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The therapeutic effect of basal insulin analogs will be sustained at a rather low insulin level.
When employing healthy volunteers to assess the pharmacokinetics (PK) and
pharmacodynamics (PD) of long-acting insulin preparations by euglycemic clamp
techniques, endogenous insulin cannot be ignored and sufficient endogenous insulin
inhibition is crucial for the PD and/or PK assessment. This study aimed to explore a way to
sufficiently inhibit endogenous insulin secretion. Healthy Chinese male and female
volunteers were enrolled. After a subcutaneous injection of insulin glargine (IGlar)
(LY2963016 or Lantus) (0.5 IU/kg), they underwent a manual euglycemic clamp for up
to 24 h where the target blood glucose (BG) was set as 0.28mmol/L below the individual’s
baseline. Blood samples were collected for analysis of PK/PD and C-peptide. The subjects
fell into two groups according to the reduction extent of postdose C-peptide from baseline.
After matching for the dosage proportion of Lantus, there were 52 subjects in group A
(C-peptide reduction<50%) and 26 in group B (C-peptide reduction≥50%), respectively.
No significant difference was detected in age, body mass index, the proportion of Latus
treatment and female participants. A lower basal BG was observed in group B compared
to group A (4.35 ± 0.26 vs. 4.59 ± 0.22 mmol/L, p < 0.05). The clamp studies were all
conducted with high quality (where BG was consistently maintained around the target and
exhibited a low variety). The binary logistic regression analysis indicated low basal BG as an
independent factor for the success of sufficient endogenous insulin suppression. In
conclusion, setting a lower sub-baseline target BG (e.g., 10% instead of 5% below
baseline) might be an approach to help achieve sufficient endogenous insulin suppression
in euglycemic clamps with higher basal BG levels (e.g., beyond 4.60 mmol/L).
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INTRODUCTION

Recently a continued global increase in diabetes prevalence
and a significant global challenge to the health and well-being
of individuals, families, and societies were confirmed by the
IDF Diabetes Atlas 10th edition (International Diabetes
Federation, 2021). Insulin is one of the most powerful
drugs to normalize blood glucose (BG) in the treatment of
diabetes mellitus. Benefitting from the development of
pharmaceutical technology, the new generation of basal
insulin formulations present growingly favorable
pharmacokinetic and pharmacodynamic properties,
including flatter, peakless action profiles, less inter- and
intra-patient variability, and longer duration of activity
(Frias and Frias, 2017) which is proven to significantly
mitigate the incidence of hypoglycemia (especially during
the night) compared with the previous generation. For the
approval of a novel or biosimilar basal insulin preparation,
the Food Drug Administration (FDA) (Food And Drug
Administration, Center For Drug Evaluation And
Research, 2008; Food And Drug Administration, Center
For Drug Evaluation And Research, 2019) and the
European Medicines Agency (EMA) (European Medicines
Agency, 2015) recommend applying euglycemic glucose
clamp to evaluate the pharmacokinetic exposure and
pharmacodynamic activity of insulin products as well as
assessing the safety and tolerability. Either the healthy
volunteers or patients with type 1 diabetes mellitus
(T1DM) are eligible for clamp studies (European
Medicines Agency, 2015). Conflicting clamp results of
long-acting insulin were reported. For example, enrollment
of the healthy was questioned by some investigators
(Porcellati et al., 2015) for that some PK estimates in
healthy volunteers (Linnebjerg et al., 2015) differed from
those in type 1 diabetic patients (Lepore et al., 2000;
Porcellati et al., 2007); the time-action profile of insulin
glargine (IGlar) was reported with the characteristics of
being flat in healthy volunteers (Lepore et al., 2000;
Scholtz et al., 2005), and was described to be up-and-down
in diabetic patients (Luzio et al., 2006; Klein et al., 2007;
Lucidi et al., 2011). In addition, endogenous insulin secretion
in patients with T1DM is always negligible. Therefore,
subjects with T1DM are generally thought to be more
appropriate for the determination of the pharmacodynamic
activity of long-acting insulin. However, many issues should
be taken into consideration when enrolling patients with
T1DM: 1) subjects with T1DM usually exhibit higher
inter-individual variability (Kapitza et al., 2020) than
healthy subjects (Li et al., 2021), which might require a
larger sample size; 2) insulin resistance is not only a
characteristic feature of T2DM but also consistently found
in T1DM (Yki-jarvinen & Koivisto, 1986; Cleland et al.,
2013), and variable extents of insulin sensitivity require
strict glucose infusion adjustment; 3) progression of
devastating microvascular complications, including
nephropathy, retinopathy, and peripheral sensory and
autonomic neuropathy can be caused by diabetes

