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Abstract

Electronic circuits and systems employed in mission- and safety-critical applications such

as space, aerospace, nuclear plants etc. tend to suffer from multiple faults due to radiation

and other harsh external phenomena. To overcome single or multiple faults from affecting

electronic circuits and systems, progressive module redundancy (PMR) has been sug-

gested as a potential solution that recommends the use of different levels of redundancy for

the vulnerable portions of a circuit or system depending upon their criticality. According to

PMR, triple modular redundancy (TMR) can be used where a single fault is likely to occur

and should be masked, and quintuple modular redundancy (QMR) can be used where dou-

ble faults are likely to occur and should be masked. In this article, we present asynchronous

QDI majority voter designs for QMR and state which are preferable from cycle time (i.e.,

speed), area, power, and energy perspectives. Towards this, we implemented example

QMR circuits in a robust QDI asynchronous design style by employing a delay insensitive

dual rail code for data encoding and adopting four-phase handshake protocols for data com-

munication. Based on physical implementations using a 32/28nm CMOS process, we find

that our proposed QMR majority voter achieves improved optimization in speed and energy.

1. Introduction

Electronic circuits/systems used in mission-critical applications such as space, and safety-criti-

cal applications such as aerospace, nuclear power plants, electric power transmission and dis-

tribution, and industrial control automation etc. usually incorporate some form of N-modular

redundancy (NMR) to overcome bounded faults whose occurrences may be temporary or per-

manent in nature. In NMR, a function unit and (N–1) identical copies of the function unit,

where N is odd, are used, where a function unit may be a circuit or a sub-system or a system.

In NMR, majority of the function units is required to maintain the correct operation. In other

words, at least (N+1)/2 function units should operate correctly meaning that the faults of (N–

1)/2 function units would be masked. A function unit may produce one or more outputs. If
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each function unit in an NMR implementation produces M outputs, the respective outputs of

all the function units are connected to M N-input majority voters, which in turn produce the

primary outputs based on the Boolean majority [1]. Hence, N identical function units and N-

input majority voters are used to realize an NMR implementation.

The majority voter, although being an important decision making element, usually forms a

small component of a circuit/system used in a mission-/safety-critical application. Hence, the

majority voter is generally assumed to be perfect. However, if there may arise a concern about

the majority voter that it may become a single point of failure then the majority voter may be

duplicated like the function units [2]. This implies that instead of having one majority voter

providing the input for the next circuit/system stage, identical majority voters may be used

and the outputs of these majority voters can provide similar inputs for the next circuit/system

stage. This kind of implementation involving duplication of majority voters avoids the likeli-

hood of a single point of failure [3]. For example, in the Saturn launch vehicle digital computer

the majority voters were triplicated to avoid a single point of failure [4]. Another alternative is

to radiation harden the entire circuit/system at the process level by considering advanced pro-

cesses based on the silicon-on-insulator (SOI) technology such as a fully or a partially depleted

SOI for physical realization [5].

Triple modular redundancy (TMR) is the basic and the most widely used NMR scheme. In

TMR, three identical function units are used whose outputs are connected to three-input

majority voters and the temporary or permanent fault of an arbitrary function unit would be

masked. Thus, TMR can efficiently withstand a single upset (fault). To overcome double

upsets, quintuple modular redundancy (QMR), which is a higher order NMR, can be adopted

where five identical function units are used whose outputs are connected to five-input majority

voter(s) and the temporary or permanent faults of two arbitrary function units would be

masked. Other higher order NMR schemes involving seven or more function units are also

realizable although they are sparingly used.

It was noted in [6] that multiple bit upsets are likely to occur in combinational and sequen-

tial digital circuits. In [7], an investigation was carried out to find the proportion of single and

multiple bit upsets that electronic devices such as field programmable gate arrays may encoun-

ter in a realistic space environment. It was found that a big majority of the upsets are single

upsets while a small minority are double upsets. The percentages of triple and quadruple upsets

were found to be very small. Hence, adopting TMR and QMR might suffice for a mission- or

safety-critical application where TMR can be used to overcome single upsets and QMR can be

used to overcome double upsets.

In [8], progressive module redundancy (PMR) was suggested as a fault-tolerant design

strategy which recommends the use of different levels of redundancy for the critical portions

of a circuit or system depending on their vulnerability. For example, TMR can be deployed in

those portions where single upsets are likely to occur and QMR can be deployed in those por-

tions where double upsets are likely to occur. In a way, the technique of selective insertion of

TMR suggested in [9] is extended to include the selective insertion of QMR in the PMR

scheme.

In any NMR implementation, the majority voter is indispensable. Many synchronous

majority voters for TMR [10–12] and few synchronous majority voters for QMR [13–15] have

been presented in the literature. An asynchronous majority voter for TMR corresponding to a

bundled-data handshake protocol was also presented in the literature [16]. However, in asyn-

chronous design, the bundled-data handshake protocol is known to be less robust, and the

four phase handshake protocol used in a quasi delay insensitive (QDI) asynchronous design is

understood to be more robust. Recently, robust QDI asynchronous majority voters for TMR

were presented [17, 18]. In this work, we discuss and propose QDI majority voters for QMR.
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To our knowledge, this is the first work that deals with QDI asynchronous majority voters for

QMR implementations.

