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Abstract 

Background:  A multi-population genomic prediction (GP) model in which important pre-selected single nucleotide 
polymorphisms (SNPs) are differentially weighted (MPMG) has been shown to result in better prediction accuracy 
than a multi-population, single genomic relationship matrix ( GRM ) GP model (MPSG) in which all SNPs are weighted 
equally. Our objective was to underpin theoretically the advantages and limits of the MPMG model over the MPSG 
model, by deriving and validating a deterministic prediction equation for its accuracy.

Methods:  Using selection index theory, we derived an equation to predict the accuracy of estimated total genomic 
values of selection candidates from population A ( rEGVAT

 ), when individuals from two populations, A and B , are 
combined in the training population and two GRM , made respectively from pre-selected and remaining SNPs, are 
fitted simultaneously in MPMG. We used simulations to validate the prediction equation in scenarios that differed in 
the level of genetic correlation between populations, heritability, and proportion of genetic variance explained by 
the pre-selected SNPs. Empirical accuracy of the MPMG model in each scenario was calculated and compared to the 
predicted accuracy from the equation.

Results:  In general, the derived prediction equation resulted in accurate predictions of rEGVAT
 for the scenarios evalu-

ated. Using the prediction equation, we showed that an important advantage of the MPMG model over the MPSG 
model is its ability to benefit from the small number of independent chromosome segments ( Me ) due to the pre-
selected SNPs, both within and across populations, whereas for the MPSG model, there is only a single value for Me , 
calculated based on all SNPs, which is very large. However, this advantage is dependent on the pre-selected SNPs that 
explain some proportion of the total genetic variance for the trait.

Conclusions:  We developed an equation that gives insight into why, and under which conditions the MPMG out-
performs the MPSG model for GP. The equation can be used as a deterministic tool to assess the potential benefit of 
combining information from different populations, e.g., different breeds or lines for GP in livestock or plants, or differ-
ent groups of people based on their ethnic background for prediction of disease risk scores.
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Background
Genomic prediction (GP) [1] has become widely 
accepted and has been successfully implemented in both 
animal and plant breeding schemes [2–5]. However, for 
accurate GP it is essential that the training population 
is large [6–8]. For numerically small populations, e.g., 
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numerically small breeds or lines in livestock or numeri-
cally small human ethnic groups, it is difficult or impos-
sible to assemble a large enough training population that 
can accurately predict the genomic values. Therefore, the 
accuracy of GP in numerically small populations is lim-
ited [9].

A potential option to increase the accuracy of GP in 
numerically small populations is to use a large training 
population made up of individuals from multiple popula-
tions, including the target population, a method known 
as multi-population GP. Results from dairy cattle indicate 
that this approach can lead to substantial increases in the 
accuracy of GP for numerically small breeds, if the train-
ing population is made up of individuals from different 
but closely-related breeds that have recently had substan-
tial exchanges of genetic material, and that a large num-
ber of individuals from the additional breed is included 
[10]. However, in cases in which distantly related breeds 
were combined in a single training population, increases 
in the accuracy of multi-population GP were limited 
compared to that of within-population GP [11–13].

Different statistical approaches have been adopted 
for multi-population GP. One approach, and the most 
straightforward, is the univariate single-trait approach in 
which individuals from multiple populations are pooled 
and treated as individuals from the same population in 
a training population. The underlying assumption of 
this approach is that the genetic correlation between the 
populations is equal to 1. Deviations from this assump-
tion, for example, when distantly related populations 
are combined, can result in prediction accuracies that 
are even lower than the accuracy of within-population 
GP [11]. Another approach used for multi-population 
GP is to consider phenotypes of individuals from differ-
ent populations, e.g. phenotypes from different, but cor-
related traits [14, 15]. The advantage of this multi-trait 
approach is that it can consider that the genetic correla-
tion between populations can be less than 1. In the worst-
case scenario, the accuracy of multi-population GP using 
a multi-trait approach is expected to be the same as the 
accuracy of within-population GP, but not lower [16].

