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A single point mutation in precursor protein VI doubles
the mechanical strength of human adenovirus
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Abstract
Viruses are extensively studied as vectors for vaccine applications and gene therapies. For
these applications, understanding the material properties of viruses is crucial for creating
optimal functionality. Using atomic force microscopy (AFM) nanoindentation, we studied
the mechanical properties of human adenovirus type 5 with the fiber of type 35 (Ad5F35) and
compared it to viral capsids with a single point mutation in the protein VI precursor protein
(pVI-S28C). Surprisingly, the pVI-S28C mutant turned out to be twice as stiff as the Ad5F35
capsids. We suggest that this major increase in strength is the result of the DNA crosslinking
activity of precursor protein VII, as this protein was detected in the pVI-S28C mutant capsids.
The infectivity was similar for both capsids, indicating that mutation did not affect the ability
of protein VI to lyse the endosomal membrane. This study highlights that it is possible to
increase the mechanical stability of a capsid even with a single point mutation while not
affecting the viral life cycle. Such insight can help enable the development of more stable
vectors for therapeutic applications.
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1 Introduction

Human adenoviruses (AdV) cause acute respiratory, gastrointestinal, and ocular infections and
are therefore the object of intense study. In addition, AdV is increasingly being studied as a
vector for gene therapy and vaccine applications. [1–8]. Exploring the material properties of
AdV will help to create a more stable AdV vector for such therapeutic applications and will
support the development of targeted antiviral strategies. Several studies have focused on the
mechanics of AdV [9–12]. These studies revealed how the maturation transition increases the
genome-induced pressure inside the capsid [9] and how the flexibility of AdV is linked to
successful infection [12]. In the latter study, opposite effects on capsid stability were observed
between (i) αv integrin binding, which facilitates virus endocytosis and uncoating, and (ii) α-
defensins, which restrict endosome escape and infection. Upon binding of integrin, the
stiffness at the vertex region of the capsid is decreased, thereby stimulating uncoating of the
viral capsid. In contrast, binding of defensin HD5 resulted in an increased stiffness at the
vertex region, thus preventing the release of the penton base and release of the membrane lytic
protein VI from the interior of the capsid.

Human AdV is a non-enveloped double-stranded DNA virus of about ~90 nm in diameter.
The pseudo T = 25 icosahedral capsid consists of 240 trimeric hexon capsomers, 12 penton
capsomers located at the 12 fivefold axes of the icosahedral symmetry (vertex region), and 12
fiber proteins protruding from the penton bases. In addition, there are four minor capsid
cement proteins (IIIa, VI, VIII, and IX), five genome-associated proteins (V, VII, μ, and
terminal protein (TP)) and adenoviral protease (AVP), the latter of which is responsible for
converting precursor proteins from the immature virion into their mature (cleaved) form
[13–16]. Cleavage of these proteins during maturation results in decreased condensation of
the DNA, preparing for a highly cooperative DNA release. This DNA alteration results in an
increase of the internal pressure and consequently an increase in the spring constant of the
capsid [9]. Additionally during maturation, the capsid is primed for uncoating by destabilizing
the penton bases, creating a less stable capsid [10, 11]. Uncoating or disassembly starts when
the fiber binds to the primary receptor on the cell surface followed by internalization [17–19].
In the endosome, the pentons are released together with some internal components including
protein VI, which has been shown to induce a pH-independent disruption of the endosomal
membrane [20, 21]. Then the partially uncoated capsid traffics to the nuclear pore complex
[22, 23] where the final uncoating takes place, allowing the viral genome to enter the nucleus
[24].

Nanoindentation by atomic force microscopy (AFM) is an emergent technique to
characterize the mechanical properties of artificial as well as natural nano-sized struc-
tures [25–28]. In addition, by using AFM imaging, one also obtains topographical
information on the sample allowing both morphological and mechanical analyses of
the same nano-structured sample. This combined imaging and force spectroscopy tech-
nique is increasingly being used to study the mechanics of single viral nanoparticles
during the different stages of the viral life cycle as well as the influence of individual
proteins [12, 29–37]. Here we focus on the role of a multifunctional capsid protein
known as protein VI, in the elasticity and stability of the AdV capsid. The precursor form
of protein VI is involved in the stabilization of the immature capsid by interacting with
the inner cavity of each hexon [38, 39] and the C-terminal 11 amino acids of this
molecule accelerates the activity of the AVP [40]. Together with its membrane disrupting
capacity, this shows that protein VI plays an important role in the infectivity process of
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AdV. We performed AFM nanoindentations to determine the stiffness of human AdV
type 5 with the fiber of type 35 (Ad5F35) and this same viral capsid with a single point
mutation in the precursor protein form of protein VI. In this mutant, the serine at residue
28 is replaced by a cysteine that is near the N-terminus of protein VI, resulting in mutant
pVI-S28C particles. This mutation was generated as part of a larger series of protein VI
mutants used to define the functions of this cement protein. We selected the pVI-S28C
mutant for AFM studies because we anticipated that its propensity to undergo interchain
disulfide bonding might shed some light on the involvement of protein VI in the
maturation process and the infectivity of AdV. This mutant also provided an opportunity
to study the role of protein VI on the elasticity and stability of the capsid.

2 Materials and methods

2.1 Adenovirus

Human AdV type 5 with fiber of type 35 (Ad5F35) and this same viral capsid with a
single point mutation, in which, the serine at residue 28 is replaced by a cysteine at the
N-terminal end, in the precursor protein form of protein VI (mutant pVI-S28C) were
prepared as described previously by Moyer et al. [41]. Both viruses have a deletion of
the E1 region and are thus incapable of replication in nearly all mammalian cells
lacking this region. The purified Ad5F35 and pVI-S28C mutant virus particles were
analyzed by SDS-PAGE, followed by Simply Blue (Life Technologies, Carlsbad,
California, USA) staining (6 μg virus/lane).