The rest of this article is organized into four sections. Section 2 provides a background

about QDI logic design. Section 3 presents the various QDI majority voters for QMR. Section

4 presents the simulation results for the example QMR circuit implementations which utilize

the majority voters to be discussed. Screenshots of a portion of the simulation waveforms cor-

responding to the proposed QMR majority voter are also given in Section 4. Finally, we draw

some conclusions in Section 5.

2. QDI asynchronous logic design

The consideration of a QDI asynchronous logic design is motivated by important factors such

as innate resilience to electromagnetic interference [19], inherent tolerance to parametric vari-

ations [20] and harsh environmental phenomena [21], low power operation [22], and natural

resistance to power analysis attacks [23], all of which are relevant for mission- and safety-criti-

cal applications.

QDI logic design is the practically realizable delay insensitive (DI) design which employs a

DI code [24] for data encoding and four-phase return-to-zero (RTZ) [25] or return-to-one

(RTO) [26] handshake protocols for data communication. However, the main difference

between a DI design and a QDI design is that the latter incorporates the isochronic fork

assumption [27], which represents the weakest compromise to delay insensitivity. An isochro-

nic fork basically refers to a signal node or a junction from where if two or more wire branches

emerge, the timing assumption is that any signal transition occurring on an isochronic fork,

whether it be binary 0 to binary 1 or binary 1 to binary 0, it is assumed to happen concurrently

on all the wire branches arising out of that fork. It is noted in [27] that without the isochronic

fork assumption, DI circuits cannot be realized in reality. It is observed in [28] that the iso-

chronic fork assumption is actually a mild timing assumption which helps to increase the

computational power of pure DI circuits. Further, it has been shown in [29] that the isochronic

fork assumption is realizable even in nanoscale design geometries.

2.1. QDI circuit stage, data encoding, and four-phase handshaking

The typical block schematic of a QDI circuit stage comprising input and output registers is

shown in Fig 1, which consists of an input register bank (IRB), an output register bank (ORB),

a QDI circuit that is sandwiched between these register banks, and completion detectors.

Acknowledgment input (AI) and acknowledgment output (AO) signals are exchanged

between the IRB and ORB, and the data or spacer is input to a QDI circuit through the IRB

based on the states of AI and AO signals which are also called handshake signals. AI is the

Boolean complement of AO, and vice-versa. A typical QDI circuit stage consists of an IRB, a

completion detector, and a QDI circuit. In fact, the ORB serves as the IRB for a subsequent cir-

cuit stage. The critical data path encountered in a QDI circuit stage is highlighted by the dotted

pink line in Fig 1.

The IRB and ORB consist of a series of registers, which are basically 2-input C-elements.

For example, in the IRB, a 2-input C-element is allotted for each rail of a dual rail encoded

input. The C-element [30] produces 1 if all its inputs are 1 and produces 0 if all its inputs are 0.

If any input is different from the rest of the inputs, the C-element would retain its existing

state. The transistor level static CMOS realization of a 2-input C-element is shown in Fig 1

[17] within the dotted brown box, where A and B are the inputs and M is the output.

The inputs and outputs of a QDI circuit are encoded using a DI code. Among the family of

DI codes [24], the dual rail code is the simplest member which has been widely used for QDI
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circuit designs [25]. In Fig 1, (R1, R0) and (S1, S0) represent the example dual rail encoded

equivalents of the single rail inputs R and S respectively. According to dual rail encoding and

RTZ handshaking, an input R is encoded as (R1, R0) where R = 1 is encoded as R1 = 1 and

R0 = 0, and R = 0 is encoded as R0 = 1 and R1 = 0. These assignments are called ‘data’. R1 = R0

= 0 is the ‘spacer’, and R1 = R0 = 1 is considered indeterminate. In the case of RTZ handshak-

ing, binary 1 on one of the encoded dual rails is used to represent the data. Hence, the signal

transitions in a QDI circuit will be monotonically increasing (i.e., 0 to 1) for the application of

data, and monotonically decreasing (i.e., 1 to 0) for the application of the spacer [31].

On the other hand, according to dual rail encoding and RTO handshaking, an input R is

encoded as (R1, R0) where R = 1 is encoded as R1 = 0 and R0 = 1, and R = 0 is encoded as

R0 = 0 and R1 = 1. These two assignments are called ‘data’. R1 = R0 = 1 is the ‘spacer’, and

R1 = R0 = 0 is considered to be indeterminate. In the case of RTO handshaking, binary 0 on

one of the encoded dual rails is used to represent the data. Thus, the signal transitions in a

QDI circuit will be monotonically decreasing for the application of data, and monotonically

increasing for the application of the spacer.

Handshaking is performed between IRB and ORB involving the QDI circuit, which is

responsible for processing the data and the spacer. Four steps are involved in RTZ and RTO

handshaking, and they are referred to as four-phase handshake protocols. The steps involved

in RTZ and RTO handshaking are described in [17], and an interested reader may refer to the

same for details. Here, it is sufficient to state that in the case of RTZ handshaking, the inputs

are supplied conforming to the sequence of data, spacer, data, spacer and so on. In the case of

RTO handshaking, the inputs are supplied conforming to the sequence of spacer, data, spacer,

data and so on.