(American Diabetes Association Professional Practice
Committee, 2022). High prevalence rates of microvascular
complications were detected even in young adults with T1DM
(James et al., 2014), which would increase the difficulty of
subject recruitment and management; 4) moreover,
prescribed medicine for comorbidity sometimes may affect
the assessment of study insulin; 5) an additional run-in
period of up to 6 h is usually required before clamping for
the normalization of BG (Porcellati et al., 2019; Linnebjerg
et al., 2020a; Heise et al., 2020). From the above
considerations, healthy volunteers are considered to be
another eligible option.

Since the therapeutic effect of basal insulin could be
sustained at a rather low level for a rather long period,
endogenous insulin secreted by healthy individuals cannot
be ignored. A consistent and adequate endogenous insulin
suppression is crucial for the accurate time-action and/or
time-concentration profiles of long-acting insulin (Heise
et al., 2016). C-peptide is always regarded as a marker of
endogenous insulin secretion. A C-peptide reduction of 60%
was observed when the insulin level approximately reached
100 mU/L by continuous infusion (Defronzo et al., 1979).
Without infusing a large amount of exogenous insulin to
establish hyperinsulinemia, different extents of C-peptide
reduction, such as >30% (Heinemann et al., 2000), 35%
(Starke et al., 1989), approximately 40% (Sorensen et al.,
2010), >50% (Heinemann et al., 1999; Scholtz et al., 2005)
were reported. When the C-peptide level was inhibited to at
least 50% of the baseline, the rise of glucose infusion rate (GIR)
was considered to be independent of contribution from
endogenous insulin (Doberne et al., 1981). Hence, a
C-peptide reduction of more than 50% is widely recognized
as sufficient endogenous insulin suppression. Many clamp
studies have reported continuous endogenous insulin
suppression (Heinemann et al., 2000; Zhang et al., 2017;
Drai et al., 2022), while enhancement of adequate
endogenous insulin inhibition is still needed.

In this study, our primary aim is to seek a way to assure
adequate endogenous insulin inhibition in euglycemic clamps
evaluating the PK/PD of long-acting insulin in healthy
volunteers. Second, since C-peptide is always used to
correct endogenous insulin in the pharmacokinetic
assessment of exogenous insulin in the absence of specific
assays (Brunner et al., 2000; Scholtz et al., 2005; Plum-
Morschel et al., 2022), we try to seek the effect of different
extents of C-peptide reduction on the pharmacokinetic and
pharmacodynamic assessment.

MATERIALS AND METHODS

Subjects
This study enrolled healthy Chinese men and women aged
18–40 years old (inclusive at screen visit), with body mass
index (BMI) 18.0–28.0 kg/m2, fasting glucose <100 mg/dl,
and a normal glucose response to a 75 g OGTT (2 h PG <
140 mg/dl). No abnormalities were detected in clinical and
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laboratory assessments, including past medical history, vital
signs (blood pressure, body temperature, heart, and
respiratory rate), liver and renal function, a 12-lead
electrocardiogram, a complete blood count, and a
urinalysis to certify the overt health of the subjects.

The study was approved by the ethics committee of West
China Hospital of Sichuan University and conducted in
accordance with the Declaration of Helsinki and Good
Clinical Practice guidelines. All subjects provided written
informed consent prior to participation in the study after
receiving detailed information about this study.

Study Design
All enrolled subjects underwent a euglycemic glucose clamp
lasting for up to 24 h after a 0.5-IU/kg IGlar injection. All the
participants were restrained from strenuous exercise, smoking,
alcohol, or caffeinated drinks. Since a C-peptide suppression of
more than 50% is widely recognized as sufficient endogenous
insulin suppression, the subjects fell into two groups based on the
ratio of C-peptide reduction from baseline (group A: C-peptide
reduction <50%; group B: C-peptide reduction ≥50%). The data
were collected from a clinical trial (NCT03555305) (Liu et al.,
2021), which was conducted to evaluate the pharmacokinetic and
pharmacodynamic equivalence of an IGlar biosimilar
(LY2963016) manufactured by Eli Lilly to Lantus
manufactured by Sanofi.

