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Abstract: A reported 30% of people worldwide have abnormal lung sounds, including 

crackles, rhonchi, and wheezes. To date, the traditional stethoscope remains the most popular 

tool used by physicians to diagnose such abnormal lung sounds, however, many problems 

arise with the use of a stethoscope, including the effects of environmental noise, the inability 

to record and store lung sounds for follow-up or tracking, and the physician’s subjective 

diagnostic experience. This study has developed a digital stethoscope to help physicians 

overcome these problems when diagnosing abnormal lung sounds. In this digital system, 

mel-frequency cepstral coefficients (MFCCs) were used to extract the features of lung 

sounds, and then the K-means algorithm was used for feature clustering, to reduce the 

amount of data for computation. Finally, the K-nearest neighbor method was used to classify 

the lung sounds. The proposed system can also be used for home care: if the percentage of 

abnormal lung sound frames is > 30% of the whole test signal, the system can automatically 

warn the user to visit a physician for diagnosis. We also used bend sensors together with an 

amplification circuit, Bluetooth, and a microcontroller to implement a respiration detector. 
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The respiratory signal extracted by the bend sensors can be transmitted to the computer via 

Bluetooth to calculate the respiratory cycle, for real-time assessment. If an abnormal status 

is detected, the device will warn the user automatically. Experimental results indicated that 

the error in respiratory cycles between measured and actual values was only 6.8%, 

illustrating the potential of our detector for home care applications. 

Keywords: K-means algorithm; K-nearest neighbor; lung sound; MFCC; stethoscope 

 

1. Introduction 

Lung auscultation is a diagnostic method used for checking the integrity of lung function. It is a 

standard preliminary examination for all patients at hospitals, whereby trained physicians use 

stethoscopes to listen for changes in lung sounds to assess whether a patient has any obvious lung 

abnormalities. Despite many advances in medical equipment, the traditional analog stethoscope remains 

the main diagnostic tool used by physicians in lung auscultation. 

In modern society, factors such as air pollution, unbalanced diets, excessive stress, and abnormal 

sleep patterns have resulted in more people suffering from respiratory system diseases. According to 

recent Department of Health statistics, lung- and respiratory-related diseases ranked fourth and seventh 

among the top 10 leading causes of death. On average, one person dies from one of these two diseases 

every two hours [1]. 

 

Figure 1. Lung sound classification [2].  

Lung sounds can be divided roughly into normal and abnormal sounds, as shown in Figure 1 [2]. 

Normal breath sounds can be divided into bronchial, vesicular-bronchial, vesicular, and tracheal sounds, 

while abnormal breath sounds can be divided into crackles, rhonchi, and wheezes. Patients with lung 

disease have abnormal breath sounds, so abnormal breath sounds are an important component in the 

diagnosis of lung diseases. Different lung diseases cause different lung sounds: Table 1 lists some 
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associations between abnormal lung sounds and lung diseases [3]. Pneumonia, chronic bronchitis, 

bronchiectasis, congestive heart failure, and obstructive pulmonary disease produce crackles. 

Obstructive pulmonary disease, asthma, and bronchial stenosis produce wheezes. Pneumonia, chronic 

bronchitis, and congestive heart failure produce rhonchi. Researchers have found that the combined 

population of patients suffering from pneumonia, chronic bronchitis, bronchiectasis, congestive heart 

failure, obstructive pulmonary asthma, asthma, and bronchial stenosis accounts for about 30% of the 

global population [4–6]. 

Table 1. Associations between abnormal lung sounds and lung diseases [2,3]. 

Relevant Disease/Abnormal Lung Sound  Crackles Wheezes Rhonchi 

Pneumonia ●  ● 

Chronic bronchitis ●  ● 

Bronchiectasis ●   

Congestive heart failure ●  ● 

Obstructive pulmonary disease  ●  

Asthma  ●  

Bronchial stenosis  ●  

Many methods for analyzing lung sounds have been proposed. One involves converting lung sounds 

into a spectrogram: a wheeze-containing lung sound signal will appear as a continuous period of dark 

blocks in a spectrogram. Thus, an image processing method has been proposed to extract dark blocks to 

determine the existence of wheezes [7]. Another method involves using mel-frequency cepstral 

coefficients (MFCCs) to establish normal lung sound and wheeze signal feature models, and to apply 

vector quantification in signal analysis to determine whether the signals include wheeze signals [8]. A 

wavelet transformation of lung sound signals has also been proposed, in which eigenvalues are 

determined to analyze normal lung sound and wheeze signals through a Gaussian mixture model [9]. 

Another method involves measuring lung sounds by an instrument and collecting breathing flow signals 

and then applying autoregressive model statistics combined with a nearest neighbor classification  

(Kth nearest neighbor) to analyze whether the lung sounds are abnormal [10]. One method involves 

using MFCCs to establish abnormal lung sounds using acoustic feature models, using a Gaussian mixture 

model to determine whether the sounds are abnormal [11]. With regard to instruments for collecting lung 

sounds, Suzuki proposed using two groups of condenser microphones to help eliminate background 

noise: one group of condenser microphones was used to record lung sounds and the other was used to 

record background noise; an adaptive filter was then used to eliminate background noise from  

lung sounds [12]. 