Fig 1. A typical quasi delay insensitive (QDI) asynchronous circuit stage.

https://doi.org/10.1371/journal.pone.0239395.g001
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The gate level detail of the example completion detectors corresponding to RTZ and RTO

handshaking is shown in Fig 1 inside the dotted orange and green boxes. The completion

detector indicates i.e., acknowledges the receipt of all the primary inputs given to a QDI cir-

cuit. In the case of RTZ (RTO) handshaking, 2-input OR (AND) gates are used to combine the

respective dual rails of all the encoded inputs, and the outputs of all such 2-input OR (AND)

gates are combined using a C-element or a tree of C-elements to produce AO. The main differ-

ence between RTZ and RTO completion detectors is that excepting the C-elements which are

retained along with their respective inputs, the OR gates in the RTZ completion detector are

replaced by their gate duals viz. the AND gates to obtain the RTO completion detector.

2.2. Indicating circuits

There are two types of indicating QDI circuits namely strong indication and weak indication

circuits [32]. The timing relation between the receipt of primary inputs and the production of

primary outputs of strong indication and weak indication circuits is depicted by representative

diagrams in Fig 2. Fig 2a corresponds to RTZ handshaking and Fig 2b corresponds to RTO

handshaking.

Strong indication circuits wait to receive all the data and spacer, and after receiving them

would process them to produce all the primary outputs. A strong indication circuit would pro-

duce a primary output only after receiving and processing all the primary inputs. Hence, strong
indication circuits may comprise one or more primary outputs.

Weak indication circuits can process and produce some primary outputs after receiving

some of the primary inputs. However, weak indication circuits would produce the last primary

output only after receiving and processing the last primary input. Thus, a weak indication cir-

cuit requires at least two primary outputs so that even if one primary output is produced early

after receiving and processing some of the primary inputs, the other primary output would be

produced after receiving and processing the remaining primary inputs. Hence, weak indication
circuits require at least two primary outputs. For example, a weak indication full adder [33]

Fig 2. Timing behavior of indicating circuits with respect to: (a) RTZ; and (b) RTO handshaking.

https://doi.org/10.1371/journal.pone.0239395.g002
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adding two input bits along with a carry input may generate/kill the carry output early if the

two input bits are equal to 1/0 while the corresponding sum output would be produced only

after the carry input is received and processed. Given this, since the QMR majority voter has

five inputs and a single output, a weak indication realization is not feasible. Therefore, this

work describes strong indication QMR majority voters.

3. QDI QMR majority voters

This section discusses many strong indication QMR majority voters including our proposed

design.

3.1. Decomposed DIMS QMR majority voter

The delay insensitive minterm synthesis (DIMS) method [34] may be thought of as an

extended version of the DI regular expression recognizer presented in [35]. The DIMS method

basically describes a logic function in a canonical sum-of-products (CSOP) form. A CSOP

form comprises product terms which are realized using all the literals constituting the support

set of a function. Let us assume that (A1, A0), (B1, B0), (C1, C0), (D1, D0) and (E1, E0) repre-

sent the dual rail encoded primary inputs of a QMR majority voter, and (X1, X0) represents its

dual rail encoded primary output. The truth table of the dual-rail encoded QMR majority

voter that corresponds to RTZ handshaking is given in Table 1, and the canonical output SOP

expressions are given by (1) and (2).

X1 ¼ A0B0C1D1E1þ A0B1C0D1E1þ A0B1C1D0E1þ A0B1C1D1E0þ

A0B1C1D1E1þ A1B0C0D1E1þ A1B0C1D0E1þ A1B0C1D1E0þ

A1B0C1D1E1þ A1B1C0D0E1þ A1B1C0D1E0þ A1B1C0D1E1þ

A1B1C1D0E0þ A1B1C1D0E1þ A1B1C1D1E0þ A1B1C1D1E1

ð1Þ

X0 ¼ A0B0C0D0E0þ A0B0C0D0E1þ A0B0C0D1E0þ A0B0C0D1E1þ

A0B0C1D0E0þ A0B0C1D0E1þ A0B0C1D1E0þ A0B1C0D0E0þ

A0B1C0D0E1þ A0B1C0D1E0þ A0B1C1D0E0þ A1B0C0D0E0þ

A1B0C0D0E1þ A1B0C0D1E0þ A1B0C1D0E0þ A1B1C0D0E0

ð2Þ

Eqs (1) and (2) are inherently in the disjoint sum of products (DSOP) form. The products

in a DSOP expression are orthogonal to each other i.e., the logical conjunction of any two

products in a DSOP form would yield 0 [36]. This implies that only one product term would

be activated in a DSOP equation upon the application of an input data, which satisfies the

monotonic cover constraint [25].

Eqs (1) and (2) when synthesized according to the DIMS approach would require thirty-

two 5-input C-elements and ten 4-input OR gates. The C-element is usually not available in a

standard digital cell library since it is an asynchronous gate and hence it should be custom

designed. Moreover, there are fan-in limitations when designing a gate in a static CMOS style.

Hence, a 2-input C-element was custom designed using a 32/28nm standard cell library [37]

by incorporating feedback in an AO222 complex gate as shown in [17].

Since (1) and (2) should be implemented using 2-input C-elements first they should be

safely decomposed to avoid any gate orphan. In QDI circuits, wire orphans and gate orphans

may become problematic and so they should be carefully dealt with during the physical
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realization. Wire orphan refers to an unacknowledged signal transition on a primary input

wire, and gate orphan refers to an unacknowledged signal transition on an intermediate gate

output.

