroid Tracking [NEAT] facility, located in Maui
and on Mt. Palomar, California and Spacewatch on Arizona’s Kitt Peak (Chapman 2004).
In addition, the International Spaceguard Foundation is centerd in Italy. This consists
of a team of astronomers who collaborate by e-mail whenever one discovers a particu-
larly threatening Near-Earth-asteroid. This global network of professional and ama-
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teur observers continues to discover a new Near-Earth-asteroid every few days. As of
February 2004, almost 2 670 have been found, some 600 of which are potentially haz-
ardous. As Chapman (2004) points out, this compares with only 18 that were known in
1981. It is believed that the census is complete for near-Earth-asteroids greater than
3 kilometers in diameter. The estimated number of near-Earth-asteroids greater than
one kilometer in diameter is some (1100 + 200) (Bottke 2006). About 55 percent of this
total had been identified by early 2004. NASA also supports a Near-Earth Object Pro-
gram that was established in 1998 to help coordinate and provide a focal point
for research into asteroids and comets that approach the Earth’s orbit. It operates
from the Jet Propulsion Laboratory and provides data on the recent approaches to the
Earth, including the name of the object, its closest approach date, miss distance, es-
timated diameter and relative velocity. On June 27, 2004, when the author visited this
website (NASA 2004) 40 such objects were listed, varying in size from an estimated
900 m-2.0 km to 15 m-34 m in diameter, with miss distances reaching a minimum of
1.5LD (1 LD [lunar distance] = ~384 0oo kilometers).

While, clearly, a great deal of warning system progress has been made in the past
decade, there are still some very obvious weaknesses. When assessing any natural hazard
warning system several key questions must be asked. These, for example, include “Are
all threats from this type of hazard being adequately monitored?” Others include, “Is
it clear who will issue warnings and will they be believed?” It also is extremely important
that, where a threat is perceived, the public is sufficiently aware of its consequences to
react in a manner that reduces risk in a cost-effective way.

Clearly, Spaceguard and the Near-Earth Object Program do not yet seek to identify
and monitor all cosmic threats. NASA, however, has had a Science Definition Team
studying the benefits and costs of extending the program to search for, and monitor,
smaller asteroids (Morrison 2004a).

Even using a conservative approach to estimating the losses that would be expected from impacts
by sub-km asteroids, the annualized losses are much greater than the costs of mitigating the hazard
by a more capable survey. The sub-km hazard has two peaks, one for land impacts (near 200 m) and
one for tsunamis from ocean impacts (near 350 m). The total cost to carry out surveys that are 90%
complete for NEA [Near-Earth asteroids] larger than 140 misless than $ 400 million, with both ground-
based and space-based options possible.

As things stand, a highly dangerous near-Earth-object could remain undetected
until all chance of altering its course has passed. To rectify this deficiency, Safeguard
needs to be expanded. Morrison (2004a), for example, has suggested the necessary
addition of an LSST-type telescope with an 8 m aperture and wide field of view.

Technology is important but there is much more to a well designed warning system
than merely hardware. A warning is a recommendation based on a prediction, to take
precautionary, protective, or defensive action. The decision to warn, therefore, carries
with it a great deal of responsibility. Once any organization has issued such a public
pronouncement, especially if it is based upon the prediction of an event of great
destructive potential, that agency, and the public’s response to it will never be the same
again. This is true, whether or not the warning proves correct. For this reason, the
decision to warn cannot be taken lightly. Spaceguard’s record to date has not been good.
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In early 1998, the global media announced that a huge asteroid might strike the
Earth in 2028. The next day, astronomers claimed that new data proved that there was
no such danger of cosmic impact. This chain of events was not true, as described by
Chapman (1998):

That’s what was reported in the press, but it is not exactly what happened. We now realize that data
were already collected two-and-a-half months before March 1™ and published on the Internet,which
were sufficient to demonstrate that the asteroid called 1997 XF11 was certifiably safe: it simply could
not, realistically, impact the Earth. But months went by and the few astronomers who are funded,
part-time if at all, to study all the new asteroid discoveries never had a chance to examine the data in
detail. When one under funded astronomer suddenly noticed quirky data about 1997 XFi1 in early
March, his hasty response was to announce a possible impact. Within hours, his colleagues finally
looked at the data and concluded - as they just as well could have done months earlier - that the
object could not possibly strike Earth in 2028.