2.2 Infectivity plaque assay

To determine the infectivity, 293β5 (American Type Culture Collection, Manassas,
Virginia, USA) cells were seeded in six-well plates at 4 × 105 cells per well in duplicate.
When a confluency of 70–80% was reached, they were infected with either Ad5F35 or
pVI-S28C mutant (0.25 vp/cell) and rocked for 2 h at 37 °C. After removal of the
inoculum, the cells were washed once with PBS. Then, the cells were carefully overlaid
with 4 ml/well of equal parts of Avicel 2.4% (RC-581) and 2× EMEM (BioWhittaker,
Waltham, Massachusetts, USA) supplemented with 2× penicillin/streptomycin, 2× L-
glutamine and 10% Fetal Bovine Serum (FBS). The plates were incubated for 72 h at
37 °C, followed by scanning with a Typhoon 9410 imager (GE Healthcare Life Sciences,
Chicago, Illinois, USA). The plaques were quantified with ImageJ. A more detailed
protocol is given by [42].

2.3 Thermal stability assay

The thermal stability of virions was measured by the accessibility of the viral DNA to a
fluorescent intercalating dye, TOTO-1 (Molecular Probes, Waltham, Massachusetts,
USA) as previously described by [43]. In short, 100 μg/ml of Ad5F35 or pVI-S28C
was incubated with 60 nM TOTO-1 and the fluorescence emission of TOTO-1 was
monitored as a function of temperature in an ABI Prism 7900HT real-time PCR machine
(Applied Biosystems, Waltham, Massachusetts, USA) programmed to measure
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fluorescence (λex 488; λem 540) every 2.5 °C between 20 and 70 °C. Samples were
equilibrated at each temperature for 2 min prior to fluorescence measurement.

2.4 Atomic force microscopy

For imaging and nanoindentation experiments the AdV capsids were immobilized onto a
hydrophobic glass surface prepared as described previously [44]. In short, first the glass slides
were cleaned by overnight incubation in an ethanol–water bath saturated with potassium
hydroxide followed by thoroughly washing with MilliQ water and drying by air. The cleaned
glass slides were incubated overnight in hexamethyldisilazane vapor to make them hydropho-
bic. The sample was diluted in DX10/10 buffer (40 mM Tris, 500 mM sodium chloride, 2%
(wt/vol) sucrose and 1% (wt/vol) mannitol) to a final concentration of ~10 ng/μl and incubated
on the hydrophobic glass surface at a minimal volume of 100 μl for approximately 15 min at
room temperature, before imaging started in buffer solution.

Images and nanoindentation curves were obtained with an AFM from Nanotec Electronica
(Madrid, Spain), operated in jumping mode [45] at room temperature. Olympus (Tokyo,
Japan) OMCL-RC800PSA rectangular, silicon-nitride cantilevers with a nominal tip radius
of 15 nm and a nominal spring constant of 0.05 N/m were used. The average imaging force
was 105 ± 11 pN. Obtained images were processed and analyzed using the WSxM software.
All reported heights obtained from the images are corrected for the scanning force according
to:

Heightreal ¼ Heightmeasured þ
Fimaging

κvirus

where Fimaging is the imaging force and κvirus is the spring constant of the capsid. For
nanoindentations, we zoomed in on individual capsids and positioned the tip at the center of
the capsid. Five consecutive nanoindentation cycles were performed on each capsid with a
loading speed of ~90 nm/s. The obtained force–distance curves were analyzed with a home-
build Matlab program. In short, force–distance curves were transferred into force–indentation
curves by subtracting the glass curve. The first linear part of the force–indentation curve, up to
11 nm or until the critical point, was used to determine the spring constant. Additionally, a
close-up image of the capsid after indentation was obtained to determine the amount of
damage inflicted by the indentations. The stated error, unless specified otherwise, is the
standard error of the mean. Student’s t test (two-sample unequal variance with two-tailed
distribution) was used to determine differences between groups.

3 Results

3.1 pVI-S28C mutant

We compared the infectivity and the thermal stability of the pVI-S28C mutants with that of the
Ad5F35 virions. The infectivity of the pVI-S28C mutant as determined by plaque assay
(Fig. 1a) appeared to be similar to Ad5F35. The pVI-S28C mutant had only a slight (~2-fold)
increase in infectivity compared to the Ad5F35, suggesting that the mutation did not signif-
icantly affect the ability of protein VI to lyse the endosomal membrane. The thermal stability
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of pVI-S28C and Ad5F35 virions was determined by TOTO-1 fluorescent dye incorporation
thermal stability experiments (Fig. 1b). The Ad5F35 displayed the characteristic temperature-
induced dye uptake at 42–45 °C. In contrast, the virions containing the pVI-S28C mutation did
not display this pronounced dye uptake profile, indicating a change in the thermal stability of
the pVI-S28C mutant particle. Thus, the infectivity was similar; however, the thermal stability
was higher for the pVI-S28C mutant particles. To determine whether the pVI-S28C mutant
virions contained a different array of the known capsid proteins than Ad5F35 virions, we
subjected purified virions to SDS page gel electrophoresis analyses. In general, the pVI-S28C
mutant and Ad5F35 virions had the same complement of capsid proteins, although the pVI-
S28C mutant virus contained an additional ~22-kDa protein, which might correspond to
precursor protein VII (pVII), which would be consistent with the recent findings of Dai
et al., who report that pVII is associated with the inner hexon cavity [39] (Fig. 1c). This
suggests that the maturation process was somewhat incomplete in the case of the pVI-S28C
particles.