Wire and gate orphans have been explained through an example in [38], and an interested

reader may refer to the same for details. Wire orphans are less problematic as they are easily

overcome through the isochronic fork assumption when imposed on all the primary inputs,

which is common in QDI circuits. This is because, referring to Fig 1, each primary input given

to a QDI circuit is also given to a completion detector. Hence, a signal transition on a primary

input appears concurrently across the QDI circuit and across the completion detector. When a

signal transition appears on an intermediate gate output, and if it is not acknowledged by a

similar signal transition in a subsequent gate output, then that unacknowledged signal

Table 1. Truth table of QDI QMR majority voter corresponding to RTZ handshaking.

Dual-rail encoded primary inputs Dual-rail

encoded primary

output

A1 A0 B1 B0 C1 C0 D1 D0 E1 E0 X1 X0

0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 1 0 0 1

0 1 0 1 0 1 1 0 0 1 0 1

0 1 0 1 0 1 1 0 1 0 0 1

0 1 0 1 1 0 0 1 0 1 0 1

0 1 0 1 1 0 0 1 1 0 0 1

0 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0 1 0 1 0

0 1 1 0 0 1 0 1 0 1 0 1

0 1 1 0 0 1 0 1 1 0 0 1

0 1 1 0 0 1 1 0 0 1 0 1

0 1 1 0 0 1 1 0 1 0 1 0

0 1 1 0 1 0 0 1 0 1 0 1

0 1 1 0 1 0 0 1 1 0 1 0

0 1 1 0 1 0 1 0 0 1 1 0

0 1 1 0 1 0 1 0 1 0 1 0

1 0 0 1 0 1 0 1 0 1 0 1

1 0 0 1 0 1 0 1 1 0 0 1

1 0 0 1 0 1 1 0 0 1 0 1

1 0 0 1 0 1 1 0 1 0 1 0

1 0 0 1 1 0 0 1 0 1 0 1

1 0 0 1 1 0 0 1 1 0 1 0

1 0 0 1 1 0 1 0 0 1 1 0

1 0 0 1 1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1 0 1 0 1

1 0 1 0 0 1 0 1 1 0 1 0

1 0 1 0 0 1 1 0 0 1 1 0

1 0 1 0 0 1 1 0 1 0 1 0

1 0 1 0 1 0 0 1 0 1 1 0

1 0 1 0 1 0 0 1 1 0 1 0

1 0 1 0 1 0 1 0 0 1 1 0

1 0 1 0 1 0 1 0 1 0 1 0

https://doi.org/10.1371/journal.pone.0239395.t001
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transition is said to be a gate orphan. Gate orphans should be avoided in indicating circuits as

they could affect the quasi delay insensitivity. Gate orphans can be avoided by adopting safe

QDI logic decomposition techniques [39, 40]. The decomposed DIMS QMR majority voter

realized through a safe QDI logic decomposition is shown in Fig 3, which corresponds to RTZ

handshaking. To obtain the RTO equivalent circuit, the OR gates shown in red in Fig 3 should

be replaced by their gate duals viz. the AND gates. In general, excepting the C-elements, each

gate in a QDI circuit that corresponds to RTZ handshaking should be replaced by its respective

gate dual to obtain the RTO equivalent circuit. This principle has already been proved in [41].

Henceforth, we shall refer to the decomposed DIMS QMR majority voter as ‘DDIMS-QMV’

for brevity.

3.2. Dysart logic based QMR majority voter

Dysart [13] designed a synchronous QMR majority voter using a full adder, a half adder, and a

couple of logic gates as shown below in Fig 4, where A, B, C, D and E represent the voter inputs

and X represents the voter output. FSUM and FCOUT represent the sum and carry outputs of

the full adder while HSUM and HCOUT represent the sum and carry outputs of the half adder

in Fig 4.

We have transformed the above synchronous design into a QDI asynchronous design by

using the dual rail combinational logic (DRCL) design method of [42]. The resulting Dysart

based QDI QMR majority voter corresponding to RTZ handshaking is shown in Fig 5, which

shall be referred to as ‘Dysart-QMV’ henceforth for brevity. To realize the full adder and the

half adder logic, the optimized weak indication full adder of [43] and the optimized weak indi-

cation half adder of [44] were used. The gate level details of the weak indication full adder and

the weak indication half adder are shown in the violet and green boxes in Fig 5. It may be

noted that the indication of the primary inputs of the majority voter is taken care of by the

sum output logic of weak indication full and half adders. The carry outputs of the full adder

and the half adder may be produced early whereas the sum outputs of the full adder and the

half adder would be produced via strong indication. In Fig 5, the intermediate dual rail output

(NX1, NX0) is logically equivalent to the voter’s dual rail primary output (X1, X0). An internal

completion detector is introduced, which is shown within the dotted blue box in Fig 5, to

ensure the completion of internal processing within the voter to avoid any gate orphan, and its

output is denoted as NCD. NCD is synchronized with NX1 and NX0 using two 2-input C-ele-

ments to generate the majority voter’s primary output (X1, X0). To obtain the RTO equivalent

of Dysart-QMV, all the gates highlighted in red in Fig 5 should be replaced by their respective

gate duals i.e., the simple gates OR2 and AND2 should be replaced by AND2 and OR2 gates

respectively and the complex gates AO21, AO222 and OA222 should be replaced by OA21,

OA222 and AO222 respectively.

