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Abstract

The hydrophobic molecules of the metabolome – also named the

lipidome – constitute a major part of the entire metabolome. Novel

technologies show the existence of a staggering number of individual

lipid species, the biological functions of which are, with the exception of

only a few lipid species, unknown. Much can be learned from pathogens

that have evolved to take advantage of the complexity of the lipidome

to escape the immune system of the host organism and to allow their

survival and replication. Different types of pathogens target different

lipids as shown in interaction maps, allowing visualization of differences

between different types of pathogens. Bacterial and viral pathogens

target predominantly structural and signaling lipids to alter the cellu-

lar phenotype of the host cell. Fungal and parasitic pathogens have

complex lipidomes themselves and target predominantly the release of

polyunsaturated fatty acids from the host cell lipidome, resulting in the

generation of eicosanoids by either the host cell or the pathogen. Thus,

whereas viruses and bacteria induce predominantly alterations in lipid

metabolites at the host cell level, eukaryotic pathogens focus on inter-

ference with lipid metabolites affecting systemic inflammatory reactions

that are part of the immune system. A better understanding of the inter-

play between host–pathogen interactions will not only help elucidate

the fundamental role of lipid species in cellular physiology, but will also

aid in the generation of novel therapeutic drugs.
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The metabolome encompasses all small molecules that are
present in a biological system (Figure 1). Unlike genes and
proteins, the functions of which are subject to epigenetic
regulation and post-translational modifications, respec-
tively, metabolites serve as direct signatures of biochemical
activity and tightly correlate with phenotype (1). These
properties make the cellular metabolome an attractive
target for pathogens in order to introduce phenotypic
perturbations that allow their survival and replication.

With recent developments in instrumentation (mass spec-
troscopy), bioinformatics and software, our knowledge
on the identification and quantification of metabolites, as
well as on the metabolic pathways and metabolite fluxes
is rapidly expanding. Metabolites are loosely defined as
just about any small molecule with a molecular weight
−2000 Da that is metabolized by an organism (2). The
METLIN metabolite database (http://metlin.scripps.edu/)
is one of the most comprehensive freely accessible
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Figure 1: Contribution of lipid metabolic pathways to the KEGG map of metabolism. The metabolic
map was constructed based on the KEGG (Kyoto Encyclopedia of Genes and Genomes) database (http://www.kegg.
jp/) (245). The graphical presentation is based on the Genome-Linked Application for Metabolic Maps (glamm.lbl.gov) (246)
with a minor modification that allows visualization of elongation and desaturation of palmitic- to stearic- and oleic acid, respectively.
Lipid classification into eight main categories (A–H) is according to the 2005 convention on lipid nomenclature (19): A, fatty acids; B,
glycerolipids; C, glycerophospholipids; D, sphingolipids; E, sterols; F, prenol lipids; G, saccharolipids. Polyketides (lipid category H) are
not commonly found in mammalian hosts and are not depicted. Saccharolipids (lipid category G) are shown as a dotted line and not
discussed in this review as they are not constituents of the mammalian lipidome. In this graphical pathway representation, cholesterol
esters, lyso-phospholipids and bis(monoacylglycero)phosphate (BMP) species are lacking.

databases and currently contains more than 240 000
(possible) entries and approximately 60 000 differ-
ent structures (3,4). The human metabolome database
(http://www.hmdb.ca/) contains over 40 000 metabolite
entries consisting of detected and expected metabolites (2).
The metabolites in both databases include water-soluble
and water-insoluble or lipid metabolites. The analysis of
lipid metabolites by mass spectrometry poses additional
requirements and constraints to the experiments due to
their inherent hydrophobic nature. Lipids must first be
extracted using a procedure that involves phase separation
into a hydrophobic and a hydrophilic phase. In addition,
mass spectrometry analyses require that the hydrophobic
lipids must be charged prior to MS analysis. This only

became routine with the advent of electrospray-mass
spectrometry in the late 1980s (5,6). Hence, metabolomic
analyses often refer to the water-soluble metabolome
whereas lipidomic analyses refer (by definition) to
water-insoluble analyses. Despite these additional exper-
imental requirements and constraints, the lipidomic
field is now rapidly expanding, providing a glimpse of
its contribution to the metabolome (6–15). The LIPID
MAPS Structure Database (http://www.lipidmaps.org/),
the largest public lipid-only database, contains over
37 500 unique structures of biologically relevant lipids
(16,17). Current estimates suggest that the entire lipidome
may encompass approximately 180 000 different lipid
species (18). Thus, of all the molecules contained in
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the metabolome, the lipids constitute the largest subset,
including tens of thousands of distinct lipid molecular
species existing in cells and tissues (12).

Hydrophobic Metabolome

Each dot of the KEGG-based metabolic map (Figure 1)
represents a single metabolite with its own unique chem-
ical structure that is connected by line(s) indicating the
metabolic pathway(s) each metabolite is involved in. The
metabolic pathways involving lipid metabolites are out-
lined on the metabolic map. Recently, lipids have been
divided into eight categories containing distinct classes and
subclasses based on their chemical structure (19,20) and
the presence of these categories within the metabolome
is indicated by individual panels. In this overview of
the metabolome, the contribution of lipids may appear
under-represented relative to their abundance with the
metabolome. This is mainly due to the fact that in this path-
way representation, generic lipid classes are shown with-
out sufficient fatty acid (side) chain information (relevant
for all panels) and without carbohydrate head group vari-
ations (relevant for panel G). With these variations in fatty
acid and glycolipid head group composition, an estimated
number of 180 000 lipids has been predicted to exist (18)
and this number does not even include the vast number of
possible (per)oxidized lipids, that can be generated spon-
taneously during radical formation (e.g. stress) or by enzy-
matic reactions (21).

The enormous structural diversity of lipids requires com-
plex regulation at multiple spatial and temporal scales and
mainly due to innovations in lipidomic techniques we are
only beginning to understand the biological role of lipids
in health and disease. We are long past the dogma that
lipids have an essential role as component of the lipid
bilayer of biomembranes and in energy storage utilizing
cellular lipid droplets and plasma lipoproteins. Research
over the last decades has identified an additional role of
lipids in cellular signaling, a structural role in membrane
microdomain organization and dynamics, and a regulatory
role in membrane trafficking. The importance of lipids as
part of the metabolome is also evident from the numerous
lipid-related pathologies including lipid storage diseases

such as fatty liver, obesity, and atherosclerosis, neurodegen-
erative diseases such as Alzheimer’s disease, cancer, inflam-
mation, and infectious diseases.