3.2 Morphology of the capsids

We used AFM for imaging of AdV capsids to determine their morphology before and after
nanoindentation. In total, we imaged 120 AdV capsids of which 35 were Ad5F35 capsids and
85 pVI-S28C mutant capsids. Figure 2 shows two examples of topographical AFM images of
the Ad5F35 capsids before and after indentation. Before indentation, all capsids were intact,

Fig. 1 Infectivity, thermal stability, and protein content of Ad5F35 versus pVI-S28C capsids. a The infectivity
rate of both Ad5F35 and pVI-S28C capsids are comparable. b The thermal stability of the pVI-S28C capsids is
increased compared to Ad5F35 capsids. c SDS page gel electrophoresis analysis of the known capsid proteins.
The pVI-S28C mutant and Ad5F35 virions had a similar complement of capsid proteins, except the pVI-S28C
mutant contained an additional ~22-kDa protein that might correspond to precursor protein VII (pVII) and more
smaller proteins
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e.g., cases where a capsid was missing a penton capsomer or had other visible damage were
not included for nanoindentation analyses. Less than 5% of the capsids had to be excluded
because of such visible damage. After nanoindentation, many different structures were
observed, ranging from almost complete capsid disassembly into hexon and penton
capsomeres of ~11 nm (Fig. 2, bottom) to a partial collapse of the capsid (Fig. 2, top).
Occasionally, we observed capsids that presented with a hole in their center while the
remaining sides of the capsid were still intact. Overall, before indentation, all capsids were
intact, while after indentation all capsids showed different levels of damage.

To roughly compare the level of damage inflicted by nanoindentation, we determined the
height before and the maximal height of the remaining structure after nanoindentation. Before
indentation the average height of the Ad5F35 was 84.6 ± 0.3 nm, which is comparable to the
diameter based on the AdV crystal structure [14]. The height of the pVI-S28C mutant capsids
was 91.3 ± 0.4 nm, which is a ~10% increase compared to the Ad5F35 capsids (Fig. 3a). This
increase might be due to the lack of full maturation resulting from potential crosslinking of
hexon to pVII in the pVI-S28C capsids. For classification of the damage inflicted by
nanoindentation, we calculated the percentage of the decrease in height for each type of viral
capsid. In case of Ad5F35, the average decrease in height was determined to be ~48 ± 3%,
which is within error the same as the 43 ± 2% decrease observed for the pVI-S28C mutant
capsids (Fig. 3b).

3.3 Mechanical properties of AdV capsids

To explore the precise impact of the pVI-S28C mutation on tensile strength of viral capsids, we
determined the spring constant, critical force, and critical point of both capsids. The spring

Fig. 2 Structure of AdV capsids before and after indentation. Two examples are represented in a row with on the
left the height profiles along the arrows of the AdV capsids represented in the 3D images in the middle. The
measured height of the icosahedral capsids is ~85–90 nm. The images on the right contain the same capsids but
after indentation, representing the damage inflicted by the indentation. The top capsid is partially broken, while
some of the sides are still standing with some debris in the middle. The bottom one is more severely damaged and
completely disassembled into smaller substructures
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constant is calculated from the slope of the initial linear part of the force–indentation curve.
The force–indentation curves of all capsids are shown in Fig. 4a-b. We observed a significant
increase of the spring constant for the pVI-S28C capsids compared to the Ad5F35 capsids. For
the Ad5F35, we determined a spring constant of 0.37 ± 0.02 N/m while the pVI-S28C mutant
had a spring constant of 0.78 ± 0.08 N/m. The critical force at which the capsids deform
irreversibly and break was comparable, 4.6 ± 0.1 nN for Ad5F35 and 4.2 ± 0.2 nN for pVI-
S28C. A difference in spring constant but similar critical forces means that the corresponding
indentation depth at the critical point should be different. Indeed, for Ad5F35 we determined a
critical point of 17 ± 1 nm while 12.5 ± 0.7 nm was observed for pVI-S28C. Thus, we obtained
a twofold increased spring constant, a similar critical force and a significantly increased critical
point for the pVI-S28C mutant capsids compared to the Ad5F35 capsids (Fig. 4c-e).

3.4 Capsid orientation

AdV has an icosahedral capsid consisting of 20 triangular facets, 12 vertices, and three
principal axes of symmetry, meaning that the capsid can adsorb in three different orientations
onto the glass surface. Figure 5a shows examples of immobilization on the three symmetry
axes. The system can exhibit a twofold orientation when the capsid is lying on the edge of two
triangular facets, a threefold orientation when the capsid is positioned with one triangular facet
onto the surface, or a fivefold orientation when the capsid is adhered to the surface with a
vertex. These orientations can be distinguished in the images recorded prior to the nanoin-
dentation. When we correlated the nanoindentation results with the absorption geometry, we
observed a similar mechanical response regardless of orientation (Fig. 5b and Supplementary
Fig. 1). We determined a spring constant of 0.35 ± 0.03 N/m for the twofold orientation of the
Ad5F35 capsids together with 0.37 ± 0.03 and 0.37 ± 0.05 N/m for the threefold and fivefold
orientations, respectively. For pVI-S28C capsids, we obtained spring constants of 0.7 ± 0.1,
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Fig. 3 Average height before and after nanoindentation of the AdV capsids. a Height of Ad5F35 capsids (n =
35) before indentation is 84.6 ± 0.3 nm, which is significantly lower than the height of the pVI-S28C mutant (n =
85) 91.3 ± 0.4 nm (*Student’s t test < 0.01). b Upon nanoindentation the height of Ad5F35 capsids decreased by
48 ± 3% and the pVI-S28C mutant decreased 43 ± 2%. All heights obtained for the intact capsid are corrected for
scanning force as stated in the Materials and methods section
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0.9 ± 0.2 and 0.7 ± 0.1 N/m for twofold, threefold, and fivefold, respectively. Thus, there is a
significantly different spring constant observed between the Ad5F35 and pVI-S28C capsids,
but no significant difference in spring constant between the orientations of the Ad5F35 or of
the pVI-S28C capsids.

