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Abstract

We previously reported a rare germline variant (c.1-6531) that resulted in allele–specific expression (ASE) of death-associated
protein kinase 1 (DAPK1) and predisposition to chronic lymphocytic leukemia (CLL). We investigated a cohort of CLL patients
lacking this mutation for the presence of ASE of DAPK1. We developed a novel strategy that combines single-nucleotide
primer extension (SNuPE) with MALDI-TOF mass spectrometry, and detected germline DAPK1 ASE in 17 out of 120 (14.2%)
CLL patients associated with a trend towards younger age at diagnosis. ASE was absent in 63 healthy controls. Germline
cells of CLL patients with ASE showed increased levels of DNA methylation in the promoter region, however, neither genetic
nor further epigenetic aberrations could be identified in the DAPK1 59 upstream regulatory region, within distinct exons or
in the 39-UTR. We identified B-lymphoid malignancy related cell line models harboring allelic imbalance and found that
allele-specific methylation in DAPK1 is associated with ASE. Our data indicate that ASE at the DAPK1 gene locus is a recurrent
event, mediated by epigenetic mechanisms and potentially predisposing to CLL.
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Introduction

Chronic lymphocytic leukemia (CLL) is the most common

leukemia of adults in the Western world with an annual incidence

of 4.48 per 100.000 [1]. It is characterized by late onset with a

median age of 72 years at diagnosis. The CLL genome is

characterized by recurrent genetic as well as epigenetic alterations

[2]. Familial clustering of CLL has been described in up to 10% of

cases [3,4]. The identification of predisposing mutations, however,

has been hampered due to the lack of large pedigrees with multiple

affected family members. Genome-wide association studies iden-

tified several susceptibility loci associated with CLL, however

mechanisms of increased risk in carriers are largely unknown

[5,6,7].

We have previously determined that genetic and epigenetic

alterations contribute to transcriptional down-regulation of death-

associated protein kinase 1 (DAPK1) in human CLL [8]. DAPK1 is an

actin cytoskeleton-associated calcium calmodulin-dependent ser-

ine/threonine kinase that functions as a positive mediator of both

extrinsic and intrinsic apoptotic signaling pathways [9]. DAPK1

has been demonstrated to act as a key tumor suppressor gene in

CLL. Almost all cases of sporadic and familial CLL exhibit

transcriptional repression associated with significantly increased

DNA methylation in the DAPK1 59 upstream regulatory region.

Furthermore, our group reported a rare genetic variant upstream

of the DAPK1 promoter transmitted in a CLL family. This

sequence variant (c.1-6531A.G) enhances the binding efficiency

of the transcriptional suppressor HOXB7 to this site leading to

reduced DAPK1 mRNA expression from the affected allele

resulting in allele-specific expression (ASE) [10].

In general, ASE is defined by imbalanced levels of gene

expression from non-imprinted autosomal alleles [11,12]. Several

lines of evidence indicate that ASE in tumor suppressor genes may

be a risk factor for the development of different cancers. Examples

include ASE of the APC and TGFBR1 gene which has been

associated with colorectal cancer [13] or ASE of BRCA1 and

BRCA2 in breast cancer [14]. The molecular causes of ASE are

largely unknown, but may include nonsense mediated mRNA

decay, variations in miRNA binding sites or other gene regulatory

sequences, alternative splicing and alternative polyadenylation

[14,15,16,17]. Functional genomic approaches have revealed that

ASE is a relatively common genome-wide phenomenon for genes
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and non-coding RNAs [18,19] with estimates ranging from 5% to

10% of all genes.

Complementary to genetic alterations, accumulating evidence

points to the relevance of epigenetic mechanisms for disease-

associated ASE. This has convincingly been demonstrated in

familial cancers where ASE is caused by heterozygous epimutation

[20]. Epimutations are aberrant epigenetic marks (e.g. DNA

methylation and histone modifications) inherited from one cell to a

daughter cell during mitotic as well as meiotic cell division [21].

Well-characterized examples of cancer predisposing epimutations

include mismatch repair genes MLH1 [22] and MSH2 [23] in

Lynch syndrome and BRCA1 in sporadic breast cancers [24].

In the present study, we test the hypothesis that ASE of DAPK1

might be prevalent in cases with sporadic CLL and caused by

mechanisms other than the rare sequence variant reported by

Raval et al. [8]. We developed a quantitative semi high-

throughput assay to measure ASE of DAPK1 and applied this

new method to test the hypothesis that ASE of DAPK1 is both

biologically and clinically significant in CLL.

Materials and Methods

Patient samples and sample preparation
Blood specimens from 303 patients with CLL were received

from the Department Internal Medicine III, University Hospital

Ulm with written informed consent and ethics approval from the

Ulm University ethics committee (Ethikkommission Universität

Ulm) according to the principles expressed in the Declaration of

Helsinki. From 120 genetically informative patients (being

heterozygous at the investigated SNPs), diagnostic samples

included peripheral blood mononuclear cells (PBMC) in 110 cases

and bone marrow mononuclear cells in 10 cases. CLL specimens

from 36 patients including 11 genetically informative patients were

obtained from the National Center of Tumor Diseases (NCT)

Heidelberg for separate analysis of cell fractions negative for CLL

cells (CD19 depleted). PBMC from 63 healthy donors were either

derived from Ficoll density centrifugation or directly collected after

5-minute erythrocyte lysis with 16 Red Blood Cell Lysis Buffer

(IMGENEX, San Diego) and used as normal controls. CD19

positive B cell fractions as well as CD19 depleted PBMC fractions

(median contaminating CD19+ cells 3.5%, range 1.3–50.5%) were

generated by MACS cell sorting technique following manufactur-

er’s recommendations (Miltenyi Biotec, Bergisch Gladbach,

Germany).