This was only one of several impact scares between 1998 and 2004 (Marsden 2006).
Clearly, the Spaceguard Survey requires a firm chain of command and a well-established
procedure for issuing warnings. After all, imagine what would be required if an official
warning of an imminent collision with even a 400 meter diameter asteroid were issued.
If such an impactor were to strike the ocean and generate an enormous tsunami, every
port and low lying region of the planet would require evacuation. Safe havens would
be required for shipping; but where? All works of art and other articles and equipment
of value would have to be moved inland to higher altitudes. Possible toxic and dangerous
substances would require removal from threatened areas. These tasks,and many others,
would stretch mankind’s capacity to adequately react up to and probably beyond its
limits. The social and financial costs would be enormous. Now consider the political
implications of an error in issuing such a warning. On the other hand, imagine refusing
to issue such a warning and having such an impactor strike the planet, destroying every
major coastal city around the Pacific.

As shown in Table 27.3, a well-designed natural hazard warning system has sixteen
main components, most of which are social not technical (Foster 1980). Beyond issues
already discussed, these include provisions for the education of user groups, procedures
for testing and revision of the warning process, and the creation of feedback loops that
ensure that reactions to warnings will be those intended. Unfortunately, many of these
dimensions are, as yet, missing from the Spaceguard Survey. This seems to be largely
because it is under-funded and understaffed. It seems enigmatic that while three space
agencies can cooperate and spend over $ 3 billion on the Cassini-Huygens mission to
Saturn and Titan (Jet Propulsion Laboratory 2004) they are unwilling to provide a
fraction of this to greatly increase the safety of the Earth.

27.8
Disaster Planning

Disasters are characterized by an urgent need for rapid decisions, accompanied by acute
shortages of the necessary trained personnel, materials and time. To help mitigate these
difficulties, disaster plans should be drawn up and tested long before they are needed.
Such plans can be prepared at every level from the international to the local long be-
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Table 27.3. Sixteen steps in the design of the “ideal” warning system (after Foster 1980)

1. Recognition by decision makers that there is the possibility of danger from a particular source.

2. Design of a system to monitor changes in the hazard and issue warnings if danger increases be-
yond certain thresholds.

3. Installation and operation of the system.

4. Education of the user group, often the general public so that should a warning be issued, re-
sponses will be appropriate. The infrastructure may also have to be modified to permit effective
operation.

5. Testing the system, when there is little danger, to ensure that it is technically sound and that
those involved in issuing and receiving its warnings act as required.

6. Modifying the system if test results indicate that changes are necessary.

7. Detection and measurement of changes in the hazard that could result in increases in death, in-
jury and/or property damage.

8. Collation and evaluation of incoming information.
9. Decisions as to who should be warned, about what damage, and in what way.

10. Transmission of a warning message, or messages, to those whom it has been decided to warn.

. Interpretation of the warning messages and action by the recipients.

12. Feedback of information about the actions of message recipients to issuers of the warning
messages.

13. Transmission of further warning messages, corrected in terms of the user groups responses
to the first and subsequent messages and noting any secondary threats.

14. Transmission of an all-clear when danger has passed.

15. Hindsight review of the operation of the warning system during potential disaster situation and
the implementation of any necessary improvements.

16. Testing and operation of the revised system.

fore any cosmic impact disaster (Foster 1980). All should seek to identify the problems
that are likely to occur and the decisions that probably will have to be made as a result.
Good disaster plans are essential if decision making is to be anywhere near optimum
under crisis conditions. These plans typically consider 25 significant aspects of disaster.

One key aspect of planning for disaster is identifying a chain of command. Whom
for example will be in charge of global response if the Spaceguard Survey issues a
warning of an imminent cosmic impact? What will be the responsibilities of major
international and national agencies? How will these responses be funded? There are
numerous large and small scale issues that should be addressed and settled now. To
wait until a significant threat has been identified is to wait too long.