Pathogens and Lipids

Pathogenic micro-organisms have evolved many strategies
to circumvent host defenses and exploit the host cellular
machinery. Specific virulence factors disable or subvert
vesicular trafficking pathways to and from the host cell
surface, which promotes pathogen entry, replication or
escape (22–25). The direct link of the metabolome with the
cellular phenotype as well as the abundance of hydropho-
bic metabolites within the metabolome (hydrophobic
metabolome or lipidome) makes lipids an attractive target
for pathogens to modulate host cell processes (26–30).
In many instances, this results in altered intracellular
trafficking of pathogens after entry into host cells, resulting
in escape from the default pathway toward lysosomes (for
reviews, see e.g. 22, 31–33).

Microbial pathogens can be classified into viral, bacterial,
fungal and parasitic microbes. Obviously, these different
types of pathogens have very different types of interactions
with host cells and this is reflected in their usage of host
cell lipids. An overview of the targeting of host cell lipids by
pathogens is shown in Figure 2. Of note, we have excluded
references to lipid rafts (discussed elsewhere e.g. 34–36)
as in most instances it is not clear whether this is due
to cholesterol, sphingolipids or indirect effects because of
destabilization of lipid raft structures. Comparison of host
cell lipid usage by viral (Figure 2A), bacterial (Figure 2B),
fungal (Figure 2C) and parasitic (Figure 2D) pathogens
shows that they each have a remarkable distinct and dif-
ferent preference for individual lipid categories in order to
modulate host cell responses.

Viruses have no intrinsic lipid metabolism and by defini-
tion affect host cell lipids to modulate virus replication,
host cell responses and/or to acquire lipids for their viral
envelope. There is a strong focus on signaling lipids such as
phosphoinositides (37–45) and phosphatidylserine (PS)
(46–50) (Figure 2A). In addition, many viruses target
cholesterol (51–58), a structural membrane lipid specific
for host cells that allows the virus to modulate the phys-
ical properties of intracellular membranes. During the
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Figure 2: The involvement of lipids in host–pathogen interactions. Heat maps were generated for different types of
pathogens (panels A–D) based on the weighted involvements of lipids in host–pathogen interactions (the list of pathogens and
their lipid targets and weight factor is described in Table S1, Supporting Information). Heat maps show the frequency of involvements
of specific host cell lipid (sub)classes (e.g. phosphatidylserine) and/or species (e.g. cholesterol) for viruses (A), bacteria (B), fungi (C), and
parasites (D). Increased coloring indicates increased frequency. The heat maps were constructed with an algorithm using the R-package
for spatial statistics (spatstat) (247).
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genome replication stage, there are marked differences in
the virus–host lipidome interaction even between viruses
from the same family (40,59,60), whereas unrelated viruses
might use similar strategies to usurp the host lipidome [e.g.
the requirement for phosphatidylinositol-4-phosphate
(PI(4)P) and cholesterol appears to be widespread]
(37,40,45,60–63). Finally, viral activation of fatty acid
synthase (FAS) for the production of new membrane
compounds is frequently observed (59,64–70).

For the other types of pathogens, bacteria, parasites and
fungi, the situation is more complex. Prokaryotic or
eukaryotic micro-organisms not only target host cells to
modulate host cell responses directly, but they can also
produce lipids themselves, or acquire specific lipids from
the host and/or convert these lipids, necessary for microbe
growth or to influence host cell responses (26). This is
highly relevant – but beyond the scope of this review – as
it not only may provide important insights into the devel-
opment of new therapeutic strategies, but also because
the outcome of these lipid interactions may either lead to
commensalism or to host damage/disease (26).

The interaction map of bacteria with host cell lipids
(Figure 2B) shows that bacteria preferentially target
phosphoinositides (71–78), cholesterol (79–83), sphin-
gomyelin (SM) (79,84–86) and neutral lipids (87–90).
Most bacteria are not capable of synthesizing these spe-
cific lipid classes. For example, the major phospholipids
in Escherichia coli are phosphatidylethanolamine (PE,
70%), phosphatidylglycerol (20%) and cardiolipin (5%)
(91). It is tempting to speculate that by targeting these
host-cell specific lipids, bacteria are not in danger of
affecting their own metabolism. Indeed, bacteria hardly
target host cell PS, a minor lipid in bacteria, but needed
for the synthesis of PE, whereas viruses do (compare
Figure 2A and B).

The interaction map of fungi with host cell lipids is
very different from that of viruses and bacteria and
these pathogens appear to focus on structural phospho-
lipids (PC and PE) (92,93), sphingolipids (94–96) and
eicosanoids (97–99) (Figure 2C). The targeting of neutral
lipids is possibly related to the generation of precursors
for phospholipid biosynthesis or eicosanoids to induce
inflammatory responses.

Parasites are in many aspects not comparable to other
pathogens. In general, in accordance with their para-
sitic way of life, parasites have discarded pathways of
de novo lipid synthesis but have selectively retained
several biosynthetic pathways that modify host lipids
(100,101). Although lipids such as fatty acids, phos-
pholipids and sterols are obtained from their host or
are synthesized from building blocks obtained from
the host, less abundant lipids that are more difficult to
acquire (e.g. specific unsaturated fatty acids, eicosanoids,
ecdysteroids and quinones) are synthesized by the para-
site, often by modification of more abundant substrates
(102–104). Comparison of the four different panels
shows that viruses, bacteria and parasites target glycol-
ipids whereas fungi do not. Many viruses and bacteria
use glyco(sphingo)lipids as receptors, but whether these
lipids are indeed crucial for infection has been addressed
in only a few cases. For more details about carbohy-
drates as virus (co)receptors, we refer to other reviews
(85,105,106).

Viruses

Viruses constitute a highly diverse group of pathogens
that are mainly classified by phenotypic characteristics,
such as host organisms, the diseases they cause, their
structure (e.g. presence or absence of a lipid bilayer,
the ‘envelope’), and the nucleic acid type of the viral
genome, which is either single- or double-stranded DNA
or RNA. Single-stranded genomes are then designated as
positive-strand (+RNA), i.e. containing directly translat-
able information like mRNA, or negative-strand (−RNA).
Viruses are obligate intracellular pathogens and require
host cells in order to replicate. A viral replication cycle
basically comprises the following steps: receptor binding
(attachment to the host cell), cell entry (often via endo-
cytosis), uncoating (release of the viral genome into the
cell), genome replication, virion assembly (packaging of
new genomes into virus particles), and virus release (by
budding or cell lysis). Viruses can interact with the host
lipidome in two ways, namely by exploiting pre-existing
molecules or by actively altering host lipid metabolism. The
role of lipids in (i) vital entry, (ii) genome replication, (iii)
budding and (iv) innate immune response will be briefly
addressed.
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Viral entry
During entry, viruses usually specifically exploit one of
the cellular endocytic routes and the lipids function-
ing in these pathways, but do not actively modulate the
lipidome yet. The pathways and lipids exploited by viruses
span the entire cellular repertoire. Despite this large
degree of variation, cholesterol (category E) appears to
be important for the entry of many different viruses (see
e.g. 22, 107). The most straightforward explanation is the
fundamental importance of cholesterol for the organi-
zation of membranes and the functioning of endocytic
pathways.