Euglycemic Clamp Procedure
At the dosing visit, an overnight fast of at least 8 h must be
guaranteed prior to IGlar administration. Two catheters were
placed into the antecubital vein and the hand vein, respectively,
for 20% dextrose infusing and blood sampling correspondingly.
The baseline of BG was defined as the mean of three BG
measurements at 30, 20, and 10 min prior to the IGlar
administration. A single dose (0.5 IU/kg) of Lantus or
LY2963016 was subcutaneously injected into a lifted
abdominal skinfold. A 0.1-ml blood sample was collected from
the hand vein which was continuously heated in a warm blanket
(55 ± 5 °C) at an interval of 10–20 min for the analysis of BG
levels. A variable GIR was frequently adjusted and timely
recorded to maintain the BG around 0.28 mmol/L below the
baseline and represent the pharmacodynamic activity of IGlar,
respectively.

The BG levels were immediately determined in whole blood at
the bedside by a glucose analyzer (Biosen C_line, EKF
Diagnostics, Barleben, Germany) with the glucose oxidase
method. The measuring range of this method was
0.5–50 mmol/L with a high precision of 1.5%. The clamp
would end if no exogenous glucose infusion was required for
at least 0.5 h.

Pharmacokinetic Sampling and
Bioanalytical Analysis
A 6-ml blood sample for analysis of C-peptide and total insulin
levels were collected before drug administration (0.5 and 0 h
before dosing) and every 0.5–3 h throughout the clamp as

described before (Liu et al., 2021). The whole blood sample was
drawn into a serum tube and gently mixed by inversion
(>5 times). Then the sample was required to clot for
30–60 min at room temperature. The tube was centrifuged
at 1,500–2000g for 15–20 min to separate serum. The serum
was transferred without red blood cells contained, and frozen
at -70 °C until shipment for analysis. The concentration of total
insulin was determined by a validated radioimmunoassay
method (Kuerzel et al., 2003; Shen et al., 2019) with a
quantification range of 50–2000 pmol/L at WuXi AppTec
Co., Ltd. in Shanghai, China. The exogenous IGlar level was
calculated by subtracting the endogenous insulin based on
C-peptide using Owens’s method (Owens, 1986). The
C-peptide concentration was analyzed by a direct
chemiluminescent technology in Covance Laboratory
(Shanghai, China) with a quantification range of
0.07–352 ng/ml.

If a measured value of total insulin or C-peptide was below the
lower limit of quantification, it would be included in statistics as half
of the limit. A calculated value of IGlar below zero after C-peptide
correctionwould be excluded from the PK statistics. The primary PK
parameters included the area under the curve (AUC) of IGlar from
time 0–24 h (AUCIGlar, 0–24 h) and the maximum IGlar (IGlarmax)
corrected by C-peptide. Other PK parameters included AUC of
IGlar from 0 to 12 h (AUCIGlar, 0–12 h) and time to IGlarmax

(tIGlarmax).
Individual GIR values were smoothed by a locally weighted

scatterplot smoothing technique. The maximum GIR (GIRmax)
and the total amount of glucose infused throughout the clamp
(AUCGIR, 0–24 h) were defined as primary PD parameters.

TABLE 1 | Demographics of group A and group B before and after
LY2963016 and Lantus dose proportion matching.