Two of the most important planning issues are briefly examined here. Firstly, the
possibility of deflecting or destroying smaller comets or asteroids, so that an Earth
impact is prevented, needs detailed consideration. A wide range of approaches to
impact prevention has been put forward in the literature. Mitigation subsystems might
involve rocket propulsion, rocket-delivered nuclear warheads, kinetic energy systems
using projectiles, directed energy from lasers, mass drivers, solar sails and biological,
chemical or mechanical asteroid and/or comet “eaters”. Suggestions have been made
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also of super magnetic field generators and futuristic force fields, tractor beams and
gravity manipulation (Morrison 1996, 2004a; Simon 2002). Considerable progress has
been made very recently in this area. The NASA Institute for Advanced Concepts has
just announced five Phase II awards for the further development of revolutionary
advanced concepts to help protect the Earth from cosmic collision (NIAC 2004). Beyond
this, the European Space Agency has given priority to “Don Quijoté”, selected from
six potential asteroid protection missions. This will involve an asteroid 500 meters in
diameter and two spacecraft, Sancho and Hidalgo. Sancho will arrive first and orbit
the asteroid for several months, deploying penetrating probes to form a seismic
network. When this is ready, and adequate data has been collected, Hidalgo will arrive,
crashing into the asteroid at about 10 kilometers per second. Sancho would then study
the changes in the asteroid’s orbit, rotation and structure caused by Hidalgo’s impact.
This information will give insights into what is needed to modify the orbit of any
similar asteroid that may threaten Earth (Morrison 2004b). The United States is
currently installing a missile defense system (Missile Defense Agency 2005). With
greater international cooperation, this might be expanded to provide the capacity to
protect the planet against errant near-Earth-objects, including medium-sized asteroids.

Disaster plans should be tested long before they are needed in earnest. After an expert
panel has evaluated such potential technologies for impact mitigation, two or three of the
most promising should be tested on small, non-threatening asteroids. The sooner the planet
has a functional defense system, the better. The technology required to provide one already
exists. What is lacking is the political will and the financing required.

A second key disaster planning issue that should be addressed now is “How should
we respond to the threat of very large tsunamis generated if there is an oceanic cosmic
impact?” Obviously, given the great differences of opinion concerning the magnitude
of such potential tsunamis (Hills and Mader 1997; Ward and Asphaug 2000), modeling
has to be improved. Once an expert consensus has been reached, the major issue of
adequate tsunami warnings and associated evacuations must be addressed. While there
is an effective tsunami warning network for the Pacific, nothing comparable exists
elsewhere. How then could warnings and evacuation be effectively organized for the
populations of low lying coastal areas around the Atlantic, Arctic and Indian oceans?
How could the evacuation of the total populations of low altitude countries like the
Netherlands and Bangladesh be organized? What about that around the Mediterranean
or the Great Lakes? What about islands without central mountain cores, such as the
Marshall and Tokelau Islands? The issues are enormous and the logistics far beyond
anything humanity has ever attempted. It seems much more likely that, rather than
face up to these problems, many decision-makers would prepare to issue warnings of
impending impact together with the advice to ‘duck, hide, hope and pray’ (cf. Stirton
1971). Table 27.4, of course, provides an insight into a little of what is really needed.

27.9
Reconstruction

Given their roles within economic regions, speed of population re-growth and the
psychological impact of abandonment, few cities fail to recover from major disasters
(Kates and Pijawka 1977). In the twentieth century, for example, only two were perma-



464

Harold D. Foster

Table 27.4. Typical contents of a disaster plan (after Foster 1980)

O © N oA W N =

14.
15.
16.

17

20.

21.

22.

Policy statement on value of disaster planning by chief executive officer

Legislative authority for the design of the disaster plan and for the steps it contains

Aims of the plan and conditions under which it comes into force

Assessment of community disaster probabilities

Disaster scenarios

Relationships with other levels of government, particularly emergency-related agencies

Authority organization chart

List of names, addresses, and telephone numbers of all relevant agencies, their heads and deputies

Operation of warning systems:

. Pre-impact preparations:

. Emergency evacuation procedures:

. Shelters:

. Disaster control center and subcenters:

Communications
Public information
Search and rescue:

. Community order
18.

Medical facilities and morgues:

. Restoration of community services:

Protection against continuing threat:

Continuing assessment of total situation:

types of warnings
distribution
obligations on receiving warnings

relationships between type of disaster agent and
necessary preparations

responsibilities of different agencies

location of greatest risk sites

conditions under which evacuation is authorized
routes to be followed and destinations
accommodating the special needs of the elderly,ill,
or institutionalized

locations
facilities
location(s)
equipment
operation
staffing

responsibilities
equipment
areas most likely to require servicing

location

transportation

capacity

facilities

order of priorities
responsibilities

the search for secondary threats
actions to be taken if discovered
responsibilities

distribution

Reciprocal agreements and links with other municipalities

23. Testing the plan:

24.
25.