Viral genome replication
To support the replication of their genome, viruses can
actively modulate the host lipidome. Most DNA viruses
(e.g. herpes viruses) replicate their genomes inside the
nucleus, but some [e.g. vaccinia virus (VACV)] assemble
structures in the cytoplasm to complete their replica-
tion cycles (reviewed in 108, 109). All +RNA viruses
[e.g. poliovirus (PV), hepatitis C virus (HCV), dengue
virus (DENV), West-Nile virus (WNV) and SARS- and
MERS-coronavirus] reorganize host cell membranes into
membranous structures in the cytoplasm that serve as
a scaffold for viral RNA synthesis/replication (referred
to as ‘viral factories’, ‘membranous web’ or ‘replication
organelles’). While all +RNA viruses generate replication
organelles, the morphology of these organelles varies
greatly among virus families. Each virus family hijacks
membranes from a different cellular organelle (e.g. Golgi,
ER, mitochondria, endosomes or lysosomes), exploits
a distinct set of host factors, and modulates specific
lipid metabolic pathways to build replication organelles
with a unique protein and lipid composition (reviewed
in 110, 111).

Fatty acids (FAs, category A) have been implicated in the
replication of many different viruses. VACV was reported
to rely on the synthesis and mitochondrial import of FAs
and on β-oxidation for ATP production (69). Many +RNA
viruses use FAs to synthesize lipids to build their replication
organelles. PV was reported to enhance uptake and pre-
vent routing of FAs to lipid droplets (64), whereas DENV
recruited FAS to its replication organelles and increased
the activity of the enzyme to ensure high amounts of
local FA synthesis (66). Also other viruses, e.g. WNV,

require FAS activity, as their replication is inhibited by FAS
inhibitors (59). Furthermore, the cellular energy regula-
tor AMPK, which is an inhibitor of FAS, restricted infec-
tion of a number of unrelated viruses including the -RNA
virus Rift Valley Fever Virus (68) and HCV. At least HCV
actively counteracts this restrictive mechanism by inacti-
vating AMPK (112). Finally, not only the amount of FAs
may be important, but also chain length and saturation.
PV specifically enhances the uptake of long chain FAs (64)
and the replication of HCV and the integrity of its mem-
branous web depend on the enzyme stearoyl-CoA desat-
urase 1, which converts the saturated FA stearate into the
mono-unsaturated FA oleate (113).

Recently, PI(4)P (category C) and the PI(4)P-synthesizing
enzymes PI4KIIIα and PI4KIIIβ have been shown to
play a pivotal role in +RNA virus replication. HCV uti-
lizes predominantly PI4KIIIα to generate large pools
of PI(4)P in its membranous web that are essential for
viral RNA replication (38,39,41–43,114,115). PI4KIIIα
activity was shown to be important for the integrity of
the membranous web and the PI(4)P levels affect the
phosphorylation status of one of the viral proteins (NS5A),
thereby influencing the process of viral RNA replication
(40,44). Enteroviruses (e.g. PV, Coxsackievirus B3 and
most probably also the other enteroviruses) on the other
hand rely on PI4KIIIβ for a PI(4)P-rich environment
in their replication organelles (37,116,117). It has been
suggested that the PI(4)P-rich environment attracts the
viral polymerase to the replication organelles to replicate
the viral RNA (37). A new role of PI(4)P in infection was
recently uncovered for both HCV and enteroviruses, being
the recruitment of oxysterol-binding protein (OSBP) to the
replication organelles (60,63) (see below). Also the replica-
tion organelles of the -RNA virus Junin virus were reported
to contain PI(4)P, but the significance of this finding is
still unclear (118). Recent research into the importance
of phospholipids for virus replication has focussed on
PI(4)P, but there is emerging evidence that also other
phospholipids play a role. In DENV-infected mosquito
cells, PE (primarily lysoPE16:0) and PA are upregulated,
but the role of these lipids in replication remains to be
established (65). Most strikingly, influenza A virus (IAV),
a -RNA virus that replicates in the nucleus, upregulates
the synthesis of ether-phosphatidylcholine (ether-PC)
species in peroxisomes, which appears to be important
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for replication, although the role of the ether-PCs is
unknown (119).

For virus genome replication, the importance of sph-
ingolipids (category D) has only been covered by a
few studies. It was noted that two Ceramide species
(Cer18:1/16:0 and Cer18:0/16:0) are specifically enriched
on replication organelles in DENV-infected mosquito
cells, but the role of these lipids remains to be shown (65).
During HCV infection, the SM synthases SMS1 and SMS2
are upregulated and inhibition of SMS activity impairs
replication. A number of specific SM and Cer species, in
particular SM18:1/16:0 and SM18:1/24:0, are enriched
on the membranous web, where they interact with and
increase the activity of NS5B, the viral RNA-dependent
RNA-polymerase (120).

As mentioned above, HCV and enteroviruses were
reported to use PI(4)P to recruit OSBP to replication
organelles. OSBP is an important regulator of cellular
lipid homeostasis that shuttles cholesterol from ER to
Golgi (121). It is suggested that in infected cells OSBP is
important for the accumulation of cholesterol (category
E) on the replication organelles (60,63). To accommodate
the requirements for cholesterol, HCV upregulates the
synthesis of cholesterol (and FAs) via SREBP activation
(122), whereas enteroviruses, which shut down host pro-
tein synthesis, acquire cholesterol by increasing uptake of
the lipid and possibly by rerouting cholesterol from lipid
droplets (61,62). The roles of cholesterol in virus replica-
tion have only begun to be unravelled. For HCV, OSBP
and cholesterol appear to be important for the integrity of
the membranous web (60). Enteroviruses were proposed
to require cholesterol for optimal proteolytic processing of
viral proteins by a mechanism that has yet to be elucidated
(61), although a role in replication organelle organiza-
tion similar to HCV remains possible. Other viruses also
require cholesterol or modulate its synthesis for efficient
replication (e.g. DENV, Norwalk virus; 51,58), although the
role of cholesterol in the replication of these viruses is still
under investigation. Interestingly, hepatitis B and C viruses,
which are in distinct virus families, accumulate the choles-
terol biosynthetic intermediates 7-dehydrocholesterol
and desmosterol respectively (123,124). The importance
of these lipids for infection is not known, but their

function may extend beyond that of mere biosynthetic
intermediates.