3.3. Simple and complex gates based QMR majority voter

An optimized synchronous QMR majority voter consisting of simple and complex gates was

presented in [14]. A QDI version of the same realized using the DRCL design method is

shown below in Fig 6, which corresponds to RTZ handshaking. Fig 6 highlights three circuit

portions. The circuit portion shown in the violet box corresponds to the synchronous QMR

voter design presented in [14], with A1, B1, C1, D1 and E1 serving as the primary inputs and

IX1 serving as the primary output. However, here, A1, B1, C1, D1 and E1 represent one of the

dual rails of the encoded primary inputs, and IX1 is one encoded intermediate output rail.

The DRCL design method requires the construction of an original circuit and a comple-

mentary circuit to implement the logic corresponding to the dual rails of an encoded primary
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Fig 3. Safely decomposed DIMS QMR majority voter corresponding to RTZ handshaking. The OR gates shown in

red should be replaced by AND gates to obtain the RTO equivalent circuit.

https://doi.org/10.1371/journal.pone.0239395.g003
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output. The original circuit is shown in the violet box and the complementary circuit is shown

in the brown box in Fig 6. The internal outputs W1 to W5 shown in the violet box and the

internal outputs N1 to N5 shown in the brown box are used to construct a part of an internal

completion detector, which is depicted in the green box. In the internal completion detector,

the respective pairs of the internal outputs viz. W1 and N1, W2 and N2, W3 and N3, W4 and

N4, and W5 and N5 are combined using 2-input OR gates. Also, the respective dual rails of the

primary inputs viz. A1 and A0, B1 and B0, C1 and C0, D1 and D0, and E1 and E0 are com-

bined using 2-input OR gates. The outputs of all these OR gates are then combined using a C-

element tree to generate the output of the internal completion detector which is denoted as

ICD in Fig 6.

Upon the application of an input data, IX1 or IX0 may be produced early. For example, if

C1 = D1 = E1 = 1, W1, W3 and W5 could become 1. Subsequently IX1 could assume 1 early,

since this could happen regardless of the assumption of a data by A1/A0 and B1/B0. Therefore,

to ensure that the production of a data or the spacer on the primary output rail X1 or X0

always happens after all the primary inputs are received and after all the internal processing is

completed, an internal completion detector is necessary whose output should be considered to

produce the primary output. Hence, although IX1 and IX0 are logically equivalent to X1 and

X0, nevertheless, IX1 and IX0 are separately paired with ICD using 2-input C-elements to pro-

duce the encoded primary output (X1, X0). To obtain the RTO equivalent circuit of Fig 6, all

the gates highlighted in red, blue and pink should be replaced by their respective gate duals i.e.,

the OR2, OR3, AND3, OA221 and AO221 gates should be replaced by AND2, AND3, OR3,

AO221 and OA221 gates respectively. The QMR majority voter discussed in this sub-section

shall henceforth be referred to as ‘SCG-QMV’ for brevity.

3.4. Proposed QMR majority voter

The QMR majority voters presented in sub-sections 3.2 and 3.3 are in a way our propositions

because we have implemented them in a QDI asynchronous style although they are based on

Fig 4. Dysart’s synchronous QMR majority voter.

https://doi.org/10.1371/journal.pone.0239395.g004
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Fig 5. QDI asynchronous QMR majority voter corresponding to RTZ handshaking, realized based on Dysart’s

synchronous QMR majority voter logic. The gates highlighted in red should be replaced by their respective gate duals

to obtain the RTO equivalent circuit.

https://doi.org/10.1371/journal.pone.0239395.g005
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Fig 6. QDI QMR realization of a synchronous QMR majority voter [14], corresponding to RTZ handshaking. The

gates highlighted in red, blue and pink should be replaced by their respective gate duals to obtain the RTO equivalent.

https://doi.org/10.1371/journal.pone.0239395.g006
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the synchronous QMR majority voters of [13] and [14]. Nevertheless, in this sub-section, we

present our original design of a QDI QMR majority voter that is shown in Fig 7, which corre-

sponds to RTZ handshaking. To obtain the RTO equivalent circuit, the AND and OR gates

highlighted in red in Fig 7 should be replaced by their respective gate duals. In Fig 7, the arrival

of a data or the spacer on E0 or E1 would always be acknowledged since E0 and E1 are con-

nected to 2-input C-elements. However, the arrival of the spacer on all the 4-input AND gate

inputs present in the first logic level may not be acknowledged in the absence of the internal

completion detector. For example, if A1 = B1 = C1 = D1 = E1 = 1 in a data phase, X1 would

assume 1. Following this, in the next RTZ phase, if A1 and E1 assume 0 early, X1 could assume

0 regardless of the assumption of 0 by B1, C1 and D1 if they may happen late. Therefore, to

ensure the complete arrival of the spacer on A1 or A0, B1 or B0, C1 or C0, and D1 or D0 fol-

lowing an earlier data phase, an internal completion detector is provided which combines A1

and A0, B1 and B0, C1 and C0, and D1 and D0 using 2-input OR gates, whose outputs are syn-

chronized using a C-element tree to produce CDO. The intermediate output (WX1, WX0) is

logically equivalent to the encoded primary output (X1, X0). Nevertheless, WX1 and WX0 are

synchronized with CDO using two 2-input C-elements to produce X1 and X0. This would

ensure that the production of a data or the spacer on X1 or X0 would happen only after all the

primary voter inputs have been received and after all the internal processing has been com-

pleted. Henceforth, we shall refer to our proposed QDI QMR majority voter using the acro-

nym ‘P-QMV’ for brevity.