4 Discussion

We compared the infectivity, thermal stability, and mechanical properties of the Ad5F35 capsid
and this same capsid containing the pVI-S28C mutation to explore the involvement of protein
VI in the maturation process and infectivity and the effect of this mutation on the elasticity and
stability of the AdV capsid. Regarding capsid maturation, we determined whether the mutant
virions contained a different array of the known capsid proteins than the non-mutant virions. In
general, both capsids had the same complement of capsid proteins, although the pVI-S28C
mutant virions contained an additional ~22-kDa protein and possibly also smaller proteins.
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Fig. 4 Nanoindentation results of Ad5F35 and pVI-S28C mutant capsids. Force–indentation curves of inden-
tations performed on Ad5F35 (a) and pVI-S28C mutant (b) capsids. There is a linear response up to the critical
point, at which irreversible damage occurs to the capsid and which is characterized by a significant drop in force.
The force increases again upon contact between the AFM tip and the remaining structure and the underlying stiff
glass surface. Spring constant (c), critical force (d) and critical point (e) of both Ad5F35 and pVI-S28C mutant
capsids (*Student’s t test < 0.01)

126 M. G. M. van Rosmalen et al.



This ~22-kDa protein is expected to correspond to pVII, which suggests that the maturation
process was incomplete. The pVI-S28C mutation, however, did not seem to affect the cleavage
of pVI, which is cleaved by AVP at both the C-termini and N-termini. The cleaved C-terminus
of pVI is shown to be involved in stimulating the activity of the AVP [40]. Our results suggest
the S28C mutation located at the N-terminus of pVI somehow affects the ability of AVP to
cleave pVII, and possibly other precursor proteins. However, the exact mechanism underlying

Fig. 5 Structural morphology of intact AdV capsids and their spring constant based on orientation. a The top
row shows surface renderings of AdV capsids based on the crystal structure at 3.8-Å resolution (Protein Data
Bank [PDB] code, 1VSZ) representing the three different orientations of the icosahedral capsid, with twofold,
threefold, and fivefold symmetry. The colored hexon capsomers represent the four unique hexon trimers and the
penton capsomers are shown in magenta with the protruding fibers in orange. The bottom row shows 3D
topological AFM images of Ad5F35 capsids in the corresponding three orientations indicated by the dashed
lines. b Spring constants of AdV capsids obtained at different orientations. The indentation response for each
virus type is independent of orientation
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this remains unclear. One of the main questions to be answered is how AVP is able to gain
access to the amino terminal region of pVI, which is partially buried inside the hexon trimer
[39].

The infectivity of the pVI-S28C mutant is similar to unaltered Ad5F35, suggesting that the
mutation did not affect the ability of protein VI to lyse the endosomal membrane. On the
contrary, the previously studied pVI-G48C mutation also located on the N-terminal end did
impair protein VI release due to dimerization of the cleaved protein VI, which affected the
endosomal membrane disruption and thus virus infectivity [46]. Also, another pVI mutation,
pVI-G33A, which is located immediately prior to the AVP cleavage site, affected the ability of
AVP to cleave pVI and impaired membrane disruption and virus infection as well as capsid
assembly [41]. In another unrelated AdV study, it has been shown that immature ts1 AdV
capsids also exhibit a decreased infectivity as a result of an impaired uncoating; they become
trapped in the endosome due to a lack of exposure of protein VI [19]. This suggests that
despite the pVI-S28C mutation, pVI was successfully cleaved by the AVP during maturation,
which is in agreement with our observed SDS page gel electrophoresis results of the array of
present proteins in the capsids and the unaltered infectivity.

A previous study showed an increased thermal stability for the immature ts1 AdV capsid
compared to the mature wild-type AdV capsid [11]. This would be in agreement with our
expectation that our pVI-S28C mutant would be a not fully matured capsid due to the presence
of pVII and therefore would have an increased thermal stability compared to the Ad5F35
capsids. This might suggest a possible role of pVII, and maybe other present precursor proteins
in the pVI-S28C capsids, in determining the capsids thermal stability [11, 38]. Another
possible explanation for the increased thermal stability of the pVI-S28C mutation could be
an altered affinity of the inter-hexon interactions. The N-terminus part of pVI has been shown
to bind intimately at the base of peripentonal hexons and is involved in the assembly process of
the capsid [46–48]. It has been speculated that maturation may alter the hexon interaction [41].
Since the N-terminus of pVI is tightly bound to the hexons, a mutation in the N-terminus might
affect the inter-hexon interactions, which in the case of our mutant pVI-S28C could cause
increased thermal stability. Thus, the increased thermal stability of the pVI-S28C mutant
virions could result from the presence of precursor proteins due to an incomplete maturation
process or altered inter-hexon interactions.

In mechanical fatigue experiments, it was shown that the immature ts1 virions break more
gradually due to their condensed core compared to wild-type virions, which are prone to
release their decondensed, loosely packed DNA for efficient infection [10, 49]. Both the pVI-
S28C and Ad5F35 capsids show a comparable relative decrease in height due to nanoinden-
tation, which suggests that both capsids contained decondensated DNA ready for infection.
Thus the presence of pVII in the pVI-S28C capsids did not result in condensation of the DNA
despite pVII being associated with genome interactions [13–15, 50]. Most likely, the level of
cleaved VII, and the other proteins associated with genome interactions, was sufficient for
decondensation of the DNA during the maturation process. Thus, the DNA inside the pVI-
S28C capsids was decondensated due to maturation, which explains the similar relative
decrease in height obtained for the Ad5F35 and pVI-S28C mutant capsids.