Viral budding
During budding, many – but not all – enveloped viruses
acquire specific lipids, leading to an envelope with a
lipid composition different from the donor membrane
(reviewed in e.g. 125). These lipids are needed for efficient
budding and release, optimal stability of the viral particle
and entry. Viruses may obtain envelopes with a specific
lipid composition by modulating host lipid metabolism
and/or by budding from membrane microdomains (rafts)
with a specific lipid composition. For example, the human
immunodeficiency virus (HIV) obtains a raft-like enve-
lope rich in sphingolipids (category D) presumably by
budding from lipid rafts modulated by the viral protein
Nef (126,127). Many other viruses (e.g. IAV and WNV)
also have envelopes enriched in SM and ceramide species
(119,128). Vaccinia virus has a PS-rich envelope (category
C), which makes it resemble apoptotic bodies and provides
an entry route via PS-dependent macropinocytosis (46).
PS-dependent entry may be a widespread mechanism used
by many different viruses, such as DENV virus and the
−RNA ebola virus (EBOV) (reviewed in 107).

Innate antiviral response
Finally, cells can alter their lipidome to mediate antiviral
defense mechanisms. When cells sense a viral infection,
they produce and secrete interferons as danger signals.
In response to interferons, a collection of interferon-
stimulated genes (ISGs) is upregulated to combat the viral
infection at several levels. Cholesterol-25-hydroxylase,
which synthesizes the cholesterol derivative 25-
hydroxycholesterol (25HC) (category E), was found to
be such an ISG (129) and 25HC levels were highly elevated
upon infection (130). 25HC was suggested to alter the
properties of host and virus membranes (e.g. IAV, HIV and
EBOV) and reduce their permissiveness for fusion (129).
Additionally, 25HC inhibits the synthesis of a wide variety
of lipids and thus may restrict viruses that require lipid
synthesis. Another ISG, IFITM3, was reported to disrupt
OSBP function and alter cellular cholesterol homeostasis,
which inhibited infection of at least two different enveloped
viruses (131). However, viruses in turn have developed
mechanisms to neutralize the innate defense mechanism.
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For example, WNV was reported to redistribute cellular
cholesterol not only to enhance replication, but also to
disrupt the cholesterol- and raft-dependent functioning of
interferon signaling thereby reducing the innate immune
response (132).

Pathogenic Bacteria

Intracellular bacterial pathogens induce a variety of
metabolic changes in the affected host cells to promote
their own survival and replication (133–136). By secreting
virulence factors termed effectors, bacteria trigger uptake
(invasion), intracellular replication and interfere with
inflammation processes (23,137,138). Modulation of lipid
metabolism by virulent bacteria is a common approach
in their strategy to invade and propagate in the host cell
(28). Thus, lipids are not only used as a nutrient source
but also to influence the host cell metabolism, physiology
and membrane trafficking, enabling pathogen survival
and replication. While the targeting of plasma membrane
lipid rafts and the modulation of phosphoinositides seems
characteristic for influencing their invasion, targeting of
host cell cholesterol (esters), triacylglycerols and phos-
phoinositides facilitates the intracellular survival of a
number of pathogens. FAs are the predominant target for
interference with inflammation. The role of lipids in (i)
bacterial uptake, (ii) replication and (iii) inflammation will
be briefly addressed.

Bacterial invasion
Pathogenic bacteria evolved different strategies to invade
their host. For example, Streptococcus, Salmonella and
Coxiella induce their uptake in nonphagocytic cells
by triggering receptor-mediated endocytosis (139), by
actin rearrangements (140,141) or by targeting lipid raft
microdomains at the plasma membrane (142). Interfer-
ence with the mechanism of uptake was shown to decrease
the virulence of these pathogens suggesting that the entry
mechanism is tightly linked to the intracellular survival
of the bacteria. Cholesterol is considered a crucial factor
in the uptake of host cells by Salmonella (143–145), Heli-
cobacter (146), Vibrio cholera (147,148), Shigella flexneri
(79) and Listeria (149).

Another target for intracellular bacteria to affect their
invasion and subsequent diversion of host membrane

trafficking pathways is the manipulation of phospho-
inositides (71,74,150,151). All different phosphoinositide
species are targeted during the bacterial-host interplay.
Pathogens such as Salmonella and Mycobacteria e.g.
directly interfere with the PI(3)P levels of the plasma
membrane during entry by secreting effector molecules.
The phosphatase SopB secreted by Salmonella increases
the PI(3)P levels at the site of engulfment to recruit the
host Rab 5 and PI(3)P kinase Vps34 to the newly formed
Salmonella-containing vacuole (152,153). By contrast,
Mycobacteria decreases PI(3)P levels to interfere with the
intracellular maturation (154). Similar seemingly contrast-
ing phenomena are observed for other phosphoinositides.
For the benefit of Shigella, PI(4,5)P2 levels are decreased
in an bacterial effector driven way to produce PI(4)P and
PI(5)P (155), but successful Yersinia invasion requires
transient production of PI(4,5)P2 at the site of bacterial
entry (73). It will require a better understanding of the
entire (hydrophobic) metabolome to understand how
opposing regulation of phosphoinositide metabolites can
both favor pathogen survival.

Bacterial replication
Once inside the host cell, bacterial pathogens use differ-
ent strategies to subvert the host-cell trafficking pathways
in order to resist intracellular killing (156). Interfering
with the host cell lipid metabolism is a powerful mecha-
nism used by a number of intracellular bacteria to create
a replicative niche and to inhibit autophagosomal induc-
tion, vacuole acidification and apoptosis from inside the
pathogenic vacuole (28).

Many bacteria interfere with phosphoinositide metabolism
not only to promote host cell entry but also to facilitate
survival (74,150). During invasion, targeting of host cell
phosphoinositide metabolism is aimed at interference
with the signal transduction pathways and cytoskeletal
architecture. During intracellular survival, the role of
phosphoinositides in the host cell membrane dynam-
ics is targeted (157). Phosphoinositides contribute to
organelle identity by recruitment of specific effector
proteins (75,158). To subvert vesicular trafficking of
infected host cells, Legionella was shown to secret effector
proteins that are anchored to the Legionella-containing
vacuole in a PI(4)P-dependent manner (159). Bacteria
that reside in a bacterial containing vacuole for successful
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replication like Salmonella (160–162), Shigella (163) and
Mycobacteria (164), continuously manipulate phospho-
inositide metabolism from within the vacuole by secreting
phosphatases (SopB, IpgD and SapM, respectively).