In both the single-trait and the multi-trait approaches 
for multi-population GP, DNA markers such as single 
nucleotide polymorphisms (SNPs) are equally weighted 
in the model. However, some studies have shown that 
accuracy of GP can be improved by prioritising cer-
tain SNPs that have a significant effect on the trait or 
by incorporating prior biological knowledge on SNPs 
in the prediction model [17–19]. Based on that ration-
ale, and to improve the potential to use information 
from other populations, Raymond et  al. [20] proposed 
the so-called multi-breed, multiple genomic relation-
ship matrices (GRM) GP model (MBMG), which in this 

study is generalised as MPMG, given that the model can 
be applied in other species, e.g., plant or humans. The 
three key features of this model are: (1) SNPs are pre-
selected based on prior knowledge of potential causal 
effects and are used to build a GRM ; (2) the remaining 
unselected SNPs are used to make a separate GRM , in 
order to explain the residual genetic variance for the trait; 
and (3) information of each population in the training 
population is weighed by their genetic correlation with 
the other populations and with the selection candidates. 
The MPMG model is equivalent to a model with a single 
GRM, in which different weights are applied to the two 
classes of SNPs. Using both real and simulated data, Ray-
mond et al. [20] showed that the MPMG model can result 
in significant increases in the accuracy of GP, as com-
pared with a multi-trait approach in which all SNPs are 
pooled together in a single GRM (MPSG) [20]. Given the 
superior performance of the MPMG model over MPSG, 
the objective of this study was to underpin theoretically 
the advantages and limits of the MPMG model as com-
pared to the MPSG model, by deriving and validating a 
deterministic prediction equation for the accuracy.

Methods
Multi‑population, multiple genomic relationship matrices 
(MPMG) model
We assume that individuals from populations A and B 
are combined in the training population to predict the 
genomic value of selection candidates from population A 
using the MPMG model following Raymond et  al. [20]. 
The MPMG model is a bivariate model that considers the 
phenotypes of individuals from populations A and B for 
the same trait as those from two different, but correlated 
traits. The prior biological knowledge that exists about 
the effect sizes of the SNPs is used to pre-select impor-
tant SNPs that are used to build one GRM . The remain-
ing SNPs are used to build a second GRM to explain 
the residual genetic variance not explained by the pre-
selected SNPs. Both GRM are fitted simultaneously in the 
bivariate model [20]. The model can be specified as:

where subscripts 1 and 2 represent the first and second 
GRM fitted in the model and subscripts A and B repre-
sent the populations A and B . yA is a vector of phenotypes 
for individuals from population A and yB is a vector of 
phenotypes for individuals from population B , µ is the 
trait mean, W1 and W2 are incidence matrices linking 
phenotypes to the two estimated genomic values,EGV1 

(1)

[

yA
yB

]

=

[

1 0
0 1

][

µA

µB

]

+

[

W1A
0

0 W1B

][

EGV1A

EGV1B

]

+

[

W2A
0

0 W2B

][

EGV2A

EGV2B
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+

[

eA
eB
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and EGV2 , and e is the residual. Estimated genomic val-
ues are assumed to be normally distributed as:

with K1 =
[

σ 2
gA1

σgA,B1
σgA,B1

σ 2
gB1

]

 and K2 =
[

σ 2
gA2

σgA,B2
σgA,B2

σ 2
gB2

]

 , 

where σ 2
gA

 and σ 2
gB

 are genetic variances in populations A 
and B , respectively, and σgA,B is the genetic covariance 
between the populations. The multi-population GRM fit-
ted in the MPMG model are calculated according to 
Wientjes et al. [21].

Theory
In the following derivation, the main interest is to pre-
dict the accuracy of the estimated total genomic value of 
selection candidates from population A ( rEGVAT

 ). rEGVAT
 

is a product of the accuracy of estimating SNP effects 
( rSNP ) and the square root of the proportion of total 
genetic variance explained by SNPs ( ρ ) [6, 22, 23]. As a 
foundation, we will first derive an equation to predict 
rEGVAT

 for within-population GP using two GRM , made 
from two separate sets of SNPs, that are fitted simulta-
neously in a GREML model. Subsequently, we will derive 
the full equation to predict rEGVAT

 when individuals from 
two populations, A and B , are combined in the training 
population and two separate GRM are fitted simultane-
ously in a GREML model (MPMG). For the derivations, 
we will use selection index theory [24], and build upon 
works from Daetwyler et al. [6] and Wientjes et al. [16], 
who have done similar derivations for within- and multi-
population GP models in which all SNPs are equally 
weighted in a single GRM.