Initially, we expected the pVI-S28C capsids to be somewhat immature, given the presence of
an additional ~22-kDa protein that likely corresponds to pVII. Thus, we expected a decreased
spring constant for the pVI-S28Cmutant capsids since Pérez-Berná et al. [11] andOrtega-Esteban
et al. [9] showed a decreased spring constant for the immature AdV5 ts1mutant compared to the
mature AdV5 capsids. As mentioned above, however, the similar relative decrease in height of
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both studied capsids leads us to speculate that the DNA inside both capsids was decondensated
and therefore a comparable spring constant for both capsids was expected. Contrary to our
expectations, we recorded a twofold increase in spring constant for the pVI-S28C mutant virions.
Based on the literature, we can speculate that the presence of the pVII protein might cause this
increase. pVII is shown to crosslink with the viral DNA, thus the decondensated DNA might be
crosslinked to the viral shell, causing a further increase in stiffness compared to the Ad5F35
capsids. For other viruses, it has been shown that not only the presence of the genome but also the
interaction between genome and capsid influences the mechanical properties of the viral capsid
[37, 51]. Alternatively, an altered affinity of the inter-hexon interactions could also explain the
major increase in strength. Since theN-terminus of pVI is tightly bound to the hexons [41, 46–48],
a mutation in the N-terminus might affect the inter-hexon interactions, which in the case of our
mutant, pVI-S28C, would stiffen the capsid structure.

Several previous studies reported nanoindentation experiments on AdV5 capsids. In
contrast to the study of Snijder et al. [12], we obtained a slightly lower spring constant of
0.37 ± 0.02 N/m at the threefold orientation of Ad5F35 compared to the earlier reported
0.43 ± 0.01 N/m. Moreover, the reported orientational dependence of the spring constants
was not found in the current study, which could be due to differences in determining the
point of indentation between these studies. The reported break force of 4.6 ± 0.2 nN in
Ref. [12] is similar to the force of 4.56 ± 0.12 nN we found here. A study by Ortega-
Esteban et al. [9] also reported nanoindentation experiments on wild-type AdV5 and
determined a spring constant of 0.56 ± 0.02 N/m and a breaking force of 5.0 ± 0.1 nN,
which both are higher than our observations. In another study from the same lab, Pérez-
Berná et al. [11] reported a spring constant of 0.46 ± 0.2 N/m and a breaking force of 3.3
± 0.2 nN for mature AdV5 virions. The differences in spring constant might be caused by
a difference in selection of the particles for nanoindentation, as suggested by the authors.
The differences in break force might be caused by the difference in loading rate used for
the nanoindentation experiments, ranging from 55 to 150 nm/s. Snijder et al. [52]
showed an increased break force for a higher loading rate for CCMV, HK97, and
Phi29 capsids. Also, the tip radius has been shown to influence the mechanical response.
In a recent publication on nanoindentation experiments of fluid nanovesicles, a larger tip
radius was shown to produce an earlier stiffening response of the vesicles [53]. Taken
together, this shows that a direct comparison of spring constants and break forces of
different studies has to be done with care.

5 Conclusions

We used unaltered Ad5F35 and this same capsid containing a pVI-S28C mutation to explore
the influence of protein VI on maturation and infectivity. We obtained a similar infectivity for
both particles, suggesting that the pVI-S28C mutation did not affect one of the major known
functions of protein VI, lysing of the endosomal membrane. However, we did detect the
presence of pVII, indicating that the AVP was somewhat affected by the mutation. This might
explain the increased thermal stability we observed for the pVI-S28C mutants since this would
be consistent with the thermal stability of a ts1 immature AdV capsid. Furthermore, we
obtained a twofold increased spring constant for the pVI-S28C mutant compared to
Ad5F35. This could also be explained by the presence of pVII, since pVII is known to
crosslink the DNA, which is likely to lead to a stiffer response. While our study sheds new
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light on the complex influence of protein VI on maturation and infection, the results also reveal
that further experiments on protein VI mutants are necessary to form a complete picture of the
role and effects of this important adenoviral capsid protein.

Acknowledgements This work was funded by the Nederlandse organisatie voor Wetenschappelijk Onderzoek
(NWO) through NWO Vidi (to W.H.R.) and Vici (to G.J.L.W.) grants, the Stichting voor Fundamenteel
Onderzoek der Materie (FOM) through Projectruimte grants (to G.J.L.W. and W.H.R.) and by NIH
R21AI112714 (to G.N. and W.H.R.).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

1. Fernandez-Sainz, I., Medina, G.N., Ramirez-Medina, E., Koster, M.J., Grubman, M.J., de Los
Santos, T.: Adenovirus-vectored foot-and-mouth disease vaccine confers early and full protection
against FMDV O1 Manisa in swine. Virology 502, 123–132 (2017). https://doi.org/10.1016/j.
virol.2016.12.021

2. Jing, P., Cao, S., Xiao, S., Zhang, X., Ke, S., Ke, F., Yu, X., Wang, L., Wang, S., Luo, Y., Zhong, Z.:
Enhanced growth inhibition of prostate cancer in vitro and in vivo by a recombinant adenovirus-mediated
dual-aptamer modified drug delivery system. Cancer Lett. 383(2), 230–242 (2016). https://doi.org/10.1016
/j.canlet.2016.10.003

3. Scallan, C.D., Tingley, D.W., Lindbloom, J.D., Toomey, J.S., Tucker, S.N.: An adenovirus-based vaccine
with a double-stranded RNA adjuvant protects mice and ferrets against H5N1 avian influenza in oral
delivery models. Clin. Vaccine Immunol. 20(1), 85–94 (2013). https://doi.org/10.1128/cvi.00552-12

4. Crosby, C.M., Matchett, W.E., Anguiano-Zarate, S.S., Parks, C.A., Weaver, E.A., Pease, L.R., Webby, R.J.,
Barry, M.A.: Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine
Responses. Journal of virology. 91(2), e00720 (2017). https://doi.org/10.1128/jvi.00720-16

5. Emmer, K.L., Wieczorek, L., Tuyishime, S., Molnar, S., Polonis, V.R., Ertl, H.C.: Antibody responses to
prime-boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors
expressing HIV-1 gp140. AIDS 30(16), 2405–2414 (2016). https: / /doi.org/10.1097
/qad.0000000000001224

6. Kim, S.Y., Kang, D., Choi, H.J., Joo, Y., Kim, J.H., Song, J.J.: Prime-boost immunization by both DNA
vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-beta2 induces anti-tumor
immune activation. Oncotarget 8(9), 15858–15877 (2017). https://doi.org/10.18632/oncotarget.15008