Group A Group B P

Before matching for dose proportion of LY2963016 and Lantus
N 86 28 -
Age (year)a 25.3 ± 2.7 24.5 ± 1.6 0.145
Height (cm)a 164.7 ± 8.9 164.8 ± 7.3 1.000
Weight (kg)a 60.0 ± 11.5 57.1 ± 7.3 0.215
BMI (kg/m2)a 21.9 ± 2.4 21.0 ± 1.8 0.070
Dose of exogenous insulin (IU)a 30.0 ± 5.7 28.8 ± 3.8 0.291
N of Lantus treatment (N,%) 40, 46.5% 18, 64.3% 0.102b

Dosage proportion of Lantus (%) 48.6% 63.9% <0.001b
Female proportion (%) 58.1% 53.6% 0.671b

After matching for dose proportion of LY2963016 and Lantus
N 52 26 -
Age (year)a 25.4 ± 2.6 24.3 ± 1.5 0.051
Height (cm)a 161.9 ± 7.0 164.4 ± 7.5 0.140
Weight (kg)a 56.7 ± 8.9 56.3 ± 7.0 0.837
BMI (kg/m2)a 21.6 ± 2.3 20.8 ± 1.8 0.136
Dose of exogenous insulin (IU) 28.3 ± 4.5 28.3 ± 3.6 1.000
N of Lantus treatment (N,%) 32, 61.5% 16, 61.5% 1.000b

Dosage proportion of Lantus (%) 61.2% 60.5% 0.758b

Female proportion (%) 71.2% 57.7% 0.234b

BMI, body mass index.
aArithmetic mean ± standard deviation, the difference was detected by unpaired
Student’s t-test.
bDifference was detected by the chi-square test.
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Secondary PD parameters included time to GIRmax (tGIRmax)
and AUC of GIR from 0 to 12 h (AUCGIR, 0–12 h).

Clamp Quality Assessment
The quality of clamp studies was assessed based on the all BG
measurements throughout the clamp and the target BG in the
individual clamp as previously described (Benesch et al., 2015):
1) coefficient of variation of BG (CVBG), 2) mean absolute
difference of every measured BG from target level in the
individual clamp.

Statistical Analyses
A previous study showed (Liu et al., 2021) that for IGlarmax, and
AUCIGlar, 0–24 h, geometric least-squares mean ratios (90%
confidence interval) of LY2963016 to Lantus were 0.961 (0.887-
1.04) and 0.941 (0.872-1.01), respectively, and dosage proportion of
Lantus was significantly different between two groups (Table 1),
therefore, matching for dosage proportion of Lantus was performed.
Normally distributed data were expressed as arithmetic mean with
standard deviation and analyzed by unpaired Student’s t-test. Non-
Normal distributed parameters were expressed as median with
interquartile range and analyzed by Mann Whitney test.
Categorical variables were compared using the Chi-square test.
The binary logistic regression analysis was performed with SPSS
22.0 software. For all tests, a significance level of 5% (two-sided)
was used.

RESULTS

Demographics and Disposition
A total of 114 subjects were eligible for this study. According to
the extent of postdose C-peptide reduction, there were
86 subjects in group A (C-peptide reduction<50%) and
28 in group B (C-peptide reduction≥50%). The percentages
of Lantus dosage significantly differed between the two groups
(p < 0.001, Table 1). To minimize the effect of drug difference
(either LY2963016 or Lantus) on the PK/PD evaluation,
matching for the dose proportion of Lantus was performed.
Thereafter, 52 and 26 subjects were enrolled in groups A and B,

respectively. No statistical difference was detected in age,
height, weight, BMI, total exogenous IGlar, or dosage
proportion of Lantus between the two groups (Table 1).

Euglycemic Clamp Statistics and C-Peptide
Levels
As shown in Table 2, basal and target BG levels were higher in
group A than those in group B. BG was continuously maintained
around the target level in both groups. The CVBG and mean
absolute difference of BG from the target were relatively lower
than those previously reported (Scholtz et al., 2003; Hordern
et al., 2005). The basal C-peptide and insulin levels were both
comparable, while a stronger C-peptide reduction was observed
in group B (Figure 1). No significant difference was detected in
HOMA-IR.

Pharmacokinetics and Pharmacodynamics
As shown in Table 3, the maximum observed total insulin and
the AUC of total insulin from 0 to 12 or 24 h seemed to be
slightly higher in group B than those in group A (Figure 2).
The IGlarmax, AUCIGlar,0–12 h, and AUCIGlar,0–24 h were
statistically higher in group B than those in group A
(Figure 3). No difference was detected in tIGlarmax. The

TABLE 2 | Euglycemic Clamp Statistics and C-peptide levels.