Accuracy of within‑population genomic prediction with 
two separate GRM (WPMG)
The within-population, multiple GRM model (WPMG) 
can be represented as:

With the WPMG model, two different sets of esti-
mated genomic values are obtained for the validation 
candidates. These are EGVA1 , due to GRM1 , and EGVA2 , 
due to GRM2 . Both estimates of genomic values can be 
combined as sources of information in a selection index 
approach to obtain EGVAT as follows:

[

EGV1A
EGV1B

]

∼ N (0,K1 ⊗GRM1),

and

[

EGV2A
EGV2B

]

∼ N (0,K2 ⊗GRM2),

(2)yA = 1µA +W1AEGV1A +W2AEGV2A + eA.

(3)EGVAT = bA1EGVA1 + bA2EGVA2 ,

where bA1 and bA1 are weighting factors for the two 
sources of information. In the context of selection index 
theory, the breeding goal ( H ) is TGVA and the index trait 
( I ) is EGVAT . The optimum values of bA1 and bA2 can be 
obtained as:

where P is the (co)variance matrix of information sources 
EGVA1 and EGVA2 , and g is a vector containing the 
covariances between information sources EGVA1 and 
EGVA2 and the true genomic value ( TGVA ). Thus:

and

For simplicity of the derivation, we will assume that 
TGVA are scaled such that they have a variance of 1. 
Therefore, the variance of the estimated genomic values 
can be calculated as the reliability ( r2 ) of the estimated 
genomic values.

We assume that there is no covariance between EGVA1 
and EGVA2 , since the expectation is zero when both 
GRM are jointly fitted [25]. Thus, when GRM are fitted 
simultaneously in a GREML model, only partial variances 
are explained by each of the GRM such that the sum of 
the variances explained by the two GRM equals the total 
genetic variance for the trait that can be explained by all 
SNPs. The partial variances explained by SNPs in each 
GRM can be viewed as partial regression coefficients in a 
multiple regression scenario.

The first element of the vector g is:

(4)
[

bA1

bA2

]

= P−1g,

(5)

P =
[

var
(

EGVA1

)

cov
(

EGVA1 ,EGVA2

)

cov
(

EGVA1 ,EGVA2

)

var
(

EGVA2

)

]

,

(6)g =
[

cov
(

EGVA1 ,TGVA

)

cov
(

EGVA2 ,TGVA

)

]

.

(7)
Thus, var

(

EGVA1

)

= r2EGVA1
and var

(

EGVA2

)

= r2EGVA2
.

Hence, P =
[

r2EGVA1
0

0 r2EGVA2

]

.

(8)

cov
(

EGVA1
,TGVA

)

= cor
(

EGVA1
,TGVA

)

√

var
(

EGVA1

)

∗ var(TGVA)

=
(

rEGVA1

)√

r
2

EGVA1

∗ 1 = r
2

EGVA1

Similarly, cov
(

EGVA2 ,TGVA

)

= r2EGVA2
.
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Therefore,

The accuracy of selection index, representing the 
accuracy of EGVAT is the correlation between the index 
values and the breeding goal ( rIH ). Thus, rIH = covIH

σIσH
 . 

As explained in Falconer and MacKay [26], the selec-
tion index is constructed such that one unit of the index 
is equivalent to one unit of the breeding goal. In other 
words, the selection index is constructed such that the 
regression of the breeding goal on the index ( bHI ) is 1, 
resulting in the expression covIH = σ 2

I  . Thus,

The accuracies of estimated genomic values rEGVA1
 

and rEGVA2
 can be calculated as ρA1rSNPA1 and ρA2rSNPA2 

respectively, where rSNPA1 and rSNPA2 are the accuracies of 
estimated SNP effects in population A for SNPs in GRM1 
and GRM2 respectively, ρA1 and ρA2 are the square root 
of the proportions of genetic variance explained in the 
validation population A by SNPs in GRM1 and GRM2, 
respectively. The accuracies of estimated SNP effects 

(9)g =
[

r2EGVA1

r2EGVA2

]

.

(10)

rIH = rEGVAT
= σI

σH

=
�

b′g
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�
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2
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�
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�−1�
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�

�

�

�

�

�
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�
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2
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�










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2

EGVA2

r
2

EGVA1
r
2

EGVA2

0

0

r
2

EGVA1

r
2

EGVA1
r
2

EGVA2











�

r
2

EGVA1

r
2

EGVA2

�

=
�

r
2

EGVA1

+ r
2

EGVA2

.

where h2A is the heritability of the trait in population A , 
NA is the number of individuals from population A in the 
training population, Me

A1
 and MeA2

 are the effective num-
ber of chromosome segments segregating in population 
A , based on variation in GRM1 and GRM2, respectively. 
The Me values represent the effective number of effects 
that are estimated in the model. The values for Me can be 
calculated as the inverse of the variance of within-popu-
lation GRM [27, 28].