7. Li, J.X., Hou, L.H., Meng, F.Y., Wu, S.P., Hu, Y.M., Liang, Q., Chu, K., Zhang, Z., Xu, J.J., Tang, R.,
Wang, W.J., Liu, P., Hu, J.L., Luo, L., Jiang, R., Zhu, F.C., Chen, W.: Immunity duration of a recombinant
adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy
adults in China: final report of a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Glob.
Health 5(3), e324–e334 (2017). https://doi.org/10.1016/s2214-109x(16)30367-9

8. Dasari, V., Schuessler, A., Smith, C., Wong, Y., Miles, J.J., Smyth, M.J., Ambalathingal, G., Francis, R.,
Campbell, S., Chambers, D., Khanna, R.: Prophylactic and therapeutic adenoviral vector-based multivirus-
specific T-cell immunotherapy for transplant patients. Molecular Therapy. Methods & Clinical Development
3, 16058 (2016). https://doi.org/10.1038/mtm.2016.58

9. Ortega-Esteban, A., Condezo, G.N., Perez-Berna, A.J., Chillon, M., Flint, S.J., Reguera, D., San Martin, C.,
de Pablo, P.J.: Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano
9(11), 10826–10833 (2015). https://doi.org/10.1021/acsnano.5b03417

10. Ortega-Esteban, A., Perez-Berna, A.J., Menendez-Conejero, R., Flint, S.J., San Martin, C., de Pablo, P.J.:
Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci. Rep. 3, 1434
(2013). https://doi.org/10.1038/srep01434

11. Perez-Berna, A.J., Ortega-Esteban, A., Menendez-Conejero, R., Winkler, D.C., Menendez, M., Steven,
A.C., Flint, S.J., de Pablo, P.J., San Martin, C.: The role of capsid maturation on adenovirus priming for
sequential uncoating. J. Biol. Chem. 287(37), 31582–31595 (2012). https://doi.org/10.1074/jbc.
M112.389957

130 M. G. M. van Rosmalen et al.

https://doi.org/10.1016/j.virol.2016.12.021
https://doi.org/10.1016/j.virol.2016.12.021
https://doi.org/10.1016/j.canlet.2016.10.003
https://doi.org/10.1016/j.canlet.2016.10.003
https://doi.org/10.1128/cvi.00552-12
https://doi.org/10.1128/jvi.00720-16
https://doi.org/10.1097/qad.0000000000001224
https://doi.org/10.1097/qad.0000000000001224
https://doi.org/10.18632/oncotarget.15008
https://doi.org/10.1016/s2214-109x(16)30367-9
https://doi.org/10.1038/mtm.2016.58
https://doi.org/10.1021/acsnano.5b03417
https://doi.org/10.1038/srep01434
https://doi.org/10.1074/jbc.M112.389957
https://doi.org/10.1074/jbc.M112.389957


12. Snijder, J., Reddy, V.S., May, E.R., Roos, W.H., Nemerow, G.R., Wuite, G.J.: Integrin and defensin
modulate the mechanical properties of adenovirus. J. Virol. 87(5), 2756–2766 (2013). https://doi.
org/10.1128/JVI.02516-12

13. Nemerow, G.R., Stewart, P.L., Reddy, V.S.: Structure of human adenovirus. Curr. Opin. Virol. 2(2), 115–
121 (2012). https://doi.org/10.1016/j.coviro.2011.12.008

14. Reddy, V.S., Natchiar, S.K., Stewart, P.L., Nemerow, G.R.: Crystal structure of human adenovirus at 3.5-Å
resolution. Science 329(5995), 1071–1075 (2010). https://doi.org/10.1126/science.1187292

15. Russell, W.C.: Adenoviruses: update on structure and function. J. Gen. Virol. 90(Pt 1), 1–20 (2009).
https://doi.org/10.1099/vir.0.003087-0

16. Weber, J.: Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins. J.
Virol. 17(2), 462–471 (1976)

17. Li, E., Stupack, D., Klemke, R., Cheresh, D.A., Nemerow, G.R.: Adenovirus endocytosis via alpha(v)
integrins requires phosphoinositide-3-OH kinase. J. Virol. 72(3), 2055–2061 (1998)

18. Nakano, M.Y., Boucke, K., Suomalainen, M., Stidwill, R.P., Greber, U.F.: The first step of adenovirus type 2
disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J. Virol.
74(15), 7085–7095 (2000)

19. Burckhardt, C.J., Suomalainen, M., Schoenenberger, P., Boucke, K., Hemmi, S., Greber, U.F.: Drifting
motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic
protein exposure. Cell Host Microbe 10(2), 105–117 (2011). https://doi.org/10.1016/j.chom.2011.07.006

20. Suomalainen, M., Luisoni, S., Boucke, K., Bianchi, S., Engel, D.A., Greber, U.F.: A direct and versatile
assay measuring membrane penetration of adenovirus in single cells. J. Virol. 87(22), 12367–12379 (2013).
https://doi.org/10.1128/jvi.01833-13

21. Wiethoff, C.M., Nemerow, G.R.: Adenovirus membrane penetration: tickling the tail of a sleeping dragon.
Virology 479-480, 591–599 (2015). https://doi.org/10.1016/j.virol.2015.03.006

22. Bremner, K.H., Scherer, J., Yi, J., Vershinin, M., Gross, S.P., Vallee, R.B.: Adenovirus transport via direct
interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe 6(6), 523–535
(2009). https://doi.org/10.1016/j.chom.2009.11.006

23. Leopold, P.L., Kreitzer, G., Miyazawa, N., Rempel, S., Pfister, K.K., Rodriguez-Boulan, E., Crystal, R.G.:
Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis.
Hum. Gene Ther. 11(1), 151–165 (2000). https://doi.org/10.1089/10430340050016238