Many intracellular pathogens also interfere with choles-
terol metabolism by acquisition of host cell cholesterol.
Accumulation of cholesterol on the vacuole of Coxiella
(165,166), Salmonella (81,145,167), Chlamydia (80) and
Mycobacteria (82) was shown to be essential for intra-
cellular survival. The Salmonella-containing vacuole for
example contains up to 30% of the cellular cholesterol
pool (81) by redirecting exocytic vesicles from the Golgi
complex rich in cholesterol and sphingolipids (168). A
similar strategy is used by Chlamydia (33). Although
the function of this recruitment is not clear, a role in
membrane-trafficking pathways has been suggested (169).
A role as a nutritional source can also not be excluded,
similar to Mycobacterial cholesterol acquisition (170).
Coxiella, a pathogen that persists for 4–5 days in the
infected host cell, causes an increase of cellular cholesterol
levels by up to 70% (166). It is not clear whether this is
a pathogen driven process or a response by the host cell
to maintain cholesterol homeostasis. Nevertheless, it is an
evident example of pathogen-induced (de)regulation of
host lipid metabolism.

Several intracellular bacteria also interfere with neutral
lipid metabolism, either directly (e.g. secretion of lipases)
or indirectly by interference with lipid droplet homeosta-
sis. Besides their role in energy (TAG) and cholesterol
ester storage, lipid droplets are involved in host cell lipid
transport and metabolism, membrane trafficking, intra-
cellular signaling, and production of inflammatory medi-
ators (171,172). Although interference with lipid droplet
biogenesis and turnover is a strategy used by many bac-
teria, the exact role of this interference is not well under-
stood in most cases. This is illustrated by Salmonella, which
actively interferes with host cell lipid droplets by secret-
ing SSeJ and SseL effector molecules, however with oppos-
ing effects. SseJ mediates the esterification of cholesterol
in cell membranes which results in enhanced lipid droplet
biogenesis (173). SseL prevents the accumulation of lipid
droplets via its deubiquitinase activity (87). Other bac-
teria like Mycobacteria and Chlamydia induce a massive
increase of (TAG) containing lipid droplets in the infected

macrophages and in both cases lipid droplet accumulation
during infection was shown to be crucial for bacterial sur-
vival (174). Mycobacteria utilize lipid droplets as a nutri-
tional source (88) and hijack lipid droplets as part of their
strategy in acquiring host cell iron (175). Chlamydia targets
lipid droplets to interfere with inflammation by replacing
the lipid droplet core protein ADRP with bacterial derived
effector molecules (89,90).

Bacterial inflammation
Inflammation is the body’s immediate response in attempt
to prevent the spread and infection of microbial pathogens
(176,177). Lipid mediators, such as prostaglandins and
leukotrienes (lipid category A) are key players in induc-
ing inflammation (178). They are synthesized from
phospholipid-derived polyunsaturated FAs (PUFAs) like
arachidonic acid (ω6) and ω3 fatty acids (177). Both
Gram-negative and Gram-positive bacteria are able to
induce their synthesis via triggering signal transduction
pathways that enhance phospholipase activities and/or
cyclooxygenase COX-2 expression levels in target cells
(179). Salmonella alters host cell signaling in the intestinal
epithelial cells by delivering the effector protein SpiC to
the cytosol of infected macrophages. This action pro-
motes an immunosuppressive phenotype which impairs
bacterial killing (180). Escherichia coli, Vibrio cholera,
Mycobacteria, Streptococcus and Pseudomonas use similar
mechanisms to induce the COX-2 expression and promote
prostaglandin production for their own benefits (179).
Bacterial pathogens also interfere with the biosynthesis
of oxidized FAs that act as anti-inflammatory molecules.
Pseudomonas aeruginosa secretes a lipo-oxygenase that
converts host arachidonic acid for local 15-HETE produc-
tion (181). In this way, the host-immune defense can be
subverted by generating local ‘stop signals’ (182).

Fungi

Of the 1.5 million species of fungi, there are only around
300 known to cause pathology in humans (183,184).
Pathogenic species such as the relatively common Tri-
chophyton (causing athlete’s foot), Crytococcus neoformans
(causing meningoencephalitis) and Aspergillus spp.
(causing infections of ear, eye and nails) are often oppor-
tunistic and systemic infections normally only occur in
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immunocompromised individuals (185). Thus, fungi
do not typically enter the host cell but affect host lipid
metabolism by extracellular secretion of factors. Indeed,
fungi are rich sources for molecules that interact with the
lipid metabolism of mammals. Particularly, well studied
are molecules that interfere with various steps in the
synthesis of sphingolipids because of their applicability
in fundamental research and cancer therapy (186,187).
Sphingolipids are key molecules in protein trafficking,
lipid homeostasis and cell differentiation and their bal-
anced occurrence is essential. Serine palmitoyltransferase
(SPT) catalyzes the first, committing- and rate limiting
step in sphingolipid de novo synthesis. Sphingofungins,
lipoxamycin and myriocin are fungal structural analogs
of the SPT intermediate- or end products with potent and
highly selective inhibitory activities (188,189). Also subse-
quent steps in the synthesis of the sphingolipid backbone
are efficiently inhibited by fungal metabolites: ceramide
synthase is sensitive to Fumonisins (isolated from Fusar-
ium verticillioides), AAL-toxin (Alternaria alternata)
and Australifungins (nonpathogenic Sporormiella aus-
tralis) (190–192). It is interesting to note that all these
fungi-derived molecules interfere with early steps in
sphingolipid synthesis, i.e. prior to the synthesis of sphin-
gomyelin in host cells (Figure 2C). This is probably related
to the fact that after the synthesis of (dihydro-)ceramide,
the fungal- and mammalian anabolic metabolism of phos-
phosphingolipids diverge. Whereas mammals synthesize
SM, fungi use inositol as an headgroup, leading to inositol
phosphorylceramide (IPC), which plays a crucial role
in pathogenesis of Cryptococcus neoformans (193,194).
Therefore, these inhibitors are also potent antifungals
and it has been suggested that these inhibitors are used
to gain advantage over fungi competing for the same
resources (185).