Accuracy of multi‑population GP with two separate GRM 
(MPMG model)
In the case of multi-population GP model with two GRM 
fitted simultaneously, we assume that individuals from 
two populations A and B are combined in a training pop-
ulation to estimate the total genomic values for valida-
tion candidates from population A ( EGVAT ) . To estimate 
the accuracy of EGVAT from this model, we estimate the 
accuracy of a selection index in which EGV for the selec-
tion candidates are combined from two different models 
having either population A or B as training population. 
The first model is a WPMG model using individuals 
from population A in the training population ( EGVA1,A 
and EGVA2,A ). The second model is an across-population 
model with two GRM using individuals from population 
B in the training population ( EGVA1,B and EGVA2,B ). The 
selection index was as follows:

The (co)variance matrix of information sources is given 
as:

(11)

rEGVAT
=

√

ρ2
A1
r2SNPA1

+ ρ2
A2
r2SNPA2

=

√

√

√

√ρ2
A1

h2ANA

h2ANA +MeA1

+ ρ2
A2

h2ANA

h2ANA +MeA2

,

(12)
EGVAT = bA1,AEGVA1,A + bA1,BEGVA1,B

+ bA2,AEGVA2,A + bA2,BEGVA2,B.

(13)P =







var
�

EGVA1,A

�

cov
�

EGVA1,A,EGVA1,B

�

0
0

cov
�

EGVA1,A,EGVA1,B

�

var
�

EGVA1,B

�

0
0

0
0
var

�

EGVA2,A

�

cov
�

EGVA2,A,EGVA2,B

�

0
0
cov

�

EGVA2,A,EGVA2,B

�

var
�

EGVA2,B

�






.

rSNPA1 and rSNPA2 can be deterministically predicted by 
Daetwyler’s equation [6]. Hence, Eq. (10) can be written 
as:
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Again, we assume that the covariances between EGV 
based on GRM1 and GRM2 are zero. Given also that we 
assume a variance of 1 for TGVA:

var
(

EGVA1,A

)

= r2EGVA1,A
,

Therefore,

Following Eq. (9), g can be written as:

The accuracy of the index, representing rĝAT can be cal-
culated as:

With some algebra (see Appendix 2), we show that the 

equation 
√

g′P−1g for the MPMG model can be repre-
sented as:

which in matrix form can be represented as:

cov
(

EGVA1,A,EGVA1,B

)

= r2EGVA1,A
r2EGVA1,B

,

and cov
(

EGVA2,A,EGVA2,B

)

= r2EGVA2,A
r2EGVA2,B

.

(14)P =








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r2EGVA1,A
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0
0
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0
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0
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0
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r2EGVA2,B
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







.

(15)g =













r2EGVA1,A

r2EGVA1,B

r2EGVA2,A
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











.

rEGVAT
=

√

g′P−1g

var(TGVA)
=

√

g′P−1g.

(16)
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cov
(

EGVA1,A,EGVA1,B

)

 is the covariance of the EGVA1 
calculated using SNP effects estimated in the reference 
populations A and B , respectively. Following the deriva-
tion in Appendix 1, we show that:

var
(

EGVA1,B

)

= r2EGVA1,B
,

var
(

EGVA2,A

)

= r2EGVA2,A
,

var
(

EGVA2,B

)

= r2EGVA2,B
.

The input parameters are:
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h2A =  heritability of the trait in population A , h2B =  her-
itability of the trait in population B , NA = number of 
individuals from population A in the training population, 
NB = number of individuals from population B in the 
training population, ρA1 =  square root of the proportion 
of genetic variance explained in the validation popula-
tion A by GRM1 , ρA2 =  square root of the proportion of 
genetic variance explained in the validation population A 
by GRM2 , rg  = genetic correlation between populations 
A and B , MeA1

  = number of effective chromosome seg-
ments in population A based on variation in GRM1 , MeA2

 
=  number of effective chromosome segments in popu-
lation A based on variation in GRM2 , MeAB1

  = number 
of effective chromosome segments across populations A 
and B based on variation in GRM1 , MeAB2

  =    number 
of effective chromosome segments across populations A 
and B based on variation in GRM2.

For predicting rEGVAT
 , Eq.  (17) reduces to Eq.  (11) for 

within-population GP when rg between populations A 
and B is 0. The values for MeAB can be calculated as the 
inverse of the variance of the across-population block of 
multi-population GRM [16, 27].