Lung sounds have been widely studied. One report proposed using a PC as a tool for acquisition and 

analysis, and establishing a user interface for physicians as a diagnostic tool. This hardware used a 

microphone circuit to sense lung sounds, and a respiratory phase detection circuit detected the breathing 

state using a thermistor to sense changes in nasal air temperature. The signals were captured by a PC 

sound card and recorded in the computer [13]. With regard to signal analysis, an electronic stethoscope 

has been proposed for the auscultation of heart sounds and lung sounds [14]. It uses a condenser 

microphone with an amplifier, band-pass filter circuit, and shift circuit, and a microprocessor to perform 

the analog-to-digital conversion. Data are transmitted via a RS232 port to a computer and the sound is 
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played back through speakers. The software LabVIEW was used to develop a user interface to display 

the lung sound diagrams to provide a diagnosis reference for junior physicians. Another study proposed 

using computer software to establish wavelet transformations for eigenvalue computation and to identify 

abnormal breath sounds through an artificial neural network (ANN) [15]. It established a system that 

could automatically judge relevant symptoms, and its user interface could display the current state of the 

lung to determine the abnormal lung sounds and symptoms. Another report proposed a digital electronic 

stethoscope, based on the commercially available digital Walkman [16]. This is a Walkman with a 

stethoscope head containing an embedded condenser microphone and amplifying and filtering circuits 

to store a digital lung sound signal. In this system, methods of analysis including fast Fourier transform 

(FFT) and power spectral density were used to detect wheeze signals. Another study proposed using 

mel-frequency cepstral coefficients (MFCCs) to capture lung sound characteristics, and then using 

dynamic time warping to divide the lung sounds into normal sounds, wheezes, and crackles [17]. By 

enhancing lung sound signals, a dual-sensor spectral subtraction algorithm was used to reduce interfering 

noise in lung sound identification when capturing the characteristics of lung sound signals in this system. 

Another study proposed using hidden Markov models to establish feature models of the collected lung 

sounds of emphysema patients and normal lung sounds [18]. The differences were used to detect whether 

the abnormal threshold was reached. Other researchers have proposed using neural network (NN) 

classification technology for lung sound analysis [19].  

2. Materials and Methods 

2.1. System Design  

Figure 2 presents the proposed system architecture, which consists of a condenser microphone, digital 

filter, lung sound analysis system, and respiratory rate monitor. The functions of each unit are  

described below. 

 

Figure 2. System architecture. 

2.1.1. Condenser Microphone 

Records lung sound signals measured by the analog stethoscope, amplifies the signals, and transmits 

them to the computer. 
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2.1.2. Digital Filter 

First, line filtering is conducted with a 10-order Chebyshev II IIR filter; the band-pass range is 

designed to cover the major frequency range of lung sounds, 200–2000 Hz. Then, wavelet technology is 

applied to de-noise the signals. The de-noising process can be divided into three major steps: 

(a) Select an appropriate wavelet function and determine the number of wavelet decomposition layers 

M, then conduct the M-layer wavelet decomposition of the original one-dimensional signal S. 

(b) For the high-frequency coefficient of each layer of 1-M (j = 1, 2, ..., M), select a threshold T for 

quantitative processing to get useful high-frequency components. We adopt a soft threshold for 

quantification by comparing the absolute value with the threshold. Points below or equal to 

threshold became 0, and points greater than threshold become the difference between the point 

and the threshold. The mathematical equation is shown in Equation (1) [20]: 

sgn( ( ))( ( ) ) ,  ( )
( )

0                                  ,  ( )

j j j

j

j

w t w t T w t T
w t

w t T

  
 



 (1) 

(c) Based on the M-layer low-frequency coefficient of the wavelet decomposition and the  

high-frequency coefficient from the first layer to the M layer after the quantification processing, 

we can reconstruct the signals to obtain de-noised signals. 

 

Figure 3. Processing effects of wavelet de-noising for the same case with different threshold 

values (M = 6). 

For our analysis, we followed the above steps and used a sine wave to simulate the lung sound signal 

S. Using the heuristric threshold selection heursure method and the maximum and minimum threshold 

selection ‘minimaxi’ method, we conducted a wavelet decomposition of signal S. We found that the 

signal reconstructed waveform was the most complete when the number of wavelet decomposition layers 

was 6 (M = 6) without distortion. Figure 3 presents the results; it shows that the two processing methods 
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can both be used to essentially eliminate the noise interference. However, the minimaxi method may 

also eliminate some useful signals, resulting in distortion of the signals. This problem did not arise in 

the heursure method, so we used the heuristric threshold method to select threshold values. 

2.1.3. Lung Sound Signal Analysis 

To detect abnormal lung sounds, the system uses MFCCs to capture normal and abnormal lung sound 

(crackle, wheezes, and rhonchi) signal characteristic parameters. Coupled with the K-means algorithm, 

the signal characteristic parameters are clustered to reduce the amount of data and computation time. 