Most pathogenic fungi also secrete phospholipases to
facilitate adhesion, cell entry, and lysis (92). Phospholi-
pases are hydrolytical enzymes that degrade membrane
phospholipids, leading to membrane dysfunction or even
disruption of the cell. In this case, targeting of the most
abundant host cell membrane phospholipids, PC and
PE, is effective in interference with membrane integrity
(Figure 2C). The action of phospholipases also results in
the generation of bioactive signaling molecules. In the
case of phospholipase C action, diacylglycerol is generated

which leads to activation of protein kinase C and tilts the
survival/death balance toward survival and proliferation.
In the case of phospholipase A or B, FAs are released that
can be consumed by fungi and/or oxidized to generate
potent signaling molecules with a profound impact on
the immune system. These oxidation products are derived
from PUFAs in the host cell. Arachidonic acid is used as
a precursor in the generation of eicosanoids, a family of
oxygenated C20 fatty acids that include prostaglandins,
leukotrienes and thromboxanes (195) (Figure 2D). Enzy-
matic oxidation of arachidonic acid is achieved by the
actions of either lipo-oxygenases, cyclooxigenases or CYP
enzymes, but also nonenzymatic reactions (lipid peroxi-
dation) can lead to the formation of bioactive arachidonic
acid metabolites known as isoprostanes (196). Similarly,
other PUFAs such as eicosapentaenoic acid (20:5) or
docosahexaenoic acid (22:6) can serve as precursors
for bioactive oxidation products in mammalian hosts.
Analysis of the genomes of numerous fungi suggests
the ubiquitous presence of enzymes forming oxidized
FAs (197). This makes oxidized FAs ideal candidates for
host–pathogen interaction and there are indeed numer-
ous reports of fungal derived oxidized FAs interacting
with the immune system of the host (198). For instance,
the major pathogens Cryptococcus neoformans, Candida
albicans and Aspergillus fumigatus, all synthesize and
secrete anti-inflammatory prostaglandins PGE2 en PGD2
(97,98). Linked to decreased pulmonary function are
PGF2a, TXB2, 6-keto PGF1a and isoprostanes, which are
released by the respiratory pathogen Aspergillus fumigatus
(97,99,199). It has been suggested that the immunosup-
pressive molecules secreted by fungi are necessary to
establish a sustainable population of (nonpathogenic)
yeast in e.g. the bowel and that fungal dysbiosis leads to
disease (200).

As with the fungal-derived molecules that interfere with
sphingolipid metabolism in both host cells and in fungi,
oxidized FAs can also act both on host cells and on fungi.
Fungi use oxidized FAs for regulation of fungal cell growth
and differentiation, but these processes are still poorly
understood. For instance, PGE2 and TXB2 induce germ
tube formation in C. albicans and there is strong evidence
that other oxidized FAs are involved in the development of
the sexual stage in this and other yeasts (201). Also the for-
mation of biofilms, conglomerates of fungi protected by a
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mucuous layer, is directed by prostaglandins (202). Thus,
fungal derived oxidized FAs modulate the host’s immune
system, while the same molecules influence normal fungal
form and function. Here we see a typical example of signal-
ing by oxidized FAs that is well conserved across biological
kingdoms and that is optimally exploited as inter-kingdom
signaling molecules (198). Whereas virulence factors from
bacteria, viruses and parasites have evolved to optimally
exploit the resources of the host, it seems that fungal
effectors establish a stable commensalism based on com-
plex bi-directional fungi–host interactions mediated by
e.g. oxidized FAs, which may run out-of-control in the case
of pathogenic fungi.

Parasites

Two completely different types of parasites exist: unicel-
lular parasitic protozoa and parasitic helminths (worms).
For the purpose of this review, parasitic protozoa can be
divided in (i) protozoa that live inside cells of their host
(e.g. erythrocytes or macrophages) and (ii) those that live
outside the cells of the host, e.g. parasitizing the digestive
and urogenital tract or the bloodstream of the host (see e.g.
Table 1). Interactions with the lipid metabolism of the host

can be strikingly different in these different niches. Para-
sitic helminths, however, for obvious reasons of magnitude
never live inside cells of the host, but are always extra-
cellular. However, with respect to metabolic interactions
with their host a clear distinction can be made between
helminths that live in, e.g. the digestive tract of the host,
compared with helminths that live truly inside the body of
their host (in, e.g. the lymphatic system or bloodstream).
These differences in niche between the various types of par-
asites, protozoa as well as helminths, result in differences
in the ways parasites interact with the lipid metabolism of
their hosts.

In general, most parasites affect the host FA metabolism
(lipid category A) by catabolism of host lipids. Subse-
quently, the parasites often take up the lipid degradation
products, including FAs, from their host (100,203–207).
Some parasites even lost the ability to synthesize FAs
themselves de novo, such as the blood-dwelling helminths
Schistosoma spp. (208,209), and thus depend entirely on
FA uptake from the host. After uptake by the parasite
these FAs are often remodeled, for instance, by chain
elongation or by alteration of the desaturation of the
FA moiety (104,203,210). Many parasites take up PUFAs,
such as arachidonic acid, to produce eicosanoids that

Table 1: Protozoa versus helminths: Different niches of unicellular and multicellular parasites

Parasite
type

Intra- or extra
-cellular

Example (parasite
group) Example (species)

Intracellular
locationa

Extracellular
locationa

Protozoa Intracellular Apicomplexa Plasmodium spp. Erythrocytes
Toxoplasma gondii Nucleated cells

Trypanosomatidae Leishmania spp. Macrophages
Trypanosoma cruzi (Heart) Muscle cells

Microsporida Enterocytozoon spp. Mucosal cells

Extracellular Diplomonadida Giardia lamblia Digestive tract
Amoeba Entamoeba histolytica Digestive tract
Parabasalia Trichomonas vaginalis Urogenital tract
Trypanosomatidae Trypanosoma brucei Bloodstream

Helminths Intracellular None None –

Extracellular Nematodes (roundworms) Ascaris lumbricoides Digestive tract
Wuchereria bancrofti Lymphatics / bloodstream

Cestodes (tapeworms) Taenia saginata Digestive tractb

Echinococcus granulosus Digestive tractc

Trematodes (flukes) Fasciola hepatica Bile duct
Schistosoma mansoni Bloodstream

aIn final host.
b+ cysts in muscle tissue in mammalian host (cattle).
c+ cysts in liver and lungs of intermediate mammalian hosts.
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subsequently affect the host immune reaction (211). For
instance, prostaglandin PGE2 is synthesized by many para-
sites including parasitic protozoa (e.g. Entamoeba histolyt-
ica, Toxoplasma gondii and Trypanosoma spp.), as well as
by nematode, cestodes and trematode helminth species
(212). Prostaglandins produced by the parasite affect the
host in many processes including vascular tone, hemosta-
sis, chemotaxis, activation and skewing of various types of
immune cells (212,213).