Validation of prediction equations using simulations
The aim of this section was to use simulations to vali-
date Eqs. 11 (WPMG) and 17 (MPMG) in scenarios that 
differed in the proportion of causal SNPs that are pre-
selected and fitted in the models. Consequently, the sce-
narios differed in the proportion of total genetic variance 
explained by SNPs in each of the two GRM fitted simulta-
neously in the models. The scenarios also differed in her-
itability of the trait. For the MPMG model, the scenarios 
also differed in the level of genetic correlation between 
the populations A and B . Genotype data of two existing 
cattle populations were used in combination with simu-
lated phenotypes. As validation, we compared the empir-
ical accuracies in each simulated scenario to the accuracy 
obtained using the derived prediction equations.

Genotype data
Genotypes for SNPs on the Illumina Bovinesnp50 (Illu-
mina Inc., San Diego, CA, USA) with 48,912 SNPs after 
quality control, were available on 595 New Zealand Jer-
sey bulls and 5553 Dutch Holstein bulls. These SNPs 
had at least ten copies of the minor allele in a combined 
Dutch Holstein and New Zealand Jersey population, with 
a minor allele frequency (MAF) ranging from 0.009 to 
0.5. Hereafter, we will refer to the New Zealand Jerseys as 
population A and to the Dutch Holsteins as population B.

Simulation of phenotypes
Phenotypes for all individuals were simulated using their 
real genotypes and assuming an additive model. From the 

48,912 SNPs, 500 were randomly selected to be causal 
SNPs in both populations. Allele substitution effect of the 
causal SNPs ( a) were sampled from a bi-variate normal 
distribution with a mean of 0, variance of 1, and a corre-
lation of 0.8, 0.6 and 0.4 between populations A and B . 
Since allele substitution effects were sampled indepen-
dently from their allele frequency, the correlation 
between allele substitution effect represents the correla-
tion between genomic values of individuals from popula-
tions A and B , which is referred to as the genetic 
correlation between populations ( rg ). Within each popu-
lation, TGV for individual i were calculated as 
∑

(

xi,j ∗ aj
)

 , where xi,j is the genotype of individual i at 
causal SNP j (coded as 0, 1, 2) and aj is the allele substitu-
tion effect of causal SNP j . The corresponding phenotype 
was computed as TGVi + ei , where ei is the residual 
effect of individual i , sampled from a standard normal 
distribution with a mean of 0 and a variance equal to 
σ 2
gk
∗
(

1
h2

− 1
)

 , where σ 2
gk

 is the variance of TGV in popu-
lation k . For each population, the residual effects were 
sampled from a separate normal distribution. The herita-
bility ( h2 ) was set to 0.3 and 0.8 in each population. Simu-
lation of phenotypes was carried out in R [29] and was 
replicated 100 times.

Genomic prediction
The WPMG (only 476 individuals from population A in 
the training population) and MPMG (476 individuals 
from population A and 5553 individuals from population 
B in the training population) models were implemented 
in the software MTG2 [30]. We used three levels for 
the proportion of causal SNPs that are identified, pre-
selected and used to create the first GRM . The number 
of causal SNPs underlying the simulated trait was always 
500. The levels are:

CSNP_125: this level represents a situation in which 
a quarter of the causal SNPs are identified, pre-
selected and used to create the first GRM.
CSNP_250: this level represents a situation in which 
half of the causal SNPs are identified, pre-selected 
and used to create the first GRM.
CSNP_500: this level represents the extreme situa-
tion in which all 500 causal SNPs are identified, pre-
selected and used to create the first GRM.

At all levels, the remaining SNPs that were not used as 
causal were used to create the second GRM . The level 
above were evaluated under varying degrees of genetic 
correlation between populations (0.4, 0.6 and 0.8) and 
heritability in both populations (0.3 and 0.8). Through-
out the study, individuals from population A were used 
as the validation candidates in a fivefold cross-validation 
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scheme, where individuals from population A were ran-
domly split into five sets of 119 individuals each. The 
GRM fitted in the MPMG model were constructed 
according to Wientjes et al. [21], considering population-
specific allele frequencies. The empirical accuracies of 
prediction at all levels were computed as the correlation 
between the EGV and the simulated TGV of validation 
candidates.