Cell culture and 5-aza-29-deoxycytidine (DAC) treatment
Granta-519 (derived from mantle cell lymphoma, MCL), MEC-

1 (derived from prolymphocytic leukemia, PLL), EHEB (derived

from chronic lymphocytic leukemia, CLL) and JVM-2/JVM-3

(derived from PLL) were used for in vitro experiments. Cell lines

were obtained from the Division of Molecular Genetics of the

German Cancer Research Center and are commercially available

through the German collection of microorganisms and cell

cultures (DSMZ). Cell line identities were confirmed for Granta-

519, MEC-1 and EHEB by DSMZ. Cells were cultured in

Dulbecco’s MEM (Invitrogen, Darmstadt, Germany) and 10%

fetal bovine serum supplemented with 4.5 g/L glucose, 2 mM L-

glutamine and 1% penicillin/streptomycin, and incubated at 37uC
with 5% CO2. 5-aza-29-deoxycytidine (DAC) treatment was

performed at the final concentrations of 1.0 mM and 1.5 mM with

medium changes and re-substitution of the drug every 24 hours

for 7 days.

RNA isolation and reverse transcription
Total RNA was isolated with the TRIzol reagent (Invitrogen,

Darmstadt, Germany) following the manufacturer’s protocol.

RNA was precipitated from aqueous phase, dissolved in DEPC-

treated water and photometrically quantified. The contaminating

DNA was eliminated by DNase treatment. RNA quality was

assessed by the microfluidics-based Bioanalyzer platform. RNA

integrity numbers (RINs) greater than seven were considered

suitable for ASE analysis. First-strand cDNA was synthesized from

0.5 mg or 1 mg of DNase-treated total RNA using Superscript III

reverse transcriptase (Invitrogen, Darmstadt, Germany) according

to the manufacturer’s instructions. Random hexamer primers

(20 ng/ml final) were used for all reverse transcription (RT)

reactions except for full-length DAPK1 cDNA where oligo(dT)20

primer was used (5 mM final). Non-RT reactions were included as

controls. cDNA quality was verified by real-time RT-PCR for the

C/EBPb and b-actin primer set (primer sequences are given in

Supplementary Table 1) prior to high throughput ASE

detection by SNuPE/MALDI-TOF (single nucleotide primer

extension/matrix assisted laser desorption ionization-time of flight)

mass spectrometry.

Genomic DNA isolation
Genomic DNA (gDNA) from cultured cells was isolated using

the Puregene Core Kit A (Qiagen, Hilden, Germany) following the

manufacturer’s recommendations. DNA from clinical cell pellets

was extracted from TRIzol lysates after RNA isolation by

precipitation from interphase. DNA pellets were washed twice

with 70% ethanol containing 0.1 M sodium citrate and once with

75% ethanol. Air-dried DNA pellets were re-dissolved with 8 mM

sodium hydroxide and adjusted to pH 7–8 before storage.

ASE detection by combined SNuPE/MALDI-TOF
technology

Detection of ASE was based on a quantitative genotyping

approach using the iPLEX Gold application (Sequenom, San

Diego, USA). Multiplexed PCR was carried out to amplify four

short amplicons surrounding the four exonic SNPs from cDNA

and gDNA in separate reactions. Primer sequences are given in

Supplementary table 1. PCR-based amplification was per-

formed in 5 ml total volume in 384-well format with HotStar Taq

DNA polymerase (Qiagen), a final Mg2+ concentration of 3.5 mM

and 100 nM of each primer. Free nucleotides were inactivated by

shrimp alkaline phosphatase (SAP) treatment, followed by a single

nucleotide primer extension (SNuPE) reaction with four extension

primers (exon 3: rs36207428-UEP, exon 16: rs3818584-UEP,

exon 26: rs1056719-UEP and rs3118863-UEP) and detection of

extension products by MALDI-TOF mass spectrometry. Separate

distinct mass peaks represented respective alleles and peak height

comparison allowed relative allele quantification. Quantitative

genotyping of cDNA for ASE detection was corrected by the

measured ratio of the gDNA alleles to correct/adjust for assay

immanent allelic biases assuming perfectly balanced distribution.

All reactions were performed in technical replicates of five or six.

Multiplexed quantitative ASE measurement was validated using

defined molecular standards. Plasmid based standards were

generated by cloning all four pairs of DAPK1 exonic SNPs and

mixing in the following molar ratios: 50:1, 25:1, 10:1, 7:1, 5:1, 2:1,

1:1, to 1:2, 1:5, 1:7, 1:10, 1:25, and 1:50. Finally 161024 ng and

161026 ng of each pair of plasmids were applied to each reaction.

For gDNA-based standard, gDNAs from two donors at polymor-

phic position rs1056719 were mixed in the listed ratios and 30 ng

of each mixture were used as input.

Allele-Specific Expression of DAPK1 in CLL
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Allele-specific expression (ASE) detection by Sanger
sequencing

RT-PCR products covering four exonic SNPs (rs36207428,

rs3818584, rs3118863 and rs1056719) of DAPK1 were analyzed by

direct or single clone sequencing to compare the expression levels

between alleles. Accordingly, four primer-pairs (DEx3_F and

DEx3_R for rs36207428; DEx16_F and DEx16_R for rs3818584;

DEx26_Fa and DEx26_R for rs1056719; DEx26_F and

DEx26_Rb for rs3118863) were used with REDTaq PCR

Reaction Mix (Sigma, Saint Louis, USA) or ReddyMix (Thermo

Scientific, Epsom, USA) to amplify the fragments of interest from

cDNA templates. Non-RT controls where included as control for

gDNA contamination. PCR products were purified by QIAquick

PCR Purification (Qiagen) and directly sequenced using forward

primers. To estimate the relative mRNA expression levels between

2 alleles, the purified RT-PCR products were cloned into

pMOSBlue vector (GE Healthcare, Bucks, USA). Single clones

were sequenced using T7 primer.