Group A (N = 52) Group B (N = 26) P

Basal BG (mmol/L) a 4.59 ± 0.22 4.35 ± 0.26 <0.001
Target BG (mmol/L) a 4.31 ± 0.22 4.07 ± 0.26 <0.001
‘Clamped’ BG (mmol/L) a 4.31 ± 0.21 4.09 ± 0.23 <0.001
CVBG (%)a 2.98 ± 0.79 3.36 ± 0.70 0.041
Mean absolute difference from target (mg/dl) a 1.85 ± 0.42 2.05 ± 0.58 0.084
Basal C-peptide (pmol/L) a 331 ± 106 312 ± 101 0.728
Mean postdose C-peptide (pmol/L) a 201 ± 74 134 ± 50 <0.001
C-peptide reduction (%)a 39.5 ± 6.7 57.4 ± 5.5 <0.001
Basal insulin (pmol/L) a 50.0 ± 27.0 49.0 ± 25.3 0.880
F (%)a 14.6 ± 5.1 15.5 ± 5.7 0.513
HOMA-IR (pmol/L×mmol/L) a 10.3 ± 5.8 9.5 ± 5.1 0.563

BG, blood glucose; CV, coefficient of variation; Basal C-peptide, the mean of C-peptide levels at -0.5 and 0 h predose; Basal insulin, the mean of insulin levels at -0.5 and 0 h predose; F,
ratio of basal insulin to basal C-peptide; HOMA-IR, homeostasis model assessment of insulin resistance.
aArithmetic mean ± standard deviation, the difference was detected by unpaired Student’s t-test.

FIGURE 1 | Time-profiles of serum C-peptide throughout the
euglycemic clamp in groups A and B, respectively (Mean ± SEM).
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observed GIRmax and AUCGIR, 0–24 h, were significantly
higher in group A than those in group B, while tGIRmax

was similar between the two groups (Figure 4). Since a
significant difference existed in exogenous IGlar, which

would contribute to the observed GIR, a correction for PD
parameters using the corresponding exogenous IGlar
parameter as a covariant was performed. After correction,
the AUCGIR, 0–24 h (2,697 vs. 2,513 mg/kg), GIRmax (3.09 vs.
2.96 mg/kg/min) and AUCGIR, 0–24 h (1,256 vs. 1,213 mg/kg)
were slightly higher in group B than those in group A.

Odds Ratios of Factors for Sufficient
Endogenous Insulin Suppression
The clamp quality, dose, and absorption of exogenous insulin
were known factors affecting endogenous insulin inhibition.
Throughout the clamp study, BG was closely maintained at the
target level in both groups; therefore, CVBG was used to
represent the quality of the clamp study. Binary logistic
regression analysis was carried out with sufficient C-peptide
reduction as a dependent variable, and age, basal BG, IGlarmax,
CVBG and AUCIGlar,0–24 h as independent variables (Table 4).
The p-value of the Hosmer and Lemeshow test was 0.584,
indicating a successful establishment of the model. The results

TABLE 3 | The pharmacokinetic and pharmacodynamic parameters in groups A and B.

Group A (N = 52) Group B (N = 26) P

PD parameters
AUCGIR,0-12h (mg/kg) a 989 (642) 1,320 (615) 0.015
AUCGIR,0-24h (mg/kg) b 2,415 ± 953 2,891 ± 908 0.038
GIRmax (mg/kg/min) b 2.82 ± 1.06 3.36 ± 1.07 0.037
tGIRmax (min) b 666 ± 202 678 ± 180 0.787

PK parameters
AUCIGlar,0-12h (pmol/L×h) b 1,099 ± 342 1,295 ± 360 0.022
AUCIGlar,0-24h (pmol/L×h) b 2,194 ± 597 2,534 ± 597 0.020
IGlarmax (pmol/L) b 122.7 ± 37.7 147.7 ± 42.5 0.010
tIGlarmax (h)

b 11.7 ± 3.97 11.6 ± 2.66 0.929
Other parameters
AUCTotal insulin,0-12h (pmol/L) b 1,444 ± 398 1,510 ± 368 0.482
AUCTotal insulin,0-24h (pmol/L) b 2,853 ± 713 2,958 ± 626 0.524
Maximum total insulin (pmol/L) b 151.8 ± 42.0 162.1 ± 41.9 0.310
Time of maximum total insulin (h) b 10.9 ± 5.55 10.8 ± 3.77 0.937

GIR, glucose infusion rate; IGlar, insulin glargine; AUC, area under the curve.
aMedian (interquartile range), the difference was detected by Mann Whitney test.
bArithmetic mean ± standard deviation, the difference was detected by unpaired Student’s t-test.