Finally, abnormal lung sound signals are classified using a Kth nearest neighbor classification. 

2.1.4. Respiratory Rate Monitor 

The system uses bending sensors to compute the respiratory rate, by measuring belly bulge and bend 

times. When sensors are placed on the abdomen, the belly bulge resistance of inspiration differs from 

that of expiration, so this feature is used to monitor the respiratory rate (Figure 4). Sensor signals are 

amplified appropriately and used as inputs for signal processing, and the processed signals are then 

transmitted via Bluetooth to a computer to calculate the number of breaths. 

 

Figure 4. Process of respiratory signal sensing. 

2.1.5. Graphical User Interface (GUI) Design of the Diagnosis System 

Figure 5 shows the GUI for the lung sound classification and identification diagnosis system. In the 

diagnosis system GUI, Area 1 displays the lung sound waveform, Area 2 is the lung sound file control 

button, Area 3 contains lung sound abnormal classification results, Area 4 is the respiratory rate 

waveform, as measured by the bending sensors, and Area 5 is the respiratory cycle (times/min). 

 

Figure 5. GUI design of the diagnosis system. 
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2.2. Implementation of the Integrated Stethoscope and Respiratory Rate Sensor System  

The system integrates a traditional analog stethoscope and a condenser microphone to measure and 

record patient lung sound signals. To do this, we cut out a section of the Y-shaped hose and integrated 

the condenser microphone and stethoscope head. The microphone circuit was connected to the end of 

the hose by hot plastic, and wrapped with isolation sticky paper to fill the cracks (Figure 6). Figure 7 

shows the implementation of the condenser microphone. The analog stethoscope measures lung sound 

signals, the stethoscope head collects the sounds, and the microphone records the sounds, which are 

transmitted to a PC for storage and playback. 

 

Figure 6. Modified microphone stethoscope.  

 

Figure 7. Condenser microphone [21].  
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2.3. Respiratory Rate Sensor  

The bending-type sensor used was the Flex Sensor (American Images Company [21]). The  

bending-type sensor is a long, thin sheet of a variable resistor (4.5" long, 0.25" wide, and 0.2" high;  

see Figure 8). When the bending-type sensor bends, resistance differs according to the degree of bending; 

resistance ranges from 10–40 kΩ. 

 

Figure 8. Characteristics of bending-type sensor resistance [22]. 

Figure 9 illustrates the respiratory rate sensor circuit, which uses an amplifier to amplify the sensing 

signals. The circuit output equation is shown in Equation (2), and respiratory sensor implementation is 

shown in Figure 10. 

f

out in

in

R
V V

R
   (2) 

 

Figure 9. Respiratory sensor circuit. 
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Figure 10. Implementation of respiratory sensor. 

2.4. Implementation of Lung Sound Classification System  

Figure 11 shows the process of the lung sound classification identification system. Mel-frequency 

cepstral coefficients (MFCCs) capture normal and abnormal lung sound (crackle, wheeze, and rhonchi) 

characteristic parameters. Coupled with the K-means algorithm, clustering of characteristic parameters 

reduce the data and computation requirements. Finally, abnormal lung sound signals are classified using 

a nearest neighbor classification (Kth nearest neighbor). The system theory is described below. 

 

Figure 11. Process of lung sound identification system. 
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2.5. Lung Sound Signal Characteristics Extraction  

MFCC is now being widely used in speech research and speaker identification systems [9]. It has 

strong low-frequency sound capabilities, and weaker high-frequency sound perception. Figure 12 

illustrates the relationship between human perception of frequency and actual frequency. The MFCC 

characteristics capture method is based on a Fourier transform: eigenvectors are extracted from the 

frequencies of each sound frame of the sound signals. Figure 13 presents the MFCC parameter-capturing 

process, which is described below. 

 

Figure 12. Relationship between human perception and actual frequency.  

 

Figure 13. Process of MFCC characteristic parameter capture. 

(1) Frame blocking: To observe sound signal characteristics, we collect a certain number of sampling 

points of signals for observation, referred to as framing. To limit signal changes between frames, 

frames are generally overlapped in the proportion of 1/2. 

(2) Compute energy: After framing, the energy of each frame is computed as the 13th parameter  

of MFCC: 

2

1

( )
framesize

n

energy S n


   (3)  

(3) Pre-emphasis: After the sound is sent, the higher-frequency part of the sound will be attenuated. 

Thus, the pre-emphasis method is used to compensate for the attenuated high-frequency part in 

identification or comparison. Pre-emphasis compensates for the loss of high-frequency by 

passing the sound signal through a high-pass filter, as shown in Equation (4). Let S(n) represent 

the sound signal, n be the time coefficient, in this case α = 0.95: 

( ) ( ) ( 1)S n S n S n


    (4)  
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(4) Hamming window: Discontinuity on both sides of the sound frame will produce additional 

signals, so the continuity of the audio spectrum will be destroyed. Window processing of the 

sound frames lowers the additional high-frequency signals on both sides of the sound frame to 

highlight the major signals at the center of the frame. By mixing, sound frame overlaps can produce 

the effect of continued border changes. Let N be all sampling points of a frame.  