Real-time qPCR
Real-time qPCR was performed using FastStart TaqMan mix

(Roche, Mannheim, Germany) with primer pairs

DAPKR2P86_F/R and NS-P8R2_F/R for the DAPK1 59 and

39 transcript region. Data was calculated from the average of the

59 and 39 reaction and normalized to the three house-keeping

genes, b-actin, GAPDH and HPRT (primer sequences are given in

Supplementary Table 1). Mono color hydrolysis probes 86, 8,

11, 60 and 73 were used, respectively.

Bisulfite-sequencing
Bisulfite treatment of gDNA was performed using the EZ DNA

Methylation Kit (Zymo Research Corporation, Irvine, U.S.A.)

according to the manufacturer’s instructions. Bisulfite-treated

DNA (BT-DNA) was stored at 270uC and repetitive thawing

was avoided. PCR amplification was carried out using 1 ml BT-

DNA template in 10–20 ml total volume. Primer sequences are

given in Supplementary Table 1. PCR products were purified

with QIAquick Gel Extraction Kit (Qiagen) and consecutively

cloned using TOPO TA cloning (Invitrogen). Single clones were

sequenced and evaluated using BISMA [25] and BIQ Analyzer

[26] software packages.

Quantitative DNA methylation assessment by
MassCleave technology

Quantitative DNA methylation analysis at single CpG units was

performed using the MassCleave application as previously

described [27]. Briefly, bisulfite-treated genomic DNA was PCR-

amplified, in vitro transcribed, cleaved by RNaseA and subjected to

MALDI-TOF mass spectrometry. Primer sequences for PCR

amplicons are listed in Supplementary table 1. Methylation

standards (0%, 20%, 40%, 60%, 80% and 100% methylated

whole genome amplified genomic DNA) and correction algorithms

based on the R statistical computing environment were used for

data normalization.

Detection of allele-specific methylation (ASM) by SNuPE
Detection of ASM was performed using SNuPE as described

above. Here, bisulfite-converted DNA was used as PCR template

and methylated/unmethylated sequences were amplified separate-

ly using specific primers. Extension primer for rs13300553 was

used to determine the genotype distribution between specifically

amplified methylated and unmethylated alleles and one CpG

dinucleotide methylation control site was interrogated for meth-

ylation status specific amplification (primer sequences are given in

Supplementary table 1).

Statistics
Cases and controls were tested for difference in location and

variability of allele frequencies with the Mann-Whitney test and

the F-test. According to recent work [13], we applied the Youden

index to determine allele frequency cut-offs between cases and

controls in order to identify cases with ASE. Since ASE occurred

bi-directional this was done in either direction. Complementary,

we used the a-outlier region approach [28] to identify ASE-

positive cases outside normal allelic variation as defined by the

control cohort assuming an underlying normal distribution.

Observations that differed strongly in location (accounting for

the scale of the distribution) were labeled as outliers using a critical

value at level a. Huber’s M estimator was used to obtain robust

estimators for location and scale which are unaffected by small to

moderate amounts of outliers. The outlier region was computed at

a-level 5%. P-values below 0.05 were considered statistical

significant. All calculations were carried out with R 2.13 [29].

Results

Development and establishment of a semi high-
throughput method for ASE detection

Previously, we demonstrated that both increased promoter

methylation and a rare germline variant (c.1-6531A.G) at the

DAPK1 gene locus are associated with DAPK1 transcription and

thereby contribute to CLL risk. This single nucleotide variation

resulted in allele-specific expression of DAPK1 in germline, non-

tumor tissue (skin-derived fibroblasts). Here we hypothesized that

ASE of DAPK1 could be present in CLL patients in the absence of

this particular rare genetic variant. To test this hypothesis, a

sensitive and quantitative methodology for measurement of ASE

high throughput capability was developed. We combined SNuPE

and MALDI-TOF mass spectrometry utilizing the iPLEX assay by

Sequenom for quantitative genotyping of cDNAs (Figure 1A).

Accuracy and reproducibility with R2.0.99 could be demonstrat-

ed on plasmid standards with defined SNP ratios as shown for the

exonic SNP rs1056719 exhibiting highest heterozygosity frequen-

cies (Figure 1B) as well as other informative DAPK1 exonic SNPs

(Figure S1). In order to test assay sensitivity, plasmid dilutions

ranging from 30,000 down to 300 copies were analyzed (Figure
S2). Standard deviations of four repeated measurements were

below 2% in the high template sample (300000 template copies)

and below 6.6% in the low template amount sample (300 template

copies) indicating high detection sensitivity and robust detection

even with minute template amounts. To test whether the assay

accuracy was also stable for genomic DNA, defined mixtures of

genomic DNA were used (Figure 1C). Consistent high accuracy

and robustness indicated that template complexity did not affect

the assay performance. Thus, the combination of SNuPE and

MALDI-TOF mass spectrometry proved to be a suitable sensitive

and precise tool for the quantification of DAPK1 ASE in large

cohorts.