FIGURE 2 | Time-profiles of observed total insulin throughout the
euglycemic clamp in groups A and B, respectively (Mean ± SEM).

FIGURE 3 | Time-profiles of insulin glargine derived from C-peptide
correction throughout the euglycemic clamp in groups A and B, respectively
(Mean ± SEM).

FIGURE 4 | Time-profiles of glucose infusion rate throughout the
euglycemic clamp in groups A and B, respectively (Mean ± SEM).
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of the binary logistic regression analysis indicated that basal
BG was an independent factor of sufficient endogenous insulin
suppression (standardized odds ratio 0.010, p < 0.005).

DISCUSSION

During the performance of a euglycemic clamp evaluating the PK/
PD of a long-acting insulin analog, exogenous glucose infusion was
frequently and properly adjusted according to the BG to ensure
good quality (Heise et al., 2016; Kuhlenkotter et al., 2017; Benesch
et al., 2022). Blood insulin concentration over time (PK) always
predicts insulin action; in return, the GIR over time reflects the
clinical glucose-lowering effect. However, the situation is ideally
established based on the foundation that blood insulin
concentration derives exclusively from absorption of the
subcutaneously injected insulin and no endogenous insulin
contributes to the observed GIR, e.g., a condition in patients
with T1DM (Kerner et al., 1991; Porcellati et al., 2015). The
effect of endogenous insulin on PK and/or PD may not be
completely eliminated even with the use of a mathematical
correcting method (Porcellati et al., 2015). Many clamp studies
have been conducted in healthy people (Shiramoto et al., 2021;
Linnebjerg et al., 2020b; de la et al., 2016) to meet regulatory
requirements (i.e., to support the registration of a new drug by a
regulatory body such as the EMA) and as a first indication of what
to expect in diabetic patients (Food And Drug Administration,
2014). Therefore, sufficient endogenous insulin suppression of
healthy volunteers is a key for a clamp with high quality (Kerner
et al., 1991; Morris et al., 1997; Heise et al., 2016). C-peptide, which
is secreted equimolecular to endogenous insulin by pancreas islets
(Rubenstein et al., 1969), is usually regarded as an indicator of
endogenous insulin. Many factors [e.g., individual metabolic
differences, delayed blood monitoring (Bequette, 2009; Kuroda
et al., 2017), investigator’s experience, and a several-minute lag
between glucose reading and subsequent glucose infusion (Porcellati
et al., 2011)] could affect the promptness and validity of GIR
adjustment relating to the C-peptide suppression. In this article,
we primarily aimed to explore how to achieve sufficient endogenous
insulin suppression in euglycemic clamps evaluating the PK/PD of a
long-acting insulin analog, and secondarily to assess the effect of the
different endogenous insulin suppression on PK/PD assessment.

It is well accepted that a postdose C-peptide reduction of more
than 50% from baseline indicates sufficient endogenous insulin
suppression. The logistic regression analysis indicated low basal
BG as an independent factor accounting for the success of