A Hamming window is generally used to prevent overly dramatic changes in a window, as follows: 

2
0.54 0.46 cos    , 0 1

( ) 1

0                                    ,otherwise 

n
n N

W n N

  
      

  



 (5)  

(5) Fast-Fourier transform (FFT): FFT is the most commonly used sound signal processing 

technique. Let k be currently sampling point and n for all N sampling points within a period.  

It converts time domain signals into the frequency domain to facilitate energy distribution in the 

frequency spectrum, as shown below: 

1

0

2
[ ] [ ]exp( ),   0 N 1

N

n

nk
X k x n j k

N






      (6)  

(6) Triangular pass filter: The human auditory system can perceive frequencies ranging from  

20–20,000 Hz, but is not equally sensitive to each frequency. The human ear is relatively 

sensitive to the low-frequency range, and less sensitive to changes at higher frequencies. In the 

sound identification system, the Mel-scale frequency is similar to the perceived frequency, and 

is the most commonly used simple frequency scale transformation equation, as described below. 

2595 log 1
700

f
Mel

 
   

 
 (7)  

Let Mel be the Mel frequency and f be the actual frequency. As shown in Figure 14, the 

triangular filter bank consists of a number of triangular band-pass filters. The design is based on 

the characteristics of the human ear. In the low-frequency part, the interval of the triangular filter 

bank is closer and the bandwidth also increases with frequency. The interval and frequency width 

will also increase accordingly, so it can simulate human ear characteristics, i.e., it is more 

sensitive to lower frequencies. Using the Mel filter to process the signals of each frame, we obtain 

the signal frequency energy value, as shown below.  

 

Figure 14. Triangular filter bank model.  
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Let e(i) be the i energy of No. i triangular filter, l be the number of triangular filters, φ be the 

function of No. Triangular filter i, and Ak be frequency energy value of S[k]. As the signals after 

FFT are vertically asymmetrical, it is only necessary to compute in the range of N/2: 

1
2

0

( ) ( ) ,     0

N

i k

k

e i k A i l





     (8) 

2
[ ] ,    0

2
k

N
A S k k    (9) 

(7) Discrete cosine transform (DCT): After obtaining the filter energy, we can calculate its logarithm 

value and enter it into the discrete cosine transform to get the M orders of characteristic 

coefficients. In this paper, M = 26. The DCT equation is shown in Equation (10).  

Let e(i) be the energy value of No. i triangular band pass filter, Cm be the mth order MFCC, L 

be the number of MFCCs (here, this = 12), and Ek be the energy value after FFT computation: 

1

1
cos[m (k ) ],    m = 1, ..., L

2

M

m k

k

C E
M


      (10)  

log[ ( )]kE e i  (11)  

(8) Delta cepstrum coefficients: MFCC does not produce accurate identification results. Thus, in 

addition to the 12th-order MFCC, we added the energy of the logarithm of the sound frame to 

get the 13th-order characteristic parameter, by obtaining the first-order differential cepstrum 

coefficients and the second-order differential cepstrum coefficients of the 13th characteristic 

parameters. We obtained a total of 39 orders of coefficients to represent the sound frame MFCC. 

The meaning of the differentiation is the change in the coefficients over time. The equation of 

differentiation is shown in Equation (12): 

2

(t )

(t) ,    m = 1, ...., L

M

m

M
m M

M

C

C 



  

 






 (12)  

2.6. K-Means Algorithm  

Among the data-segmented clustering methods, the most widely used and commonly known method 

is K-means clustering, also known as ‘Forgy’s algorithm’ [23]. The main objective of K-means is to 

process a large number of high-dimension data to find representative data. These representative data are 

also known as cluster centers. These cluster centers can be used to carry out data classification and 

compress large amounts of data. When using K-means clustering, it is necessary to determine the number 

of clusters and gradually reduce the errors in the cluster after repeated itinerary computation until the 

errors do not change and converge to the final clustering results. The steps of implementing the K-means 

algorithm are as follows. 

If the training sample is x(i): 

( ) (1) (2) ( ) ( ){ , ,...., },          i m ix x x x x   
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(1) We randomly select K cluster centers as μj:  

1, 2{ ,...., },     j k j        

(2) Repeat the following process until convergence: 

(a) For each x(i), compute the nearest cluster center and assign it to the nearest cluster center.  

𝑐(𝑖): = argmin
𝑗

‖𝑥(𝑖) − μ𝑗‖
2
 (13)  

(b) For each category μj, re-compute the mean value of the category and update the cluster center.  

(i) (i)

1

(i)

1

{c j}x

{c j}

m

i
j m

i







 






 (14)  

Figure 15 shows the K-means algorithm process. It determines the cluster number K and establishes 

the cluster center according to the value of K before computing the distance of each data point from the 

cluster center, and assigns it to the nearest cluster center. After the distribution, a new cluster center is 

computed for distribution until the distance between the new cluster center and data satisfies the ending 

condition to complete the clustering process. 