DAPK1 ASE occurs in CLL cases and is associated with
increased promoter methylation

Next we addressed whether DAPK1 ASE is a common feature in

CLL patient samples. Out of a total of 303 patient samples that

were screened from the biobanks of the University Hospital Ulm,

120 (39.6%) were identified to be informative (heterozygous) for

SNP rs1056719. Out of 144 healthy donors, 63 (43.7%) displayed

heterozygosity. This polymorphism showed the highest rate of

Allele-Specific Expression of DAPK1 in CLL
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heterozygosity among the four investigated DAPK1 exonic SNPs.

All 120 informative patient samples were found to be negative for

the previously detected rare germline mutation at the HOXB7

binding site c.1-6531, upstream of the transcriptional start site

(TSS). We analyzed whole PBMCs from 120 CLL patients and 63

healthy controls for ASE of DAPK1. As DAPK1 has been shown to

be consistently silenced in B cells of the CLL clone [8] and to be

strongly expressed from monocytes and natural killer (NK) cells,

the observed allelic expression differences can be attributed to

germline in both, healthy controls and CLL patients. Variability of

distributions between CLL cases and controls as assessed by F test

was different as triggered by outliers among the group of CLL

patients (p = 0.0002) (Figure 2A). We calculated lower and upper

cut-offs to identify case outliers based on the Youden index (lower

limit = 0.29, upper limit = 0.54). Consequently, 17 out of 120 CLL

samples (14.2%) were identified to harbor allele-specific mRNA

expression imbalance for DAPK1. Complementing this finding, we

used an alternative procedure based on the a-outlier region

approach at an a-level of 5% [30] to define ASE-positive patient

samples stringently assuming an underlying normal distribution.

Huber’s M estimator was used to get robust estimators for location

and scale which are unaffected by small to moderate amounts of

outliers (location estimator = 0.40; scale estimator = 0.08; limits of

alpha outlier region, lower = 0.25, upper = 0.55). Here, 10 out of

120 CLL samples (8.3%) with allele-specific mRNA expression

imbalance for DAPK1 were identified. The imbalance, as assessed

by both approaches, resulted from the shift to either allele and is

therefore bi-directional. Notably, allele frequencies were signifi-

cantly different between CLL cases and healthy controls (median

G vs. A ratio of 0.4 vs. 0.43 respectively, p = 0.02). To control for

confounders of allelic expression balance potentially introduced by

contaminating CLL cells, we tested the non-B cell fraction of the

enriched mononuclear cells (referred to as ‘‘flow-through’’). CLL

negative fractions of PBMC were generated by CD19 depletion in

11 informative CLL patients. FACS, detecting contaminating

CLL cell populations less than 2%, assured the efficacy of CD19

depletion in these CLL patient samples. A similarly pronounced

widespread distribution of allelic imbalances could be observed

(Figure S3), indicating that DAPK1 ASE occurs in non-malignant

cell populations and thus it is likely to be a germline feature.

By comparing the baseline clinical characteristics of the 14

imbalanced to the 30 most balanced CLL cases, we could not

observe any statistically significant differences between the two

groups. However, the age at diagnosis showed a clear trend

towards earlier onset in the ASE positive group (median

age = 53.0, range = 40–61 years) compared to the balanced cases

(median age = 62.5, range = 41–76 years, p = 0.044). No differ-

ences in survival endpoints (overall survival, time to treatment

failure) or other relevant disease characteristics known to predict

prognosis (IGHV mutational status, cytogenetics) were detected.

An epigenetic cause of DAPK1 ASE in CLL
ASE could potentially be explained by different mechanisms.

Sequence analysis of all DAPK1 exons in 96 CLL patient samples

showed the presence of previously reported SNPs in exons 3, 4, 16

and 26. However, no mutations in the coding sequence that may

result in nonsense mediated RNA decay were revealed. No

modifications were identified in the 39 ‘UTR of DAPK1 that might

interfere with (or create new) miRNA binding sites. We also

Figure 1. Characterization of a multiplexed MassARRAY-based method for detection of allele-specific expression (ASE). (A)
Representative MassARRAY spectra of molecular standards of DAPK1 exonic SNP rs1056719 (G/A). Each spectrum represents the mass range from
5390 to 5500 Da displaying SNP rs1056719 out of a multiplexed assay. Left peaks represent the G allele, right peaks represent the A allele. Copy
number ratios between standard plasmids containing G and A alleles are given below each spectrum. (B) Standard curves for a plasmid-based
standard displaying allelic ratios from 1:50 to 50:1 and correlation with idealized ratio (SNP rs1056719). The correlation was calculated using the
Pearson correlation coefficient. (C) Standard curves for a genomic DNA based standard displaying allelic ratios from 1:50 to 50:1 and correlation with
the idealized ratio (SNP rs1056719).
doi:10.1371/journal.pone.0055261.g001

Allele-Specific Expression of DAPK1 in CLL
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investigated a 27 kb to +2 kb region around the DAPK1

transcriptional start site for a haplotype associated with allelic

expression imbalances. This region constitutes a genomic block

with high genetic linkage disequilibrium. Fifteen SNPs were

genotyped in ASE positive and negative CLL samples, however,

no segregation of a genotype/haplotype with the presence of ASE

could be detected. To search for evidence that epigenetic

alterations (e.g. promoter methylation) are responsible for differ-

ences in germline allelic expression we first determined if promoter

methylation levels are altered between germline samples from

patients that showed a balanced expression and those that showed

ASE. We selected seven samples from each group and measured

the DNA methylation levels (Figure 2B, C). Interestingly we

determined a trend of increased methylation in samples from CLL

patients with ASE, suggesting that epigenetic mechanisms might

contribute to this phenomenon. Analysis on the single CpG level

identified several CpG units with significant differences in the

intron 1 region (amplicon D, p,0.01). However, this analysis did

not allow us to investigate DNA methylation on individual alleles.