Revision and updating of the plan
Plan distribution

disaster simulations
simulation evaluations
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nently destroyed by natural hazards, St. Pierre, Martinique and Yungay, Peru. The former
was completely demolished by a nuée ardente, a glowing avalanche of gas and debris ejected
from Mount Pelé and the latter buried beneath sediments deposited by an earthquake-
triggered avalanche (Griggs and Gilchrist 1983; Office of Emergency Preparedness 1972).
Nevertheless, civilizations have been destroyed by natural hazards. To illustrate, the tsu-
nami that swept the lowlands of the Mediterranean Sea (circa 1450 to 1480 BC) generated
by the eruption of the volcano of Santorini, likely decimated the Minoans (Foster 1980).

Whether port cities, destroyed by tsunamis generated by a near-Earth-object, would
be quickly rebuilt is uncertain and dependent upon the size and location of the impactor
and scale of its associated destruction. Nevertheless, it is well known that the degree of
uncertainty occurring after any major disaster plays a significant role in influencing
the speed of rebuilding (Kates and Pijawka 1977). To avoid unnecessary delays, it is
important to pre-plan for recovery. Unfortunately, the widespread unwillingness to face
up to the possibility of major disasters increases the suffering associated with such
adverse events when they occur. This was extremely obvious when the tsunami,
generated by the Great Sumatra-Andaman earthquake of December 26, 2004 swept the
Indian Ocean (Lay et al. 2005). It also reduces society’s chances of benefiting from the
opportunities for creative reconstruction that they offer.

“Think tanks” should be set up to review what should be done to speed human
recovery from a significant cosmic impact. At the very least, the horrifying economic
and social scenarios that they would generate might encourage politicians to take the
need for a global extraterrestrial defense system more seriously.

27.10
Summary and Conclusions

Archaeological records show that civilizations may fail to recover from major catastro-
phes. Societies operate within specific levels of tolerance for repetitive natural hazards
and anthropogenic modification. Catastrophic events, like cosmic impacts, lie outside
the realm of human experience and so are difficult to plan for and respond to.

All near-Earth objects with the ability to cause serious damage and potential haz-
ards that might result from a large impact event (e.g., tsunamis, earthquakes, volcan-
ism, secondary impacts, wildfires, climate change, orbital and axial changes, economic
collapse, disease, famine and war) must be identified. The most worrisome objects,
ranging from 10s to 100s of meters in diameter, are not easily detected by earthbound
platforms. There is a 1 in 1000 chance of an object greater than 200 m impacting this
century, with the most likely target being an ocean. The resulting tsunamis would
devastate coastal zones and hundreds of port cities, leading to an unprecedented
mortality rate and global economic collapse. Current architectural and engineering
designs will be unable to cope with the kinetic energy released by a cosmic impact.

During most disasters, an urgent need for rapid decisions is confounded by the
lack of trained personnel, materials and time. Mitigation for on-going catastrophes
(e.g.,famines, droughts) receive the most attention from decision makers, the response
to exotic threats occurs only after the disaster has occurred. However, mitigating for
cosmic impacts should be seriously considered given that the chances of being killed
by a meteorite impact are similar to the chances of being killed in an airplane disaster
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(i.e., 1in 20 000). Unfortunately, current Space Guard programs have limited success
because of under funding and technological limitations, but also socio-economic
factors and human error.

Well-designed hazard warning systems should include provisions for education,
testing and revising the warning process, and feedback loops to ensure that responses
to warnings are valid. It is essential to establish a chain of command for issuing warn-
ings of impact, delineating responsibilities and funding of various agencies. Pre-plan-
ning is essential to reduce societal losses and increase the chances of benefiting from
reconstruction. Disaster mitigation options include deflecting or destroying smaller
objects to prevent significant impact, enhancing existing missile defense systems, and
responding to the threat of very large tsunamis following an oceanic impact. Compu-
ter-generated risk maps need to accurately predict the potential inundation from tsu-
namis to calculate disaster losses, plan evacuation routes and mitigate loss of life and
destruction.

Reconstruction is dependent on the size and location of the impactor and scale of
destruction. Infrastructure and other social networks should be designed to function
autonomously. Functional redundancy and adaptability is also recommended to pro-
tect against societal collapse. Extraterrestrial genetic ark repositories should also be
established to ensure species continuity following a global catastrophic event.

Although the last decade has seen some progress in preparing for the possibility of
cosmic collision, we continue to be very ill-prepared for such an event. What is needed
is the political will to cooperate and dedicate adequate financial and human resources
to mitigate the threat posed by cosmic impacts, and studies of how the human race can
recover from such hazards.
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