 

Figure 15. Flowchart of K-means algorithm. 
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2.7. K-Nearest Neighbor Algorithm  

The K-nearest neighbor algorithm is based on the idea of ‘clustering things of the same nature’—in 

other words, objects of the same category should be closer in distance. The implementation process of 

the K-nearest neighbor algorithm is as follows: 

(1) First, determine the number of nearest points of test data x against training data K using a 

Euclidean distance equation to compute the distance. If there are two points in k dimensional 

space, x = [x1, x2, …, xk] and y = [y1, y2, …, yk], the Euclidean distance between the two can be 

represented by Equation (15): 

2

1

( , ) ( )
k

i i

i

d x y y x


   (15)  

(2) When test data x has more representatives than a certain category of data (the number of  

K-nearest points accounting for the majority), it is judged that x is of the certain category. 

3. Experiments 

3.1. Experimental Data  

We performed six experiments. The training data were sound files provided in [24]. Each training 

data sample included respiratory cycle data. Table 2 lists the experimental data format, consisting of  

20 training data sets, training data times of 10–20 s, and MFCC of 39 dimensions. The test data for 

Experiments 1–4 used sound files from [24]. The test data in Experiment 5 were lung sound signals  

from subjects. 

Table 2. Experimental Data. 

KNN (K = 1) 

K-Means (K = 256) 
Training Data Test Data 

Number  20 According to experimental conditions 

Time (s)  10–20 10–20 

MFCC dimensions 39  39  

Category  
Four categories (normal sounds, 

crackles, wheezes, and rhonchi) 
No prior classification  

3.2. Experimental Environment  

A. Experiment 1 

Experiment 1 included two different conditions: (1) with the K-means algorithm; and (2) without it. 

We observed how two conditions affected the lung sound signal identification rate. 

B. Experiment 2 

Experiment 2 assumed that the experimental environment was ideal: we observed how this affected 

lung sound signal identification to determine whether the training data had converged. 
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C. Experiment 3 

Experiment 3 assessed how environmental interference factors affected the identification of lung 

sound signals. 

D. Experiment 4 

Experiment 4 evaluated the health of lungs and computed the percentages of three kinds of abnormal 

lung sounds. 

E. Experiment 5 

We used the proposed system to record human lung sound signals to assess identification results of lung 

sound signals. Based on measurement data from a Bluetooth electronic stethoscope (Littmann 3200, 3M), 

we computed the error between data measured using the proposed system and the Littmann 3200 data.  

F. Experiment 6 

Experiment 6 used the bending-type sensor to measure subjects’ respiratory states and computed the 

respiratory cycle (times/min) (the breathing rate of a normal adult is 12–20 times/min) to test the 

respiratory rate abnormal warning system. 

3.3. Experimental Results 

3.3.1. Experiment 1  

This experiment assessed how combining MFCC and K-means algorithm affected the recognition of 

lung sound signals. The experiment was divided into two parts (A, B). System A (Figure 16) used the 

lung sound identification system without the K-means algorithm clustering.  

 

Figure 16. System A: Lung sound identification system. 
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System B (Figure 17) used the lung sound identification system with the K-means algorithm 

clustering. To prevent other factors from affecting the identification results, identical sound files were 

used in the two training samples. Test sound files included 20 lung sound signals with 20 dB white 

Gaussian noise. The identification results of the two methods were compared. 

 

Figure 17. System B: Lung sound identification system with K-means algorithm clustering. 

Table 3. Identification results of Systems A and B. 

Test Sound 
System A (without K-Means) 

Identification Rates 

System B (with K-Means) 

Identification Rates 

20dB_AWGN normal lung sound (normal lung sound) 80.2% 95% 

20dB_AWGN abnormal lung sound (crackles) 78.5% 92% 

20dB_AWGN abnormal lung sound (wheezes) 79.6% 90.5% 

20dB_AWGN abnormal lung sound (rhonchi) 70.3% 91.5% 

Average identification rate 77.1% 92.3% 

Note: All additional data used for current study including source code, normal lung sound, crackles, wheezes, 

rhonchi and the five clinical asthmatics audio archives are also shown in our project website [25].  

As shown in Table 3, the addition of the K-means algorithm improved identification rates in System 

B by 15.1% compared with System A (without K-means). Table 4 compares training and testing times; 

without the K-means algorithm, despite the shorter training time, the testing time of System A was far 

longer than that of System B. Together, these experimental results demonstrated that combining MFCC 

and the K-means algorithm enabled good identification of lung sound signal, so System B was used for 

Experiments 2–6. 

Table 4. Training and testing times of Systems A and B. 

 System A (without K-Means) System B (with K-Means)  

Training time 0.17 s 98.2 s 

Testing time 10.6 s 0.75 s 
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3.3.2. Experiment 2  

This experiment evaluated the proposed system’s identification rates of lung sound signals in an ideal 

environment with no human interference. Test sound files (normal and abnormal) were used in the 

identification; Table 5 lists the results. KNN identification rates were 100%. 

Table 5. Identification results of normal and abnormal lung. 