CLL relevant cell lines exhibit DAPK1 ASE
To functionally assess the impact of differential methylation on

ASE at the DAPK1 gene locus, we used five human B cell lines

(MEC-1, Granta-519, EHEB, JVM-2 and JVM-3) for DAPK1

expression and promoter methylation analysis (Figure 3A). The

overall DAPK1 expression levels varied strikingly among these cell

lines. JVM-3 and MEC-1 cells did not show detectable DAPK1

mRNA levels. This was in concordance with markedly increased

DNA methylation at the DAPK1 promoter region in MEC-1

(Figure S4) reflecting the epigenetic silencing of DAPK1 in B cells

as previously shown [8]. The other cell lines showed variably low

levels of DAPK1 mRNA expression (compared to primary

monocytes) and were therefore candidates for ASE. Four common

exonic SNPs (rs36207428, rs3818584, rs3118863 and rs1056719)

were analyzed in multiplexed reactions. Granta-519 cells showed

imbalanced DAPK1 expression between the two alleles (Figure 3B).

Allele-specific mRNA (cDNA) levels were considerably lower for

the A allele compared to the G allele (21.8% vs. 78.2%). A

balanced allelic ratio at the germline DNA level as demonstrated

by equal sized spectrum peaks for A and G (49% vs. 51%) at SNP

rs1056719 excluded imbalanced copy number variation at this

site. The dominance of the G allele over the A allele in Granta-519

was confirmed by two additional experiments. First, single-clone

sequencing of ligated PCR products generated only two out of 12

(17%) clones carrying the A allele while 10 clones were derived

from the G-allele (Fig. S5A). Furthermore, direct sequencing

electropherograms of Granta-519 cDNA and gDNA illustrated a

dominance of the G- over the A allele in cDNA while both

electropherogram peaks were of similar height in the gDNA (Fig.
S5B). Similar to Granta-519, the EHEB cell line was heterozygous

at exonic SNP site rs3818584 (T = 48.8% vs. C = 51.2%).

However, cDNA genotyping displayed the presence of only the

T allele (100% vs. 0%) indicating monoallelic mRNA expression

(Figure 3B). Sequencing chromatograms also confirmed these

results (Figure S5C).

DAPK1 ASE is associated with allele-specific promoter
methylation (ASM) in Granta-519 cells

To determine the cause of ASM of DAPK1 in Granta-519, we

performed sequence analysis of the genomic region extending

Figure 2. DAPK1 allele-specific expression (ASE) in CLL patients. (A) 120 CLL cases and 63 controls were analyzed for DAPK1 ASE using the
informative SNP rs1056719 (G/A) as outlined previously. Allelic ratios (in relation to the G allele) of DAPK1 mRNA from peripheral blood mononuclear
cells (PBMCs) were measured with the outlined SNuPE/MALDI-TOF-based method. Dashed lines mark statistically (Youden index outlier method)
determined thresholds to identify ASE positive outliers contributing to the significant variability of CLL compared to healthy controls. The centre of
these thresholds (0.29 and 0.54, dashed lines) is the estimated average (0.4) of the CLL sample group. (B) Scheme of the DAPK1 promoter region with
grey boxes representing the first 2 exons of DAPK1. Nucleotide positions are given relative to DAPK1 transcriptional start site (TSS). Dashed lines
represent positions of the investigated regions/amplicons. (C) Quantitative DNA methylation analysis in the amplicons A, C and D (as described in
figure 4) for the seven most imbalanced and seven most balanced CLL patients with regard to DAPK1 mRNA expression. Scatter plots represent mean
amplicon methylation levels. Significance was assessed by non-parametric Mann-Whitney-U test (* indicates p,0.01).
doi:10.1371/journal.pone.0055261.g002

Allele-Specific Expression of DAPK1 in CLL
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from 5.5 kb upstream of the TSS to the end of exon 2 of the

DAPK1 gene. We identified heterozygosity for eight known SNPs

(rs11141848, rs10746814, rs1035262, rs13296984, rs1035261,

rs1035260, rs1964911, and rs13300553) indicating that these cells

carried no deletions around the promoter region. No further

genetic variation between the two alleles could be detected. Thus,

we speculated that epigenetic aberrations might contribute to

DAPK1 ASE in Granta-519. To functionally test the impact of

promoter methylation patterns on DAPK1 transcription balance,

we treated Granta-519 cells with different concentrations (1.0 and

1.5 mM) of the DNA methyltransferase inhibitor 5-aza-29-deoxy-

cytidine (DAC) for 7 days. We hypothesized that inhibition of

DNA methylation might lead to potential reactivation of the

repressed allele. A twofold upregulation of DAPK1 transcription

was observed by qPCR (Figure 3C). This finding is in

concordance with a reactivation of the silent allele contributing

to overall expression. Simultaneously this upregulation was

accompanied by a reconstitution of the allelic balance, as

illustrated by the equal size of the G and A peak heights at the

SNP site rs1056719 in cDNA and shown by mass spectrometry

and conventional cDNA sequencing (Figure 3D, Figure S6A,
B). The mock-treated control (PBS) retained imbalanced mRNA

expression, and expression did not increase. Importantly, after

withdrawal of DAC and one month of continued culturing,

DAPK1 ASE reappeared with an identical reduction in cDNA of

the A allele relative to the G allele compared to untreated Granta-

519 cells (Figure S6C).

To directly prove that allele-specific promoter methylation was

associated with DAPK1 ASE in Granta-519 cells, we quantitatively

assessed DNA methylation in the DAPK1 59 upstream region.