4. Results

Example QDI QMR circuits corresponding to RTZ and RTO handshaking were implemented

by considering an early output asynchronous full adder [45] as an example function unit, like

[17, 18], using a 32/28nm standard digital cell library [37]. Besides the 2-input C-element that

was realized as shown in Fig 1, the rest of the gates in the cell library were utilized to imple-

ment the various QDI QMR circuits. Synopsys tools were used to design, simulate and esti-

mate the design metrics.

A full adder adds three input bits and produces two output bits viz. sum and carry. The cir-

cuits of the early output full adder corresponding to RTZ and RTO handshaking are given in

[17]; an interested reader may refer to the same for the details. The QMR majority voters dis-

cussed in the previous section were used along with the function units to realize the QMR cir-

cuits. The gate level simulations of all the QMR circuits incorporating the different QMR

majority voters were performed by supplying all the distinct input vectors and their functional-

ities have been verified for both RTZ and RTO handshaking. For example, we provide screen-

shots of portions of simulation waveforms obtained for the QMR circuits using the proposed

P-QMV based on RTZ and RTO handshaking—these are portrayed by Figs 8 and 9 respec-

tively. Simulation waveforms similar to Figs 8 and 9 were also observed for the QDI QMR cir-

cuits utilizing the other majority voters corresponding to RTZ and RTO handshaking,

validating their functionalities. The functional simulations were performed by assuming a

worst-case latency of 1.5ns (i.e., a cycle time of 3ns), which is greater than the worst-case

latency of SCG-QMV. The switching activity data obtained from the simulations was used to

estimate the average power dissipation.

In Figs 8 and 9, (SUM01, SUM00), (SUM11, SUM10), (SUM21, SUM20), (SUM31,

SUM30) and (SUM41, SUM40) represent the dual rail sum outputs of five identical full adders,

with the full adders representing the function units. (COUT01, COUT00), (COUT11,

COUT10), (COUT21, COUT20), (COUT31, COUT30) and (COUT41, COUT40) represent

the dual rail carry outputs of the full adders. These dual rail sum and carry outputs serve as the
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Fig 7. Proposed QDI QMR majority voter corresponding to RTZ handshaking. To obtain the RTO equivalent

circuit, the AND4, OR4 and OR2 gates highlighted in red should be replaced by OR4, AND4 and AND2 gates

respectively.

https://doi.org/10.1371/journal.pone.0239395.g007
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Fig 8. Screenshot of portion of the simulation waveform of an example QDI QMR circuit incorporating P-QMV, based on RTZ

handshaking.

https://doi.org/10.1371/journal.pone.0239395.g008

Fig 9. Screenshot of portion of the simulation waveform of an example QDI QMR circuit incorporating P-QMV, based on RTO

handshaking.

https://doi.org/10.1371/journal.pone.0239395.g009
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corresponding primary inputs for the two QMR majority voters which were used along with

the function units to implement the QDI QMR circuits. The primary outputs of the QDI QMR

circuits are denoted by (SUM1, SUM0) and (COUT1, COUT0) in Figs 8 and 9, which are

shaded in blue. The vertical markers provided in the simulation waveforms in Figs 8 and 9 are

meant to guide a reader to showcase how correct majority voted primary outputs are produced

when the primary inputs of the majority voters may not be the same, which is representative of

single or multiple bit upsets.

In QDI circuits, the cycle time is the main timing parameter of interest. The cycle time can

be considered as the critical path delay equivalent of a synchronous digital circuit which

includes the set-up time. In a QDI circuit, a spacer is applied between two data inputs. Since

one transaction in a QDI circuit involves the application of a data and the spacer, therefore the

cycle time is the sum of the times taken for processing a data and the spacer. The cycle time

determines the speed of operation of a QDI asynchronous circuit. The forward latency is the

worst-case propagation delay encountered in processing the data while the reverse latency is

the worst-case propagation delay encountered in processing the spacer. The cycle time is the

sum of forward and reverse latencies. Commercial (synchronous) static timing analysis tools

such as say, Synopsys PrimeTime was used to determine the critical path delay i.e., the forward

latency and not the reverse latency. Also, the reverse latency may not be the same as the for-

ward latency. For example, a QDI arithmetic circuit such as a QDI ripple carry adder has a

data-dependent forward latency and a constant reverse latency [45], and its forward and

reverse latencies are not the same. In such a scenario, the reverse latency should be estimated

based on a knowledge of the gate delays encountered in the critical data path for processing

the spacer. Here, since the QMR majority voters discussed are all strongly indicating, therefore

the forward latency of the QMR circuits is equal to their reverse latency. Hence, the cycle time

of the QDI QMR circuits is the double of the worst-case forward or reverse latency.

The design metrics estimated for the various QDI QMR circuits are given in Table 2. The

split-up of average power dissipation between majority voters and others (which includes the

function units, registers, and the completion detector) is also given in Table 2. In general, all

the design metrics viz. cycle time, area, and average power dissipation are desired to be less. It

may be noted that but for the differences in the QMR majority voters, the remaining logic of

all the QDI QMR circuits are the same. This is because identical function units, registers, and

completion detectors are used corresponding to RTZ and RTO handshaking. Hence, the

Table 2. Cycle time, silicon area, and averaged (total) power dissipation of various QDI QMR circuits incorporating different QMR majority voters estimated using

a 32/28nm CMOS process.