Similarly, parasites do not take up intact TAGs from the
host and they tend to use phospholipases (affecting lipids
in category C) to be able to take up free FAs and lyso
compounds as building blocks for their own complex
lipid biosynthesis. TAG metabolism (lipid category B)
and trafficking has been shown to be essential for parasite
development and proliferation in Plasmodium-infected
erythrocytes (214,215). Accumulation of TAG in lipid
droplets in P. falciparum-infected erythrocytes was shown
to be strikingly pronounced during intraerythrocytic
proliferation from trophozoite to the schizont stage,
whereas TAG degradation became active from schizont
to the segmented schizont stage. Presumably, TAG is not
essential as a source of energy for the parasite, because the
capacity for FA oxidation is very limited. Possibly TAG
provides a source of FA groups for the glycerophospholipid
biosynthesis that is required for membrane biosynthesis
for merozoite release (215). Glycerophospholipids (lipid
category C) of the host cell play a role in the invasion pro-
cess of various intracellular protozoan parasites, as surface
associated phospholipase enzymes of Toxoplasma, Cryp-
tosporidium, Entamoeba, Plasmodium and Trypanosoma
cruzi are supposed to be involved in their invasion of the
host cells by creating pores in the host cell membrane, or by
altering the host membrane fluidity (207). Phospholipase
activity has also been shown to play a role in differenti-
ation and intracellular development of these protozoan
pathogens.

A biphasic generation of ceramide (lipid category D) is
triggered in macrophages by the protozoan parasite Leish-
mania (216,217). First, attachment of the parasite to the
macrophage membrane activates acid sphingomyelinase,
which catalyzes the formation of ceramide from SM.
Inhibition of acid sphingomyelinase resulted in reduced
uptake and infection with the parasite, which shows

that ceramides are important for entry into the host cell.
Subsequently, de novo synthesis generates ceramide that
will probably reduce the cellular cholesterol level and
displace the cholesterol from the membrane, leading to
enhanced membrane fluidity, disruption of rafts, and
impaired antigen-presentation to the T cells. SM is likely
to be an important lipid in Toxoplasma, as the SM levels
in Toxoplasma infected cells are increased. Toxoplasma
salvages sphingolipids from the host Golgi through the
rerouting of selected Rab vesicles to the parasitophorous
vacuole (218).

Parasites do not synthesize sterols (lipid category E) them-
selves and instead sterols are usually taken up from the
host (204). In mammalian cells infected with Toxoplasma
gondii, the uptake of low-density lipoproteins (LDL) is
upregulated and its cargo is subsequently diverted such
that LDL-derived cholesterol is not first transferred to
the plasma membrane of the host cell but directly to the
parasitophorous vacuole (219–221). In addition, in Toxo-
plasma infected cells cholesterol synthesis is suggested to be
uncoupled from LDL uptake, such that the normally neg-
ative feedback on HMG-CoA reductase, the enzyme that
controls the biosynthetic flux to cholesterol, is dysregulated
(204,222).

Cholesterol from the host is not only required for parasite
replication, it is also important in host cell invasion by
Toxoplasma, because cholesterol depletion in the host cell
plasma membrane blocks parasite internalization (223).
Although cholesterol-enriched parasite apical organelles
termed rhoptries discharge lipids during cell entry and
contribute to the parasitophorous vacuolar membrane
(PVM) formation, rhoptry cholesterol appeared not to be
essential for this process. However, host plasma membrane
cholesterol was shown to be incorporated into the forming
PVM during invasion, through a caveolae-independent
mechanism, which suggests that host cholesterol controls
entry of an intracellular pathogen (27,223). Similar results
were obtained for entry of the parasitic protozoan Leish-
mania donovani into macrophages and Trypanosoma cruzi
into HeLa cells, as cholesterol depletion from the plasma
membrane inhibited entry of the parasite (224–226).
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Relevance to Membrane Trafficking

Research on the involvement of lipids in host–pathogen
interactions has significantly contributed to our molecular
understanding of intracellular membrane trafficking and
dynamics in eukaryotic cells. A few examples will be given
for each type of pathogen.

Notable contributions to the membrane trafficking field
come from lipid related research on protein toxins inter-
nalization, yielding insight in retrograde transport from
the plasma membrane to the endoplasmic reticulum. Shiga
and cholera toxin are internalized into the host cell in a
cholesterol-sphingolipid dependent manner (79). Retro-
grade transport was known to operate between PM and
TGN, but these studies showed that it continued through
Golgi cisternae to the ER (227–229). The targeting and
interconversion of various phosphoinositides by pathogen
kinases and phosphatases contributed to our understand-
ing of the importance of phosphoinositide signatures to
subcellular organelle identity (71,230).

In the 1980s, fumonisins were isolated from the fungus
Fusarium moniliforme (231). The usability in biochemi-
cal research of these analogs of intermediates in sphin-
golipid biosynthesis was quickly recognized and fumon-
isins (together with other fungal sphingolipid analogs such
as myriocin discussed above) have been widely used in the
elucidation of the role of sphingolipids in the trafficking of
proteins and lipids (232,233).

Viruses have evolved to utilize a wide variety of cellular
molecules and pathways. The finding by Helenius and
colleagues that Semliki Forest virus (SFV), an enveloped
virus, fused in a prelysosomal compartment (234) was crit-
ical to the discovery and characterization of the organelles
that we now know as ‘endosomes’ (235). The depen-
dence of SFV on luminal acidification and cholesterol
(236) suggested two important properties of endosomes.
Since those pioneering studies, viruses have been indis-
pensable tools for the elucidation of endocytic pathways
and many other aspects of membrane and lipid biology
(22,237).

During the obligate intracellular liver stage, Plasmod-
ium berghei parasites are surrounded by vesicles from

the host late endocytic pathway allowing transport of
material toward the parasite interior (238). The Plasmod-
ium parasitophorous vacuole (PV) membrane displays
long tubular extensions that pervade the host cytoplasm,
which increases the surface of exchange between the
host cell and the PV. Although Plasmodium is unable to
synthesize sterols, it does contain cholesterol that must
be diverted from host cell compartments and properly
delivered to the PV. Interestingly, the PV membrane forms
tight associations with the host endoplasmic reticulum
(ER) shortly after invasion and during schizogony (239).
The gathering of host ER to the PV membrane offers an
attractive mechanism to situate the host lipid biosynthetic
machinery in close proximity to the PV and may be rem-
iniscent of the currently intensely investigated organellar
contact sites that allow rapid transport and/or exchange
of lipids.