 Sound File Identification Rate  

Normal lung sounds  

(Normal lung sounds) 
Normal1.wav—Normal10.wav 100% 

Abnormal lung sounds (crackles) Crackles1.wav—Crackles10.wav 100% 

Abnormal lung sounds (wheezes) Wheezes1.wav—Wheezes10.wav 100% 

Abnormal lung sounds (rhonchi) Rhonchi 1.wav—Rhonchi 10.wav 100% 

Note: All source archives of the normal lung sound, crackles, wheezes, rhonchi are for experimental 

measurements are shown in our project website [25].  

3.3.3. Experiment 3  

This experiment extended on Experiment 2. During stethoscope use, considerable noise may be added 

to lung sound signals due to changes in position, friction between clothing and the stethoscope, and 

touching the wire and tube. This experiment was designed to test whether the proposed system can 

eliminate this noise from lung sound signals to ensure results are correctly identified. We used lung 

sound signals and 20 dB white Gaussian noise as signal sources in the identification of lung sound 

signals. Table 6 lists the experimental results: for lung sound signals mixed with 20 dB white Gaussian 

noise, the normal lung sound average identification rate was 95%, while for abnormal lung sounds, it 

was 91.3%. 

Table 6. 20 dB white Gaussian noise with normal and abnormal lung sounds. 

 Sound File Identification Rate 

AWGN normal lung sound 

(normal lung sound) 

AWGN_Normal1.wav—

AWGN_Normal 10.wav 
95% 

AWGN abnormal lung sound 

(crackles) 

AWGN_Crackles1.wav—

AWGN_Crackles 10.wav 
92% 

AWGN abnormal lung sound 

(wheezes) 

AWGN_Wheezes1.wav—

AWGN_Wheezes 10.wav 
90.5% 

AWGN abnormal lung sound 

(rhonchi) 

AWGN_Rhonchi 1.wav—

AWGN_Rhonchi 10.wav 
91.5% 

Note1: All source archives of the normal lung sound, crackles, wheezes, rhonchi are for experimental 

measurements are shown in our project website [25].  
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3.3.4. Experiment 4  

In this experiment, we classified lung health by grades according to the classification results of testing 

sound frames. Table 7 lists the grading descriptions. Sound frames are segmented into 10 segments, each 

of which is classified, and the classification results are analyzed in terms of the proportion of abnormal 

lung sound segments (an abnormal segment is labeled as 1, and a normal segment as 0). For example, if 

0–2 of 10 sound frame segments are classified as abnormal, the sound frame is labeled as Good. If  

3–5 segments are labeled as abnormal, the sound frame is classified as a Warning. If 6–8 segments are 

classified as abnormal, the sound frame is classified as Bad. If 9 or 10 segments are classified as 

abnormal, the sound frame is classified as Serious. 

Table 7. Grading descriptions of lung sounds. (0 = normal lung sound; 1 = abnormal lung sound.) 

Code Number Degree Condition 

0000000000–0000000011 80%–100% Good 

0000000111–0000011111 50%–70% Warning 

0000111111–0011111111 20%–40% Bad 

0111111111–1111111111 0%–20% Serious 

For patients with composite problems, we used a mixer to mix the two types of abnormal lung sounds 

as the simulation signal: during the experiment, we selected a 10-s blank sound frame and mixed two 

types of abnormal lung sound (the first 2 s of crackles and the remaining 8 s of wheezes). The segment 

of abnormal lung sound after sound mixing was displayed on the user interface (Figure 18). Based on 

the experimental results, the system identified the results of the abnormal lung sound segment, with 

crackles accounting for 20% and wheeze for 80%, and the state being listed as Serious. In other words, 

the system can identify the segment of the abnormal lung sound accurately and process the abnormal 

signals of a patient with composite problems, as well as digitally displaying the results on the user 

interface to provide information about the state of the user’s lung health. 

 

Figure 18. User interface for prevention and diagnosis. 
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3.3.5. Experiment 5  

This experiment compared error rates between the results measured using the proposed stethoscope 

and those provided by a 3M Bluetooth electronic stethoscope (Littmann 3200) [26]. For lung 

auscultation, the proposed stethoscope was placed on the right section of the middle of the rib  

(Figure 19). To avoid any effects of gender or age, all subjects were males aged around 24 years old. 

They were all requested to go to bed early the night before the test, so all were fully rested. To help 

ensure the experimental data were objective, none of the subjects smoked or consumed any substances 

(e.g., tea, alcohol, pharmaceuticals) that might affect the test results. 

 

Figure 19. Lung auscultation position. 

1. Comparison of device error: Table 8 lists the measurements and errors of the proposed stethoscope 

system, using a commercially available 3M Bluetooth digital stethoscope (Littmann 3200; see  

Figure 20) [26]. 

 

Figure 20. Littmann 3200 Bluetooth electronic stethoscope (3M) [26]. 

2. Verification method: In vector space, the most commonly used tool to judge the similarity of two 

vectors is the value of the cosine function of the angle between the vectors, as shown in Equation (16). 
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 (16)  

Let θ  be the angle between two vectors of x = [x1, x2, …, xk] and y = [y1, y2, …, yk]. When the angle 

is smaller, the cosine function is closer to 1, indicating the two are more similar. The verification steps 

are as follows: 

(1) Obtain lung sound waveforms from the 3M stethoscope and the modified  

microphone stethoscope. 