While MEC-1 cells not expressing DAPK1 exhibited almost

complete DNA methylation from 200 bp upstream of TSS to

exon 2 (Figure S4), a region of restricted methylation could be

detected in ASE-positive Granta-519 at the end of exon 1

(Figure 4A and 4B). Quantitative assessment showed approxi-

mately 50% DNA methylation around exon 1, while most of the

downstream region starting from intron 1 was unmethylated.

Utilizing an informative SNP (rs13300553) in close vicinity to the

50% methylated region, we performed bisulfite sequencing to

investigate allele-specific methylation patterns. The rs13300553

Figure 3. Allele-specific expression (ASE) of DAPK1 is prevalent in B-cell malignancy derived cell lines. (A) TaqMan real-time PCR of
cDNA from five B-cell malignancy cell lines (Granta-519, MCL; MEC-1, B-PLL; EHEB, chronic B-cell leukemia, JVM-2, B-PLL; JVM-3, B-PLL) show relative
expression levels of DAPK1 mRNA expression normalized to three house-keeping genes. (B) Allelic ratios of cDNA and gDNA are quantified by SNuPE/
MALDI-TOF. Representative spectra demonstrate an imbalanced allelic mRNA expression compared to allelically balanced gDNA. Molecular weight
range 5390–5500 Da is displayed for rs1056719 (G/A) in Granta-519 and JVM-2 cells and 6985–7045 Da for rs3818584 (T/C) in EHEB. Peak height/
signal intensity correlates with allele abundance. (C) qPCR-based DAPK1 mRNA quantification upon treatment with the DNMT inhibitor (5-aza-29-
deoxycytidine, DAC) in Granta-519. The values are relative to the respective mock control (PBS). (D) Allelic ratios of SNP rs1056719 in Granta-519 cells
measured by SNuPE/MALDI-TOF assay upon DAC treatment.
doi:10.1371/journal.pone.0055261.g003
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SNP A allele that represents the transcriptionally repressed allele

showed 83.0% methylation whereas the G allele was methylated at

considerably lower levels (,32.3%) in the region of interest

(Figure 4C). In EHEB cells exhibiting almost monoallelic

expression, we found a similar separation in completely unmethy-

lated and (almost) fully methylated alleles at the same region that

exhibited ASM in Granta-519 cells (Figure S7A and S7B).

However, as the SNP rs13300553 was not heterozygous in this cell

line and other informative SNPs could not be detected between

position 220 and +600, a clear allelic separation was not possible

despite the strong evidence for two distinct allele populations. In

JVM-2 cells with perfectly balanced DAPK1 transcription, DNA

methylation was entirely absent (Figure S7C). In order to

quantitatively confirm the allele-specific promoter methylation

(ASM), we designed a methylation-specific genotyping assay based

on the SNuPE method (ASM-SNuPE). This method was used to

determine the SNP ratio between the amplification of unmethy-

lated and methylated alleles. Unmethylated and methylated

amplicons were specifically amplified from bisulfite-treated DNA

using PCR with primers specific for unmethylated or methylated

template (UMSP/MSP) (Figure 4D). The primer design was

based on differentially methylated CpGs as determined by the

previous methylation results. We used an extension primer as an

amplification specificity control to ensure for strict separation of

methylated and unmethylated alleles. Quantitative genotyping of

the SNP site rs13300553 in Granta-519 showed a strong

enrichment of the G allele in the unmethylated fraction, whereas

the A genotype almost exclusively appeared in the methylated

alleles. DAC treatment increased the appearance of the A allele in

the unmethylated fraction, indicating loss of methylation of this

Figure 4. Allele-specific DNA methylation (ASM) contributes to ASE of DAPK1 in Granta-519 cells. (A) Scheme of the DAPK1 promoter
region and the associated CpG island. Grey boxes display the first 2 exons of DAPK1. Nucleotide positions are given relative to DAPK1 transcriptional
start site (TSS). Dashed lines represent positions of the investigated regions/amplicons. (B) Quantitative DNA methylation analysis of the DAPK1 gene
59 region (amplicons A–E) in untreated and 5-aza-29-deoxycytidine (DAC)-treated Granta-519 cells was performed using the MassARRAY-based
MassCleave method. Bars represent quantitative DNA methylation values (%) at single CpG units. (C) Bisulfite-sequencing of the DAPK1 59 region
including the SNP rs13300553 (G/A) used for allelic separation in Granta-519 cells. Sequenced clones carrying A at the respective SNP site (+520) are
grouped in the upper panel, the G alleles are displayed in the lower panel. Black boxes represent single-CpG methylation, grey boxes represent
unmethylated CpGs, white boxes stand for missing data. Methylation levels are calculated over the area between +58 and +263 in both allele groups.
(D) Detection of ASM by separate amplification of either the unmethylated or methylated alleles by methylation-specific PCR on bisulfite-converted
genomic DNA. Genotype distribution between the differentially methylated alleles was performed by SNuPE/MALDI-TOF. Untreated Granta-519 (PBS),
7-day treatment with the DNMT inhibitor 5-aza-29-deoxycytidine (DAC), and assessment of ASM after 33 days of withdrawal of DAC (33-day recovery)
are shown. The right panel shows the assessment of a CpG dinucleotide as specificity control (see results section for detailed explanation).
doi:10.1371/journal.pone.0055261.g004
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allele. Withdrawal of DAC restored the allele-specific methylation

after cultivation for one month. Taken together, these experiments

show that in Granta-519 DAPK1 ASE and ASM are functionally

related.