To compare how accurate the accuracy of the MPMG 
model can be predicted compared to a MPSG model, 
we also fitted a multi-population, single GRM (MPSG) 
model, with the multi-population GRM made from 
non-causal SNPs in addition to either the CSNP_125, 
CSNP_250 or CSNP_500 SNPs. To predict the accuracy 
of the MPSG model, we used the derived prediction 
Eq. (17) in which ρ2

A2
 is set to 0, given that the model has 

only one GRM . The value used for ρ2
A1

 was empirically 
estimated as the ratio of empirical accuracy of the WPSG 
model and the predicted accuracy using the formula of 
Daetwyler et al. [6], assuming all the variance is captured 
by SNPs. Setting ρ2

A2
 to 0 reduces Eq. (17) to the equation 

derived by Wientjes et al. [16].

Values of input parameters for the prediction equations
For the prediction of accuracy using Eqs.  (11) and (17), 
we used the simulated values as input for the parameters 
h2A , h2B , and rg . The values used for ρ2

A1
 were 0.25, 0.5 and 

1 in the CSNP_125, CSNP_250 and CSNP_500 levels, 
respectively. This is because a quarter of the causal SNPs 
explains, on average, a quarter of the total genetic vari-
ance for the trait, which was confirmed empirically. An 
empirical approach was used to determine the appro-
priate values for the input parameter ρ2

A2
 . This param-

eter represents the proportion of total genetic variance 
of the trait in the validation population explained by the 
non-causal SNPs ( GRM2 ) in the training population. 
We determined empirically that the non-causal SNPs 
could only explain 66% of the total genetic variance of 
the trait in the validation individuals of population A 
using a within-population model with one GRM includ-
ing all non-causal SNPs. We did this by taking a ratio of 
the empirical accuracy obtained from cross-validation 
and the predicted accuracy using Daetwyler’s equation 
[6], assuming that 100% of the total genetic variance for 
the trait is captured by SNPs. Thus, the values for ρ2

A2
 as 

used in the prediction equation were 0.66 × 0.75, 0.66x0.5 
and 0, in the CSNP_125, CSNP_250 and CSNP_500 
levels, respectively, with the values 0.75, 0.5 and 0 rep-
resenting the proportion of total genetic variance unex-
plained by the causal SNPs ( GRM1 ) in the CSNP_125, 
CSNP_250 and CSNP_500 levels, respectively. Through-
out the study, Me within a population was calculated 
according to Lee et al. [28] as the inverse of the variance 

of the within-population GRM , while Me across popula-
tions was calculated as the inverse of the variance of the 
across-population block terms of the multi-population 
GRM [16, 27].

Potential accuracies of different models in relation 
to different levels of rg , ρA1

 , and MEAB2
The aim of this section was to identify the situations 
under which the MPMG model will outperform all other 
models tested in terms of prediction accuracy. We evalu-
ated the potential accuracy of predicting the genomic 
values of selection candidates from a numerically small 
population A under three cases. These are hypothetical 
cases that aim to mimic real life situations in dairy cattle 
breeding programs.

Case 1
For the first case, we assume that, in addition to individuals 
from the target population A ( NA = 476) , individuals 
from a larger but different population B ( NB = 5553 ) 
are available to be included in the training population, 
mimicking the real sample sizes of the Jersey and Holstein 
populations used in this study. We investigated the effect 
of the level of genetic correlation between populations 
on the accuracy of prediction. The following additional 
assumptions were made: Me within population A based 
on pre-selected SNPs (calculated from real genotype 
data) = 159; Me across populations A and B based on pre-
selected SNPs (calculated from real genotype data) = 280; 
Me within population A based on remaining SNPs 
(calculated from real genotype data) = 463; Me across 
populations A and B based on remaining SNPs (calculated 
from real genotype data) = 32,970; heritability of the 
trait: 0.3 in both populations; ρ2 due to 500 pre-selected 
causal SNPs = 0.4, ρ2 due to all SNPs = 0.8 (assuming the 
remaining non-causal SNPs capture 66% of the residual 
genetic variance).

Case 2
Many genome-wide association studies have been carried 
out in livestock with the aim to identify the causal variants 
underlying complex traits. The variants that were discov-
ered explain varying proportions of the genetic variance 
for the traits of interest. Here, we evaluated the potential 
accuracy of prediction under situations ranging from poor 
causal SNP discovery (discovered “causal SNPs” explain 0% 
of genetic variance) to accurate causal SNP discovery (dis-
covered causal SNPs explain 100% of genetic variance for 
the trait). The following additional assumptions were made: 
Me within population A based on pre-selected SNPs (cal-
culated from real genotype data) = 159; Me across popula-
tions A and B based on 500 pre-selected SNPs (calculated 
from real genotype data) = 280; Me within population A 
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based on 48,412 remaining SNPs (calculated from real 
genotype data) = 463; Me across populations A and B based 
on 48,412 remaining SNPs (calculated from real genotype 
data) = 32,970; genetic correlations between populations A 
and B = 0.6; heritability of the trait = 0.3 in both populations; 
proportion of genetic variance explained by all SNPs = 1.