24. Strunze, S., Engelke, M.F., Wang, I.H., Puntener, D., Boucke, K., Schleich, S., Way, M., Schoenenberger, P.,
Burckhardt, C.J., Greber, U.F.: Kinesin-1-mediated capsid disassembly and disruption of the nuclear pore
complex promote virus infection. Cell Host Microbe 10(3), 210–223 (2011). https://doi.org/10.1016/j.
chom.2011.08.010

25. Delorme, N., Fery, A.: Direct method to study membrane rigidity of small vesicles based on atomic force
microscope force spectroscopy. Phys. Rev. E 74(3 Pt 1), 030901 (2006). https://doi.org/10.1103
/PhysRevE.74.030901

26. Heinze, K., Sasaki, E., King, N.P., Baker, D., Hilvert, D., Wuite, G.J., Roos, W.H.: Protein Nanocontainers
from nonviral origin: testing the mechanics of artificial and natural protein cages by AFM. J. Phys. Chem. B
120(26), 5945–5952 (2016). https://doi.org/10.1021/acs.jpcb.6b01464

27. Kasas, S., Dietler, G.: Probing nanomechanical properties from biomolecules to living cells. Pflügers
Archiv. : Eur. J. Physiol. 456(1), 13–27 (2008). https://doi.org/10.1007/s00424-008-0448-y

28. Roos, W.H., Bruinsma, R., Wuite, G.J.L.: Physical virology. Nat. Phys. 6(10), 733–743 (2010)
29. Baclayon, M., Wuite, G.J.L., Roos, W.H.: Imaging and manipulation of single viruses by atomic force

microscopy. Soft Matter 6(21), 5273–5285 (2010). https://doi.org/10.1039/B923992H
30. de Pablo, P.J.: Atomic force microscopy of viruses. Subcell. Biochem. 68, 247–271 (2013). https://doi.

org/10.1007/978-94-007-6552-8_8
31. Marchetti, M., Wuite, G., Roos, W.H.: Atomic force microscopy observation and characterization of single

virions and virus-like particles by nano-indentation. Curr. Opin. Virol. 18, 82–88 (2016). https://doi.
org/10.1016/j.coviro.2016.05.002

32. Mateu, M.G.: Assembly, stability and dynamics of virus capsids. Arch. Biochem. Biophys. 531(1–2), 65–79
(2013). https://doi.org/10.1016/j.abb.2012.10.015

33. Hernando-Perez, M., Miranda, R., Aznar, M., Carrascosa, J.L., Schaap, I.A., Reguera, D., de Pablo, P.J.:
Direct measurement of phage phi29 stiffness provides evidence of internal pressure. Small 8(15), 2366–
2370 (2012). https://doi.org/10.1002/smll.201200664

34. Kol, N., Shi, Y., Tsvitov, M., Barlam, D., Shneck, R.Z., Kay, M.S., Rousso, I.: A stiffness switch in human
immunodeficiency virus. Biophys. J. 92(5), 1777–1783 (2007). https://doi.org/10.1529/biophysj.106.093914

35. Roos, W.H., Gertsman, I., May, E.R., Brooks 3rd, C.L., Johnson, J.E., Wuite, G.J.: Mechanics of
bacteriophage maturation. Proc. Natl. Acad. Sci. U. S. A. 109(7), 2342–2347 (2012). https://doi.
org/10.1073/pnas.1109590109

A single point mutation in precursor protein VI doubles the mechanical... 131

https://doi.org/10.1128/JVI.02516-12
https://doi.org/10.1128/JVI.02516-12
https://doi.org/10.1016/j.coviro.2011.12.008
https://doi.org/10.1126/science.1187292
https://doi.org/10.1099/vir.0.003087-0
https://doi.org/10.1016/j.chom.2011.07.006
https://doi.org/10.1128/jvi.01833-13
https://doi.org/10.1016/j.virol.2015.03.006
https://doi.org/10.1016/j.chom.2009.11.006
https://doi.org/10.1089/10430340050016238
https://doi.org/10.1016/j.chom.2011.08.010
https://doi.org/10.1016/j.chom.2011.08.010
https://doi.org/10.1103/PhysRevE.74.030901
https://doi.org/10.1103/PhysRevE.74.030901
https://doi.org/10.1021/acs.jpcb.6b01464
https://doi.org/10.1007/s00424-008-0448-y
https://doi.org/10.1039/B923992H
https://doi.org/10.1007/978-94-007-6552-8_8
https://doi.org/10.1007/978-94-007-6552-8_8
https://doi.org/10.1016/j.coviro.2016.05.002
https://doi.org/10.1016/j.coviro.2016.05.002
https://doi.org/10.1016/j.abb.2012.10.015
https://doi.org/10.1002/smll.201200664
https://doi.org/10.1529/biophysj.106.093914
https://doi.org/10.1073/pnas.1109590109
https://doi.org/10.1073/pnas.1109590109


36. Roos, W.H., Radtke, K., Kniesmeijer, E., Geertsema, H., Sodeik, B., Wuite, G.J.: Scaffold expulsion and
genome packaging trigger stabilization of herpes simplex virus capsids. Proc. Natl. Acad. Sci. U. S. A.
106(24), 9673–9678 (2009). https://doi.org/10.1073/pnas.0901514106

37. Snijder, J., Uetrecht, C., Rose, R.J., Sanchez-Eugenia, R., Marti, G.A., Agirre, J., Guerin, D.M., Wuite, G.J.,
Heck, A.J., Roos, W.H.: Probing the biophysical interplay between a viral genome and its capsid. Nat.
Chem. 5(6), 502–509 (2013). https://doi.org/10.1038/nchem.1627

38. Perez-Berna, A.J., Marabini, R., Scheres, S.H., Menendez-Conejero, R., Dmitriev, I.P., Curiel, D.T.,
Mangel, W.F., Flint, S.J., San Martin, C.: Structure and uncoating of immature adenovirus. J. Mol. Biol.
392(2), 547–557 (2009). https://doi.org/10.1016/j.jmb.2009.06.057