Discussion

DAPK1 is proposed to be a tumor suppressor gene in CLL. In a

recent study, a rare sequence variant associated with early disease

onset in a large CLL family was shown to reduce DAPK1

expression on one allele to 25% of the normal level, resulting in

ASE [8]. Other genetic alterations were not identified to affect

DAPK1 in CLL. In the present study, we investigated the extent of

germline ASE of the DAPK1 gene in CLL under the hypothesis

that this might be a possible novel mechanism predisposing

individuals to CLL.

The association of ASE with tumor predisposition was first

reported in 2001 [11]. However, prevalence and mechanisms of

ASE in tumorigenesis remain largely unknown. Recently it was

demonstrated that reduced levels of the tumor suppressor gene

APC are associated with pronounced predisposition to familial

adenomatous polyposis [31]. Linkage analysis in these families

showed that the allele with reduced APC expression was linked to

the disease; however, a genetic alteration that might explain the

reduced expression of APC could not be identified. This work was

followed by a study by Valle et al. [13], demonstrating ASE of

TGFBR1 in 10–20% of colorectal cancer patients as opposed to 1–

3% in control populations. Reduced TGFBR1 expression affects

the SMAD–mediated TGF-beta signaling. The authors report that

ASE is inherited in familial cases and occurs also in sporadic cases

of colorectal cancer. Two major haplotypes associated with the

reduced expression of TGFBR1 were reported, however no

mutation that may explain this phenomenon was detected. In

subsequent studies this group revised the reported frequencies of

ASE in TGFBR1 to fewer cases and the authors conclude that

improved quantitative techniques are required for reliable ASE

detection [32,33]. We established a quantitative SNuPE/MALDI-

TOF-based approach for ASE assessment that is sensitive and

robust. Furthermore, the high-throughput capability of this assay

enables investigation of larger cohorts e.g. of large epidemiological

studies. Using this novel approach, we observed DAPK1 ASE in

non-malignant (germline) cells in 14% of CLL cases but not in a

control population evoking a novel potential mechanism for

predisposition to CLL. A trend toward germline ASE positive

patients being of younger age at disease onset/age at diagnosis

could substantiate a predisposing role for DAPK1 ASE. We did not

detect any correlation of DAPK1 ASE with familial occurrence of

CLL, which has a reported prevalence of 5–10%, although the

power to detect such a correlation in this cohort is low. Systematic

assessment of such information in a prospective manner would be

needed to draw valid conclusions. The need of heterozygosity at

specific exonic SNPs and the rather low frequencies of ASE cases

led to the identification of a rather small number of ASE positive

patients (17 out of a collective of 303 patients who were initially

included in the study). Furthermore, a prospective investigation of

DAPK1 ASE in healthy individuals with monoclonal B cell

lymphocytosis (MBL), a potential precursor of CLL that shows a

prevalence of up to 3.5% in the entire population, would allow for

a more accurate assessment of the predisposing character of

DAPK1 ASE [34].

So far the mechanisms that cause allelic imbalance of mRNA

expression are not clear. In our previous work, a disease haplotype

and mutation could be identified which segregated with the CLL

phenotype in a large family [8]. However, in the general

population this mutation is extremely rare. Reports about ASE

of both BRCA1 and BRCA2 to be associated with increased breast

cancer risk [14] indicated that in some of the cases, ASE could be

explained by mutations activating the nonsense mediated mRNA

decay. In the majority of cases, however, ASE remained

mechanistically unexplained. In a report implicating the associa-

tion of CDH1 ASE with hereditary diffuse gastric cancer [35], one

ASE-positive proband showed an unusual pattern of allele-specific

methylation in the promoter. To elucidate the potential mecha-

nisms of DAPK1 ASE in CLL, we investigated a CLL-related

leukemic cell line model. Prompted by the observation of extensive

epigenetic silencing by DNA methylation of DAPK1 in the clonal

malignant B cells of CLL patients, we hypothesized a role for an

underlying epigenetic cause of ASE in the non-malignant (germ-

line) cells. In contrast to the previously reported unidirectional

expression imbalances of TGFBR1, DAPK1 ASE was found to be

bi-directional implicating shifts to either allele. This could support

the role of DNA methylation as underlying silencing event

potentially induced from a different locus in trans. In Granta-519

cells, which showed a pronounced allelic mRNA expression

imbalance without any copy number variations in the region of the

DAPK1 gene, promoter DNA methylation levels of approximately

50% were observed. An allele-specific distribution of DNA

methylation was associated with the repressed allele. Furthermore,

we could show that after erasure of DNA methylation at this locus

by a DNA hypomethylating agent, re-establishment of ASE

occurred exclusively at the initially repressed allele. This indicates

that epigenetic mechanisms could cause ASE of DAPK1 in CLL-

relevant cell line models. We postulated an underlying genetic

mutation as a cause for the allelic restriction of DNA methylation

in ASE-positive Granta-519. However, sequencing up to approx-

imately 6 kb upstream of DAPK1 TSS did not reveal any genetic

variation. Similarly, we analyzed germline material from ASE-

positive patients for allele-specific epigenetic marks and used

patients with perfect allelic balance as control. We could not detect

any genetic aberrations in the DAPK1 59 upstream regulatory

region. Interestingly, we observed significantly elevated DNA

methylation in ASE-positive cases around the transcriptional start

site, which is in concordance with ASM observed in Granta-519

cells and might point towards an epigenetic cause for ASE. The

primary genetic basis might act in trans far from the target and may

be difficult to detect. However, the methylation differences were

subtle and it remains mechanistically unclear how these differences

are established and whether they might be causative for ASE.