Case 3
In this case, our aim was to explore the impact of the 
closeness between the validation population and the 
training populations as measured by the Me across popu-
lations. In most studies, the number of variants identified 
as causal for complex traits is at most a few hundred. In 
the context of the MPMG model, the Me across popu-
lations based on the identified potential causal SNPs 
is usually small, with an upper bound equal to the total 
number of identified “causal SNPs”. A parameter that 
is expected to be considerably large, especially with 
increasing SNP density is the Me based on the remain-
ing unselected SNPs. Here, we evaluated the effect of Me 
across populations based on the remaining unselected 
SNPs on the potential accuracy of prediction. We var-
ied Me across populations from 1000 to 50,000. The fol-
lowing additional assumptions were made: Me within 

0 to 90%. The following additional assumptions were 
made: Me across populations A and B based on 500 pre-
selected SNPs (calculated from real genotype data) = 280; 
Me across populations A and B based on 48,412 remain-
ing SNPs (calculated from real genotype data) = 32,970; 
genetic correlations between populations A and B

: = 0.6; heritability of the trait = 0.3 in both populations; 
proportion of genetic variance explained by SNPs in 
GRM1 = 0.5.

In all four cases, we evaluated the potential accuracy of 
three models using their prediction equations as follows.

Within-population, single-GRM (WPSG) model: To 
predict the potential accuracy of this model, we used the 
formula of Daetwyler et al. [6], which takes the propor-
tion of genetic variance explained by all SNPs ( ρ2

A ) into 

account, as 
√

ρ2
A

h2ANA

h2ANA+MeA1

 . The value for MeA1
 was cal-

culated based on all SNPs.
Within population, multiple GRM (WPMG) model: to 

predict the potential accuracy of this model, we used the 
derived prediction Eq. (12).

Multi-population, single GRM (MPSG) model: to pre-
dict the potential accuracy of this model, we used the for-
mula of Wientjes et al. [16]:

Here also, MeA and MeAB were calculated based on all 
SNPs.

Multi-population, multiple GRM (MPMG) model: to 
predict potential accuracy, we used the derived predic-
tion Eq. (17).

Results
Number of independent chromosome segments ( Me ) 
within and across populations
The number of independent chromosome segments per 
SNP set estimated within population A (595 New Zea-
land Jersey) and across populations A and B (5553 Dutch 
Holsteins) are in Table 1.

The same value of Me within population A (280) was 
obtained when all 48,912 SNPs and when only the non-
causal SNPs were used to construct the GRM . Estimated 
Me within population A differed markedly between SNP 
sets only when the number of SNPs used to calculate the 
GRM was small. At lower SNP densities, Me across popu-
lation A and B were close to the number of SNPs used to 
calculate the GRM . Me across populations obtained with 
higher density SNPs were similar.

�

�

�

�

�

�

�









ρA

�

h2A
MeA

ρArg

�

h2B
MeAB









T







h2A
MeA1

+ 1
NA

rg

�

h2Ah
2
B√

MeAMeAB

rg

�

h2Ah
2
B√

MeAMeAB

h2B
MeAB

+ 1
NB









−1







ρA

�

h2A
MeA

ρArg

�

h2B
MeAB









population A based on 500 pre-selected SNPs (calculated 
from real genotype data) = 159; Me across populations A 
and B based on 500 pre-selected SNPs (calculated from 
real genotype data) = 280; Me within population A based 
on 48,412 remaining SNPs (calculated from real genotype 
data) = 463; genetic correlations between populations A 
and B = 0.6; heritability of the trait = 0.3 in both popu-
lations; ρ2 due to 500 pre-selected causal SNPs = 0.4, ρ2 
due to all SNPs = 0.8 (assuming the remaining non-causal 
SNPs capture 66% of the residual genetic variance).