39. Dai, X., Wu, L., Sun, R., Zhou, Z.H.: Atomic structures of minor proteins VI and VII in the human
adenovirus. J. Virol. (2017). https://doi.org/10.1128/jvi.00850-17

40. Baniecki, M.L., McGrath, W.J., McWhirter, S.M., Li, C., Toledo, D.L., Pellicena, P., Barnard, D.L., Thorn,
K.S., Mangel, W.F.: Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc.
Biochemistry 40(41), 12349–12356 (2001)

41. Moyer, C.L., Besser, E.S., Nemerow, G.R.: A single maturation cleavage site in adenovirus impacts cell
entry and capsid assembly. J. Virol. 90(1), 521–532 (2015). https://doi.org/10.1128/jvi.02014-15

42. Sanchez-Cespedes, J., Moyer, C.L., Whitby, L.R., Boger, D.L., Nemerow, G.R.: Inhibition of adenovirus
replication by a trisubstituted piperazin-2-one derivative. Antivir. Res. 108, 65–73 (2014). https://doi.
org/10.1016/j.antiviral.2014.05.010

43. Wiethoff, C.M., Wodrich, H., Gerace, L., Nemerow, G.R.: Adenovirus protein VI mediates membrane
disruption following capsid disassembly. J. Virol. 79(4), 1992–2000 (2005). https://doi.org/10.1128
/jvi.79.4.1992-2000.2005

44. Roos, W.H.: How to perform a nanoindentation experiment on a virus. Methods Mol. Biol. 783, 251–264
(2011). https://doi.org/10.1007/978-1-61779-282-3_14

45. Pablo, P.J.D., Colchero, J., Gomez-Herrero, J., Baro, A.M.: Jumping mode scanning force microscopy.
Appl. Phys. Lett. 73(22), 3300–3302 (1998)

46. Moyer, C.L., Nemerow, G.R.: Disulfide-bond formation by a single cysteine mutation in adenovirus protein
VI impairs capsid release and membrane lysis. Virology 428(1), 41–47 (2012). https://doi.org/10.1016/j.
virol.2012.03.024

47. Reddy, V.S., Nemerow, G.R.: Structures and organization of adenovirus cement proteins provide insights
into the role of capsid maturation in virus entry and infection. Proc. Natl. Acad. Sci. U. S. A. 111(32),
11715–11720 (2014). https://doi.org/10.1073/pnas.1408462111

48. Snijder, J., Benevento, M., Moyer, C.L., Reddy, V., Nemerow, G.R., Heck, A.J.: The cleaved N-terminus of
pVI binds peripentonal hexons in mature adenovirus. J. Mol. Biol. 426(9), 1971–1979 (2014). https://doi.
org/10.1016/j.jmb.2014.02.022

49. Ortega-Esteban, A., Bodensiek, K., San Martin, C., Suomalainen, M., Greber, U.F., de Pablo, P.J., Schaap,
I.A.: Fluorescence tracking of genome release during mechanical unpacking of single viruses. ACS Nano
9(11), 10571–10579 (2015). https://doi.org/10.1021/acsnano.5b03020

50. Chatterjee, P.K., Yang, U.C., Flint, S.J.: Comparison of the interactions of the adenovirus type 2 major core
protein and its precursor with DNA. Nucleic Acids Res. 14(6), 2721–2735 (1986)

51. Carrasco, C., Castellanos, M., de Pablo, P.J., Mateu, M.G.: Manipulation of the mechanical properties of a
virus by protein engineering. Proc. Natl. Acad. Sci. U. S. A. 105(11), 4150–4155 (2008). https://doi.
org/10.1073/pnas.0708017105

52. Snijder, J., Ivanovska, I.L., Baclayon, M., Roos, W.H., Wuite, G.J.: Probing the impact of loading rate on
the mechanical properties of viral nanoparticles. Micron 43(12), 1343–1350 (2012). https://doi.org/10.1016
/j.micron.2012.04.011

53. Vorselen, D., MacKintosh, F.C., Roos, W.H., Wuite, G.J.: Competition between bending and internal
pressure governs the mechanics of fluid nanovesicles. ACS Nano 11(3), 2628–2636 (2017). https://doi.
org/10.1021/acsnano.6b07302

132 M. G. M. van Rosmalen et al.

https://doi.org/10.1073/pnas.0901514106
https://doi.org/10.1038/nchem.1627
https://doi.org/10.1016/j.jmb.2009.06.057
https://doi.org/10.1128/jvi.00850-17
https://doi.org/10.1128/jvi.02014-15
https://doi.org/10.1016/j.antiviral.2014.05.010
https://doi.org/10.1016/j.antiviral.2014.05.010
https://doi.org/10.1128/jvi.79.4.1992-2000.2005
https://doi.org/10.1128/jvi.79.4.1992-2000.2005
https://doi.org/10.1007/978-1-61779-282-3_14
https://doi.org/10.1016/j.virol.2012.03.024
https://doi.org/10.1016/j.virol.2012.03.024
https://doi.org/10.1073/pnas.1408462111
https://doi.org/10.1016/j.jmb.2014.02.022
https://doi.org/10.1016/j.jmb.2014.02.022
https://doi.org/10.1021/acsnano.5b03020
https://doi.org/10.1073/pnas.0708017105
https://doi.org/10.1073/pnas.0708017105
https://doi.org/10.1016/j.micron.2012.04.011
https://doi.org/10.1016/j.micron.2012.04.011
https://doi.org/10.1021/acsnano.6b07302
https://doi.org/10.1021/acsnano.6b07302

	A single point mutation in precursor protein VI doubles the mechanical strength of human adenovirus
	Abstract
	Introduction
	Materials and methods
	Adenovirus
	Infectivity plaque assay
	Thermal stability assay
	Atomic force microscopy

	Results
	pVI-S28C mutant
	Morphology of the capsids
	Mechanical properties of AdV capsids
	Capsid orientation

	Discussion
	Conclusions
	References