(2) To combine the amplitudes of the waveform in various vertical lines to form the vector of the 

waveform signal, X = (0.0078, 0.00625, 0.054, ..., 0.23), Y = (0.0078, 0.0078, 0.0078, ..., 0.24). 

Let X vector be the 3M stethoscope and Y vector be the proposed stethoscope. X and Y formed 

the vector of the waveform. 

(3) Enter the waveform vector into the cosine function and compute the degree of similarity of  

the two. 

We used the two devices to record four groups of lung sound signals. Following the steps above, we 

computed the cosine function values (similarity) as shown in Table 8: 0.96, 0.97, 0.95, and 0.95, 

respectively. The average value was 0.956, i.e., the degree of similarity between the output waveform of 

the two devices was 95.6%. Thus, the error between the proposed system and the 3M stethoscope is 

4.4%. Table 9 compares the results from the two devices. 

Table 8. Comparison of cosine function values between the two devices. 

Vector  cos  

<X1,Y1> 0.96 

<X2,Y2> 0.97 

<X3,Y3> 0.95 

<X4,Y4> 0.95 

Average  0.956 

Table 9. Comparison of error between the two devices. 

Product Price 
Sound 

Storage 

Waveform 

Display 

Simple 

Diagnosis 

Error of Lung Sound 

Measurement Using The 

Devices (%) 

3M Littmann 3200 20,000 Available 
Computer 

display 
Unavailable 

4.4 

Modified stethoscope 2000 Available 
Computer 

display 
Available 

We used the proposed system to measure the lung sounds of 20 subjects, and transmitted the amplified 

signals to the computer for analysis. Table 10 lists the basic data of subjects, and Table 11 lists the 

measurement results. 
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Table 10. Basic information of twenty subjects. 

Subject Gender Age 
Height 

(cm) 

Weight 

(kg) 

Coughing in 

the Last 7 Days 

Family History 

of Disease 

Measuremen

t Posture 

A Male 24 170 64 none No Sitting 

B Male 24 180 107 none Hypertension Sitting 

C Male 24 171 70 none No Sitting 

D Male 24 163 55 none No Sitting 

E Male 25 172 90 none No Sitting 

F Male 25 181 69 none Hypertension Sitting 

G Male 23 177 67 none No Sitting 

H Male 23 172 75 none No Sitting 

I Male 24 172 54 none No Sitting 

J Male 24 172 52 none No Sitting 

K Male 24 163 61 none No Sitting 

L Male 24 177 64 none No Sitting 

M Male 24 172 71 none No Sitting 

N Male 24 172 68 none No Sitting 

O Male 25 173 68 none No Sitting 

P Male 25 176 69 none No Sitting 

Q Male 23 185 68 none No Sitting 

R Male 23 169 59 none No Sitting 

S Male 24 171 58 none No Sitting 

T Male 24 170 67 none No Sitting 

Table 11. Analysis results of the current proposed system.  

 Subject Identification Results 

Condenser microphone 

recordings 

A Good 

B Good 

C Good 

D Good 

E Good 

F Good 

G Good 

H Good 

I Good 

J Good 

K Good 

L Good 

M Good 

N Good 

O Good 

P Good 

Q Good 

R Good 

S Good 

T Good 
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The current proposed system was used to measure the clinical asthmatics obtained from Cardinal Tien 

Hospital. There are five audio files, as shown in Table 12, Record1.wav, ..., Record5.wav, which are the 

auscultation recordings for different parts of the patient chest. The average recognition rate for asthma 

was 97.6% as shown in Table 12.  

Table 12. Asthmatics analysis results for the clinical asthmatics.  

Audio file name The average recognition rate 

Record1.wav 

97.6% 

Record2.wav 

Record3.wav 

Record4.wav 

Record5.wav 

Note: The 5 source clinical asthmatics audio archives for experimental measurements are also shown in the 

website [25].  

3.3.6. Experiment 6  

Measurement Experiment with Wireless Respiratory Rate Detection System 

When using the wireless respiratory rate detection system, the bending-type sensor should be placed 

on the center of the abdomen (Figure 21) because changes in expansion and contraction are most 

apparent at this position. 

 

Figure 21. Position for the placement of the wireless respiratory rate detection system. 

Wireless Respiratory Rate Detection System Software 

The GUI of the wireless respiratory rate detection software was developed using Matlab. After the 

hardware receives the respiratory signal, the Bluetooth wireless module sends the respiratory signals to 

the computer. Matlab reads the respiratory data from the virtual COM port. After regrouping the data, 

the data are stored and displayed for analysis. Figure 22 illustrates the user interface of the wireless 

respiratory rate detection system. After setting the threshold values, we can compute the number of peak 
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values beyond the threshold value. As shown in Figure 22, “a” waves and “b” waves greater than the 

threshold values can be considered as the two respiratory cycles. 