These examples from the various types of pathogens exem-
plify the relevance of lipid targeting by pathogens to affect
host cell membrane trafficking. Due to the lack of experi-
mental resolution, most of these studies address the effect
of lipid classes. In only a very few cases, the role of a spe-
cific lipid species in membrane dynamics could be iden-
tified. Notable examples are the role of the ganglioside
GM1 as the receptor of cholera toxin (although in this
case the importance of the fatty acid composition is not
known)(240), and a highly specific interaction of a single
sphingomyelin species, SM 18, with the transmembrane
domain the COPI machinery protein p24 (241). Lipidomic
and/or metabolomic studies on host–pathogen interac-
tions bear great potential to contribute to advancement
of intracellular (lipid) trafficking pathways in eukaryotic
cells. First of all, systematic lipidomic analysis of lipids
allows the simultaneous screening of virtually all lipids in
one assay. Second, using mass spectrometry, the analysis
can be performed with much higher sensitivity, allowing
the identification of minor (signaling) components. Third,
the new generation of mass spectrometers has a much
higher resolution, allowing precise annotation of molecular
species.

Conclusions and Outlook

The hydrophobic metabolome encompasses an unprece-
dented number of lipid species and deserve more attention
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as being a significant – if not largest – part of the entire
metabolome. Even current estimates are probably con-
servative as there are almost unlimited possibilities with
spontaneous and enzymatically catalyzed lipid oxidation
products. It is becoming increasingly evident that even
these oxidized lipids can have important cellular func-
tions by interacting with lipid-binding proteins (242). In
addition, there are numerous pathogen-specific lipids such
as lipopolysaccharides containing a lipid A moiety in
Gram-negative bacteria (243) and unique lyso-PS species
(244) that are not considered in this review but that fur-
ther increase the complexity of the entire lipidome. Yet, the
function of the individual lipid species is largely unknown
and only in a few cases we start seeing a glimpse of their
biological function.

During evolution, microbial pathogens have exploited the
potential of the hydrophobic metabolome and now take full
advantage of the complexity of the lipidome to influence
the host cell phenotype (28). The different types of micro-
bial pathogens do so in a very different way. Simple (unicel-
lular and prokaryotic) microbial pathogens such as bacteria
target host cell lipids that are generally not synthesized by
bacteria. These include structural membrane lipids such
as cholesterol and phosphatidylcholine as well as signal-
ing lipids such as phosphoinositides and sphingomyelin. In
addition, they target neutral lipids for fatty acid production
for a variety of functions. In broad outlines, viruses and
bacteria target the same group of lipids (compare Figure 2A
and B) with one notable exception: whereas several viruses
target PS in the host cells, this is only sporadically reported
for bacteria. The complex eukaryotic microbial pathogens,
fungi and parasites, interact with the host cell lipidome in
a very different way as compared to bacteria and viruses
(compare Figure 2C and D with Figure 2A and B). The most
notable differences between ‘simple’ and ‘complex’ micro-
bial pathogens are (i) the lack of cholesterol and signaling
lipid (phosphoinositides and sphingomyelin) targeting by
fungi and parasites; and (ii) the abundant targeting of the
eicosanoid pathways in the host cells by fungi and para-
sites, often dealing with systemic inflammations in the host
organism.

All pathogens target the PC, PE, diacylglycerol and TAG
area of the metabolic map (Figure 2). These lipids are
located in close proximity for obvious reasons, i.e. having

DAG as a shared precursor. The hydrolysis of these lipids
can, however, yield very different fatty acids. TAG species
generally contain saturated and mono/di unsaturated
fatty acids with an average chain length of 16–18 carbon
atoms. In contrast, PC and PE will contain mostly long
chain (C20–C24) PUFAs at the sn-2 position. Hence, it is
expected that complex pathogens predominantly target the
phospholipids in this metabolic area to generate arachi-
donic acid, a central precursor for eicosanoid synthesis.
Bacteria and viruses also target this metabolic area, but for
other reasons, e.g. the generation of fatty acids needed for
membrane formation.

Here we have presented one of the first visualizations
of the lipid-based interaction of pathogens with host
cells. Based on available data in the literature, we have
categorized approximately 500 interactions using the
cellular metabolome as a template. At this relatively low
resolution, hotspots for the involvement of host–pathogen
interactions can already be identified. Novel lipidomic
technologies are rapidly being created and implemented
such as Imaging mass spectrometry and single cell
metabolomics/lipidomics. High-resolution mass spec-
trometry will allow precise annotation of lipid species and
combined with automated high-throughput analysis and
novel bioinformatics tools, we will soon witness the gener-
ation of enormous amounts of high density data allowing
spatiotemporal resolution of the involvement of lipids
in host–pathogen interactions. Therefore, we expect the
resolution of the interaction maps to increase dramatically
in the near future, allowing the identification of novel
hotspots for the involvement of lipids in host–pathogen
interactions with potential applications in fundamental
and applied research.
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GLOSSARY

25HC ∶ 25-hydroxycholesterol
AMPK ∶ AMP-activated protein kinase
DENV ∶ dengue virus
EBOV ∶ Ebola virus

FAS ∶ fatty acid synthase
FAs ∶ fatty acids

HCV ∶ hepatitis C virus
HIV ∶ human immunodeficiency virus
IAV ∶ influenza A virus
ISG ∶ interferon-stimulated gene

OSBP ∶ oxysterol-binding protein
PA ∶ phosphatidic acid
PC ∶ phosphatidylcholine
PE ∶ phosphatidylethanolamine

PI(4)P ∶ phosphatidylinositol-4-phosphate
PS ∶ phosphatidylserine

PUFA ∶ polyunsaturated fatty acid
PV ∶ poliovirus

PVM ∶ parasitophorous vacuolar membrane
SFV ∶ Semliki Forest virus
SM ∶ sphingomyelin

SPT ∶ serine palmitoyltransferase
TAG ∶ triacylglycerol

VACV ∶ vaccinia virus
WNV ∶ West-Nile virus

Supporting Information

Additional Supporting Information may be found in the online version of
this article:

Table S1: List of lipid-based interactions between host cells and
pathogens that was used for the generation of Figure 2. A weighting
of less than one was assigned if one specific interaction can be located at
different nodes in the metabolic pathway. For example, phospholipase A2
activity of pathogens increases host levels of unesterified polyunsaturated
fatty acids (18:2, 18:3, 20:4), commonly found at the sn-2 position of
phospholipase A2 substrates. In this case, the three fatty acids will be
assigned a weighting factor of 0.33. Similarly, distinct interactions of a
pathogen that target the same lipid in the host will result in weighting
factors larger than 1. For example, Listeria has been described to affect a
lipase and a phospholipase C, both resulting in increased levels of DAG.
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