Epigenetic mechanisms have the potential of modulating gene

expression, but so far they have not been thoroughly investigated

as a potential mechanism for ASE. Exceptions are epimutations

identified in MLH1 or MSH2 leading to gene silencing and

predisposition in hereditary forms of colorectal cancer [23]. For

some of these epimutations, genetic alterations have been

described that can trigger epigenetic events. For example, it has

been shown that heterozygous germline deletions of the last exon

of TACSTD1, a gene directly upstream of MSH2, resulted in

extension of the transcription into the promoter of MSH2, thereby

triggering by an unknown mechanism subsequent epigenetic

alteration of the MSH2 promoter [36]. Currently we do not know

if and how germline epigenetic alterations could affect DAPK1

expression and thereby might contribute to the predisposing

mechanism. Additional molecular mechanisms causing ASE could

be nonsense-mediated mRNA decay, due to a mutation in the

target gene, which seems to be a rare event. Another possible

mechanism could be the modulation of miRNA binding due to

sequence variations or sequence alterations affecting the promoter

activity of cancer genes. High throughput genome analysis has
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uncovered copy number variations occurring throughout genomes

of healthy individuals. These variations could result in allelic

imbalances of gene expression. Similarly, differentially methylated

regions other than at imprinted regions can have similar effects on

gene expression. The extent to which these mechanisms partic-

ipate in ASE and cancer predisposition needs to be determined in

future studies. Furthermore, prospective trials are needed to

confirm these findings and to extend a predisposing role of DAPK1

ASE to non-malignant CLL precursor states like monoclonal B-

cell lymphocytosis.

Supporting Information

Figure S1 Accurate quantification of DAPK1 ASE inves-
tigating all four common exonic SNPs. Standard curves for

plasmid based standards displaying allelic ratios from 1:50 to 50:1

and correlation with idealized ratios. (A) SNP rs3118863, DAPK1

exon 26, (B) SNP rs3818584, DAPK1 exon 16, (C) SNP

rs36207428, DAPK1 exon 3. (D) SNP rs1056719, DAPK1 exon

26.

(TIF)

Figure S2 Detection sensitivity for quantitative geno-
typing of rs1056719. (A) Standard curves for plasmid molecular

standard (A: 30,000 template plasmid copies, B: 300 template

plasmid copies) and comparison with ideal linear correlation.

Standard deviations are given for 4 replicate measurements.

(TIF)

Figure S3 DAPK1 ASE in CD19 depleted PBMC samples
from CLL patients. (A) 120 CLL cases, 11 CD19 depleted

(contaminating CD19+ population less than 2%) and 63 controls

were analyzed for DAPK1 ASE using the informative SNP

rs1056719 (G/A) as outlined previously. Allelic ratios (in relation

to the G allele) of DAPK1 mRNA were measured with the outlined

SNuPE/MALDI-TOF-based method.

(TIF)

Figure S4 MEC-1 cells are fully methylated at the CpG
island of the DAPK1 59 region. (A) Scheme of the DAPK1

promoter region and the associated CpG island. Grey boxes

display the first 2 exons of DAPK1. Nucleotide positions are given

relative to the DAPK1 transcriptional start site. Dashed lines

represent positions of investigated regions/amplicons. (B) Quan-

titative DNA methylation analysis of the DAPK1 gene 59 region

(amplicons A–E) in untreated, control (PBS)-treated and 5-aza-29-

deoxycytidine (DAC)-treated MEC-1 cells was performed using

the MassCleave method. Bars represent quantitative DNA

methylation values (%) at single CpG units.

(TIF)

Figure S5 Detection of DAPK1 ASE by conventional
Sanger sequencing. (A) Sequences from 12 single clones of

ligated PCR products of the DAPK1 cDNA. rs1056719 indicates

the polymorphic site, the arrows represent the cloning primers and

indicate the sequencing direction. (B) Chromatograms represent-

ing the genomic region around the polymorphic site rs1056719 in

Granta-519 cells. The upper panel displays the cDNA, the lower

panel displays the genomic DNA as balancing control. (C)

Chromatograms representing the polymorphic site rs3818584 in

EHEB cells according to figure 3B.

(TIF)

Figure S6 Re-balancing of DAPK1 mRNA expression in
Granta-519 cells upon inhibition of DNA methyltrans-
ferases assessed by Sanger sequencing. (A) Chromato-

grams representing the genomic region around the polymorphic

site rs1056719 in Granta-519 cells after seven days of control

treatment with the solvent PBS. (B) Rebalancing after seven days

of pulsed treatment with 1.5 mM DNA methyltransferase inhibitor

5-aza-29-deoxycytidine (DAC). (C) Re-constitution of the allelic

imbalance after 1.5 mM DAC treatment for seven days and

consecutive withdrawal of the compound for 33 days.

(TIF)

Figure S7 Allelic DNA methylation in lymphoid cell
lines with allele-specific expression of the DAPK1 gene.
(A) Scheme of the DAPK1 promoter region and the associated

CpG island. Grey boxes display the first two exons of DAPK1.

Nucleotide positions are given relative to the DAPK1 transcrip-

tional start site. The dashed line represents the amplicon analyzed

by bisulfite sequencing. This region exhibited extensive DAPK1

allele-specific DNA methylation in Granta-519 cells. (B, C)

Bisulfite-sequencing of the DAPK1 59 region in JVM-2 (no ASE)

and EHEB (monoallelic expression) cells. As a heterozygous SNP

could be detected in neither cell line between 220 and +600 bp, a

clear allelic separation is not possible. Red boxes represent single-

CpG methylation, blue boxes represent unmethylated CpGs,

white boxes stand for missing data. Methylation levels are

calculated in percent for each CpG dinucleotide.

(TIF)

Table S1 Oligonucleotides and primers.

(DOC)
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