sufficient endogenous insulin suppression. In addition, a much
stronger C-peptide reduction was observed in clamp studies with
a target BG set as 9 mg/dl below the baseline (Bhatia et al., 2018)
compared to those whose target BG was set as 5 mg/dl below the
baseline (Sorensen et al., 2010). The EMA (European Medicines
Agency, 2015) suggests that stimulation of endogenous insulin
secretion can be prevented by clamping at a sub-fasting glucose
level, or by means of a continuous i. v. infusion of insulin
throughout the clamp. No data suggest how to determine a
sub-fasting glucose level, and different studies reported
different selections [e.g., 5 mg/dl (Ponchner et al., 1984;
Woodworth et al., 1994a; Howey et al., 1994; Arnolds et al.,
2010; Sorensen et al., 2010; Leohr et al., 2020), 9–10 mg/dl (Thow
et al., 1990; Woodworth et al., 1994b; Ter Braak et al., 1996;
Hompesch et al., 2021) below the individual’s baseline]. It was
observed that maintaining the BG at 5 mg/dl below the baseline
was capable to achieve sufficient C-peptide suppression in group
B where the mean basal BG was lower than 4.40 mmol/L, while a
target BG set as 5 mg/dl below the baseline whose overall mean
value was around 4.60 mmol/L was related to insufficient
endogenous insulin suppression in group A. The increase in
BG is known to motivate the entry of Ca2+ into the pancreatic β-
cell to stimulate the release of insulin (Ozawa and Sand, 1986).
Above-baseline of BG fluctuation was much less observed when
BG was maintained around a lower sub-baseline level, therefore
indicating a low possibility of stimulation of endogenous insulin
(Liu et al., 2022). The phenomenon that insulin could inhibit its
own secretion in normoglycemia was observed in many studies
(Liljenquist et al., 1978; Service et al., 1978; Waldhaus et al., 1982;
Bratusch-Marrain and Waldhausl, 1985). Additionally,
suppression of C-peptide was observed in 80% of cases when
BG was kept at a low-normal level (50–60 mg/dl) (Wasada et al.,
1996). The inhibition of endogenous insulin relies on the glucose-
mediated feedback, and this might be prior to an exogenous
hyperinsulinemia-mediated inhibition (Wasada et al., 1996).
Based on the findings of this study, we suggest that the target
BGmight be set at a lower level (e.g., 10% instead of 5% below the
baseline) in a clamp with a higher basal BG (e.g., over 4.60 mmol/
L) aiming to achieve sufficient endogenous insulin suppression.

After administration of an equal dosage of LY2963016 and
Lantus, the C-peptide corrected IGlar showed a higher peak level
and AUC0–24 h of insulin concentration in group B. However, we
think there existed a bias resulting in the invalidation of these
results. Before C-peptide correction, the peak insulin and AUC of
measured insulin from 0 to 24 h were slightly lower in group A,
where endogenous insulin was not less sufficiently inhibited, which

TABLE 4 | Odds ratios of factors for sufficient endogenous insulin suppression determined by logistic regression analysis.

P Standardized Odds Ratio 95%CI of Odds Ratio

Age (year) 0.151 0.788 0.569 to 1.091
Basal BG (mmol/L) 0.002 0.010 0.001 to 0.178
CVBG (%) 0.772 114,094 6.29 × 10–30 to 2.07×1039

IGlarmax (pmol/L) 0.386 1.020 0.975 to 1.068
AUCIGlar,0-24h (pmol/L×h) 0.985 1.000 0.997 to 1.003

Confounding variables are listed in the panel. Variables were considered for the multivariable models when their univariable p-value was<0.10. Values are odds ratios with 95% confidence
intervals (CI).
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was not consistent with common sense. This might be due to a
higher pharmacokinetic variety of IGlar and a limited sample size.
A comparison between human insulin in parallel to the C-peptide
measured by a specific assay and endogenous insulin calculated by
C-peptide might elucidate the effect of different extents of
C-peptide on PK estimates. The GIRmax and AUCGIR,0–24h were
still higher in group B before and after correction of exogenous
IGlar. It was contradictory to what should be in theory. Although
no significant difference was detected in HOMA-IR between the
two groups, we still speculate a higher insulin sensitivity in group B
because of a lower basal BG accompanied by a comparable basal
insulin level. It remains uncertain whether a woman’s insulin
sensitivity varies to such an extent that relevant changes in the
experimental results may occur, depending on the point of time in
her menstrual cycle (Toth et al., 1987; Diamond et al., 1989). A
larger proportion of female participants in group A might be
another reason for the confusing results.

This was a retrospective study including a total of 114 subjects.
After the balance of Latus dosage, only a total of 26 subjects were
allocated to group B. Limited sample size might affect the
validation of the results. Further work with a larger sample
size and a better design (i.e., only including males) will go
straight to ascertain the way of setting a target BG and explore
the effect of different C-peptide reductions on PK/PD assessment.

In conclusion, setting a lower sub-baseline target BG (e.g., 10%
instead of 5% below the baseline) in a euglycemic clamp with a

higher basal BG (e.g., higher than 4.60 mmol/L) might be an
approach to help achieve sufficient endogenous insulin
suppression.
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