 

Figure 22. Wireless auscultation system user interface. 

4. Discussion 

4.1. Detection Accuracy  

We used the bending-type sensor to detect the breathing state and compute respiratory cycle 

(times/min) using the mean absolute percentage error (MAPE) as the evaluation indicator, as shown  

in Equation (17): 

MAPE =
1

𝑀
∑|

𝑥(𝑘) − 𝑥′(𝑘)

𝑥(𝑘)
|

𝑀

𝑘=1

× 100% (17)  

Let (k) be the real value and x’(k) be the measured value. The principle of mean absolute percentage 

error (MAPE) can be applied here, as described previously [27] (see Table 13). The MAPE rate of the 

proposed respiratory detection system was 6.8%, indicating that the proposed respiratory detection 

function has high accuracy. Table 14 presents the results of the respiratory rate measurement, which 

demonstrate that the respiratory detection system can detect the breathing state of patients with asthma 

(respiratory rate > 25 times/min) [28] and send a warning about abnormal respiratory cycles. 

Table 13. MAPE accuracy principles.  

Model Prediction Capability MAPE (%) 

Highly accurate 10% 

Good 10%–20% 

Reasonable 20%–50% 

Inaccurate >50% 
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Table 14. Respiratory rate measurement results. 

Subject 
Sensing Respiratory 

Cycle (Times/Min) 

Actual Respiratory 

Cycle (Times /Min) 
MAPE Value  

A 17 15 

6.8% 

B 16 15 

C 18 17 

D 15 16 

E 17 19 

F 14 14 

G 16 15 

H 16 17 

I 14 15 

J 15 14 

K 16 14 

L 17 17 

M 16 17 

N 15 14 

O 16 17 

P 14 16 

Q 16 17 

R 17 16 

S 16 15 

T 14 15 

4.2. Comparison with Existing Auscultation Systems  

Table 15 compares the results of the proposed system with (1) a traditional stethoscope (CK625P) [28] 

produced by Spirit; and (2) the 3M Littmann 3200 Bluetooth electronic stethoscope. 

Table 15. Comparison with existing auscultation systems. 

 
Price 

(USD) 

Sound 

Storage 

Frequency 

Range  

Waveform 

Display  

Recording 

Time 

(Second ) 

Capturing 

Function  

Simple 

Diagnosis 

Wireless 

Function  

CK625P 

[29] 
60 Unavailable 20–10,000 Hz Unavailable Unavailable Unavailable Unavailable Unavailable 

3M-3200 

[26] 
667 Available  20–1000Hz 

Computer 

display  
10 Unavailable Unavailable 

Bluetooth 

transmission  

Proposed 

system 
73 Available  200–2000 Hz 

Computer 

display  
20 Available  Available  Unavailable 

As shown in Table 15, the proposed system combines the advantages of a traditional analog 

stethoscope and a digital stethoscope. It can readily detect the respiratory rate and diagnose whether lung 

sound signals are abnormal. Thus, it has greater potential for application than the other digital 

auscultation systems. 
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5. Conclusions 

In this study, we used mel-frequency cepstral coefficients (MFCCs) to capture lung sound signal 

characteristic parameters, along with the K-means algorithm and nearest-neighbor classification  

(Kth nearest neighbor), to establish a stethoscope system for detecting abnormal lung sounds (crackles, 

wheezes, and rhonchi). Based on the experimental results, MFCC combined with the K-means algorithm 

was successfully able to identify lung sounds. In an ideal noiseless environment, the proposed system’s 

training data identification rate can be as high as 100%. The average identification rate of lung sound 

signals mixed with 20 dB white Gaussian noise was 92.25%., which is an improvement of ~8.6% 

compared with the results reported in [19], and ~16% compared with the results reported in [17].  

We used a condenser microphone to modify a stethoscope. The difference in error rates between  

the proposed system and the commercially available 3M Littmann 3200 Bluetooth electronic  

stethoscope [26] (Table 9) was 4.4%. Then, compared with existing auscultation systems, our proposed 

system has the advantages, recording time, capturing function, and simple diagnosis, as shown in the 

results of Table 15. Hence, our proposed system can be used for home diagnosis, because it provides 

lung sound signal sound frame identification results to grade lung sounds (Good, Warning, Bad, 

Serious). If lung sounds are classified as Warning (abnormal lung sounds accounting for 30% of signals), 

the system sends a warning message to the user to seek medical advice. 

We also designed a bending-type sensor to detect the respiratory state of the subject. According to 

the benchmark of mean absolute percentage error (MAPE), as proposed in [27], the proposed respiratory 

detection function is highly accurate: the error was ~6.8%. Data are transmitted to the computer through 

Bluetooth, where the respiratory cycle (times/min) is computed for real-time detection. The average 

respiratory rate of an adult is 12–20 times/min [30]. Using the normal respiratory rate as a threshold, the 

system sends a warning to the user when it detects an abnormal respiratory cycle in an asthma patient. 

Together, these results confirm that the proposed lung sound abnormal diagnosis system and wireless 

respiratory detection system can help clinicians diagnose lung problems in patients. 
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