QMR majority voter used Cycle time (ns) Area (μm2) Average power dissipation (μW)

Voters Others Total

With RTZ handshaking
DDIMS-QMV 2.56 736.76 38.41 295.59 334.0

Dysart-QMV 2.46 429.76 50.69 280.41 331.1

SCG-QMV 2.84 440.43 108.27 279.43 387.7

P-QMV 2.22 635.61 60.78 293.52 354.3

With RTO handshaking
DDIMS-QMV 2.46 716.43 33.07 295.93 329.0

Dysart-QMV 2.44 429.76 50.67 280.73 331.4

SCG-QMV 2.82 440.43 107.60 279.60 387.2

P-QMV 2.16 649.85 59.07 296.23 355.3

https://doi.org/10.1371/journal.pone.0239395.t002
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differences between the design metrics of various QDI QMR circuits are attributable to the dif-

ferences between their majority voters.

Table 2 shows that the proposed P-QMV facilitates a reduction in cycle time compared to

the other QMR majority voters when used to an implement a QMR circuit. This is mainly

because of the fewer gates present in the critical path of P-QMV compared to its counterparts.

For example, with respect to RTZ handshaking and referring to Figs 3 and 5–7, the critical

path of DDIMS-QMV comprises four 2-input C-elements and two 4-input OR gates; the criti-

cal path of Dysart-QMV comprises three 2-input C-elements, three 2-input OR gates and one

AO222 gate; the critical path of SCG-QMV comprises five 2-input C-elements and a 2-input

OR gate; and the critical path of P-QMV comprises a 4-input AND gate, two 4-input OR gates

and two 2-input C-elements. Compared to the QMR circuits employing DDIMS-QMV, Dys-

art-QMV and SCG-QMV, the QMR circuit employing the proposed P-QMV achieves reduc-

tions in cycle time by 13.3%, 9.8% and 21.8% respectively for RTZ handshaking. With respect

to RTO handshaking, compared to the QDI QMR circuits employing DDIMS-QMV, Dysart-

QMV and SCG-QMV, the QMR circuit employing P-QMV achieves reductions in cycle time

by 12.2%, 11.5% and 23.4% respectively. Hence, it is inferred that the proposed P-QMV when

used to realize a QDI QMR circuit would facilitate a higher speed compared to the use of other

QMR majority voters.

It is also noted from Table 2 that RTO handshaking consistently facilitates a reduction in

cycle time for all the QDI QMR circuits compared to RTZ handshaking. In fact, this phenome-

non was found to be true for some QDI arithmetic circuits such as adders [46] and multipliers

[44]. For example, the critical path of P-QMV comprises a 4-input AND gate, two 4-input OR

gates and two 2-input C-elements for RTZ handshaking while the critical path of P-QMV

comprises a 4-input OR gate, two 4-input AND gates and two 2-input C-elements for RTO

handshaking. Based on the typical propagation delays of gates given in [37], the theoretical

cycle time of P-QMV with respect to RTZ handshaking is calculated as 958ps and the theoreti-

cal cycle time of P-QMV with respect to RTO handshaking is calculated as 910ps. Since AND

gates have less propagation delays compared to OR gates due to the reduced pMOS transistor

stack in the former, and because there are more AND gates and less OR gates present in

P-QMR for RTO handshaking compared to RTZ handshaking, therefore the former hand-

shake protocol enables a reduced cycle time than the latter.

As seen from Table 2, the area occupancies of QDI QMR circuits slightly differ for RTZ and

RTO handshaking, and this is due to the usage of dual gate types except for the C-elements. In

terms of silicon area, the QDI QMR circuits incorporating Dysart-QMV occupy less area com-

pared to their counterparts incorporating the other majority voters for both RTZ and RTO

handshaking. This is because Dysart-QMV consists of fewer gates than the other QMR major-

ity voters. For example, with respect to RTZ handshaking, Dysart-QMV occupies an area of

80.31μm2 while DDIMS-QMV, SCG-QMV and P-QMV occupy 233.81μm2, 85.65μm2 and

183.24μm2 of silicon respectively.

QDI QMR circuits comprising DDIMS-QMV and Dysart-QMV dissipate nearly the same

power. However, it is important to note which majority voter dissipates less power than the

rest. This is because in this work we have considered function units which required the use of

just two QMR majority voters. When function units with several outputs are considered, the

number of QMR majority voters would also increase proportionately and in which case the

power dissipation of QMR majority voters may become significant. The split-up of average

power dissipation in Table 1 shows that DDIMS-QMV dissipates less power compared to its

counterparts for RTZ and RTO handshaking.

From Table 2, it is seen that the QDI QMR circuits comprising DDIMS-QMV occupy

greater area compared to the QDI QMR circuits comprising the other QMR majority voters.
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This is because DDIMS-QMV requires more gates and so occupies more area than the other

QMR majority voters. Excepting the majority voters, the rest of the logic constituting all the

QDI QMR circuits are the same. However, despite the greater area occupancy of

DDIMS-QMV, it dissipates less power compared to the other majority voters, as seen from

Table 2. This is mainly due to the absence of an internal completion detector in DDIMS-QMV

and the presence of an internal completion detector in the other QMR majority voters.

Contrary to the rest of the logic comprising a QMR majority voter, an internal completion

detector would experience high switching activity. This is because, with respect to RTZ hand-

shaking, an internal completion detector will output 1 for the application of data and output 0

for the application of the spacer during every transaction. With respect to RTO handshaking,

an internal completion detector will output 1 for the application of the spacer and output 0 for

the application of data during every transaction. All the gates comprising an internal comple-

tion detector will experience regular switching activity during every transactions and this will

increase the total power dissipation. This explains why Dysart-QMV, SCG-QMV and P-QMV

dissipate more power than DDIMS-QMV. The number of 2-input OR gates constituting the

internal completion detector are 1, 10 and 4 in Dysart-QMV, SCG-QMV and P-QMV, as seen

from Figs 5–7. As a result, Dysart-QMV dissipates less power than SCG-QMV and P-QMV,

and P-QMV dissipates less power than SCG-QMV.

With respect to RTZ handshaking, DDIMS-QMV dissipates 24.2%, 64.5% and 36.8% less

power compared to Dysart-QMV, SCG-QMV and P-QMV respectively. With respect to RTO

handshaking, DDIMS-QMV dissipates 34.7%, 69.3% and 44% less power than Dysart-QMV,

SCG-QMV and P-QMV respectively. Hence, from a power perspective, DDIMS-QMV is pref-

erable, especially when many QMR majority voters may be required to implement a QDI

QMR circuit/system.

In synchronous digital circuits and systems, the product of average power dissipation and

critical path delay called the power-delay product (PDP) or energy, and the product of energy

and critical path delay called the energy-delay product (EDP) are considered as qualitative fig-

ure-of-merits for the energy efficiency [47]. With respect to QDI asynchronous circuits, the

corresponding equivalent figure-of-merits are signified by power-cycle time product (PCTP)

and energy-cycle time product (ECTP). The normalized PCTP and ECTP of all the QDI QMR

circuits corresponding to RTZ and RTO handshaking are plotted in Fig 10a and 10b respec-

tively. To perform the normalization, the highest PCTP/ECTP of a QDI QMR circuit is

Fig 10. Normalized figure-of-merits of QDI QMR circuits employing different QMR majority voters corresponding to RTZ and RTO

handshaking: (a) Normalized PCTP plots; and (b) Normalized ECTP plots.

https://doi.org/10.1371/journal.pone.0239395.g010
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considered as the baseline and the PCTP/ECTP of all the QMR circuits are divided by the

highest PCTP/ECTP. The lesser the PCTP and the ECTP, the better is the energy efficiency of

a QDI asynchronous circuit.

It is seen from Fig 10a that the QMR circuit incorporating SCG-QMV, which corresponds

to RTZ handshaking, has the highest PCTP. The QMR circuit incorporating P-QMV has less

PCTP compared to the QMR circuits incorporating the other majority voters for both RTZ

and RTO handshaking. It is also seen that, overall, the RTO handshaking achieves a better

reduction in PCTP compared to RTZ handshaking. This is mainly due to the reduced cycle

time achieved for RTO handshaking compared to RTZ handshaking. The QMR circuit incor-

porating the proposed P-QMV, which corresponds to RTO handshaking, achieves a 5% reduc-

tion in PCTP compared to the next best QMR circuit incorporating Dysart-QMV. Thus, from

the perspective of PCTP, P-QMV is preferable to the other QMR majority voters.

From Fig 10b, it is seen that the QMR circuit incorporating SCG-QMV, which corresponds

to RTZ handshaking, has the highest ECTP. The QMR circuit incorporating P-QMV has less

ECTP compared to the QMR circuits incorporating the other majority voters for both RTZ

and RTO handshaking. It is noticed that the RTO handshaking achieves a better reduction in

ECTP compared to RTZ handshaking for all the QMR circuits incorporating different QMR

majority voters. This is again due to the reduced cycle time achieved for RTO handshaking

compared to RTZ handshaking. The QMR circuit incorporating P-QMV, and corresponding

to RTO handshaking, achieves a 16% reduction in ECTP compared to the next best QMR cir-

cuit incorporating Dysart-QMV. Therefore, from the perspective of ECTP as well, P-QMV is

preferable to the other QMR majority voters.

5. Conclusions

Practical studies have shown that single and double bit upsets are of concern for electronic cir-

cuits and systems used in mission- and safety-critical applications. To overcome single upsets

TMR can be used and to overcome double upsets QMR can be used, perhaps selectively, in the

vulnerable portions of a circuit or system, according to the PMR scheme. While synchronous

majority voters for TMR and QMR, and asynchronous bundled-data and QDI majority voters

for TMR have been presented in the literature, asynchronous QDI majority voter designs for

QMR have not yet been discussed. In this context, this article has described QDI QMR major-

ity voters corresponding to RTZ and RTO handshaking. An analysis of different QMR major-

ity voters when used to implement the example QDI QMR circuits shows that DDIMS-QMV

and Dysart-QMV facilitate near similar low power designs, Dysart-QMV results in less area

occupancy, and P-QMV is able to facilitate a high speed and energy efficient design. Overall,

RTO handshaking achieves slightly better optimizations in the design metrics compared to

RTZ handshaking, and the QDI QMR circuit incorporating P-QMV achieves a 11.5% reduc-

tion in cycle time, a 5% reduction in energy (i.e., PCTP), and a 16% reduction in ECTP com-

pared to the best among the rest when considering RTO handshaking. Since speed and energy

efficiency assume higher precedence than area in an electronic design, the proposed P-QMV is

preferable to its counterparts.
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