Case 4
The study of Van den Berg et  al. [31], reported that Me 
values estimated from the GRM are underestimated 
by ~ 80% compared to Me values back-solved from the 
empirical accuracy of a GBLUP model. In case 4, we 
investigated the potential impact of an underestimation 
of Me within the predicted population A on the accuracy 
of prediction. Thus, we used underestimated values of 
Me for both GRM1 and GRM2 in the prediction equa-
tions, with the extent of underestimation ranging from 
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Empirical versus predicted accuracies 
of the within‑population, multiple GRM (WPMG) model
Empirical and predicted accuracies of the WPMG model 
(476 individuals in the training population) under the dif-
ferent levels of pre-selection of causal SNPs, with a simu-
lated trait heritability of 0.3 and 0.8 are in Fig. 1. For a low 
heritability trait (0.3), Eq.  (11) over-predicts the empiri-
cal accuracy of the WPMG model, with the extent of 
over-prediction ranging from 8.4% (CSNP_500) to 11.8% 
(CSNP_125). For a high heritability trait (0.8), predicted 
accuracies were close to empirical accuracies, with the 
predicted accuracies within the standard errors of empir-
ical accuracies (except for CSNP_500).

Empirical versus predicted accuracies 
of the multi‑population, single GRM (MPSG) model
Empirical and predicted accuracies of the MPSG model 
under different levels of inclusion of causal SNPs in the 
GRM and different levels of rg between populations 

Table 1  Number of  independent chromosome segments 
( Me ) per SNP set estimated within the target population A 
and across populations A and B

a  Non-causal SNPs combined with the pre-selected SNPs in a single GRM

SNP set (number 
of SNPs)

Me 
within population 
A

Me across populations 
A and B

Non-causal SNPs (48,412) 280 32,970

CSNPs_500 + non-causal 
SNPs (48,912)a

280 33,242

CSNPs_250 + non-causal 
SNPs (48,662)a

280 33,056

CSNPs_125 + non-causal 
SNPs (48,537)a

280 32,984

CSNPs_500 (500) 159 463

CSNPs_250 (250) 107 236

CSNPs_125 (125) 67 124
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Fig. 1  Predicted versus empirical accuracies of the within-population, multiple GRM genomic prediction model (476 individuals from population 
A in the training population), with a simulated trait heritability of 0.3 and 0.8. The standard error bars represent twice the standard deviation of the 
accuracies across 100 replicates
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A and B are shown in Fig.  2 (heritability in both popu-
lations = 0.3) and Fig.  3 (heritability in both popula-
tions = 0.8). As expected, given the large number of Me 
across populations, empirical accuracies were not sig-
nificantly different between scenarios differing in rg and 
percentage of causal SNPs included in the GRM . The 
standard errors of empirical accuracies were higher at 
low heritability (Fig. 2), than at high heritability (Fig. 3), 
which most likely reflects the higher level of noise in the 
phenotype at low heritability than at a high heritabil-
ity. As expected, an increase in heritability resulted in 
an increase in empirical accuracies. In general, the pre-
diction equation for the accuracy of the MPSG model 
resulted in an over-prediction of empirical accuracy 
ranging from ~ 5 to 10%. 

Empirical versus predicted accuracies 
of the multi‑population, multiple GRM (MPMG) model
The empirical and predicted accuracies of the different 
levels of pre-selection of causal SNPs, with a simulated 
genetic correlation between populations A and B of 0.4, 
0.6 and 0.8 and a heritability of 0.3 in both populations, 
are in Fig. 4.

Results show that empirical and predicted accuracies 
increase with an increasing number of pre-selected causal 
SNPs in the first GRM , and the level of genetic correla-
tion between populations. Using the prediction equation 
(Eq. 17), predicted accuracies were less than one stand-
ard error away from the average empirical accuracy in 
seven of the nine scenarios evaluated. We observed over-
prediction of accuracies in all the scenarios, but only in 
the CSNP_125 and the CSNP_250 and with a genetic 
correlation between populations of 0.4 did the predicted 
accuracies go outside the standard error of the empirical 
accuracies.

For a higher heritability trait (0.8), similar patterns 
of results were observed (Fig.  5). Empirical and pre-
dicted accuracies increase with increasing number of 
pre-selected causal SNPs in the first GRM , and the 
level of genetic correlation between populations. We 
also observed slight over-predictions of accuracy in the 
CSNP_125 and CSNP_250 levels, across the three levels 
of genetic correlation between populations. However, for 
the CSNP_500 level, we observed a slight under-predic-
tion of accuracies, across the three levels of genetic corre-
lation between populations. The level of over-estimation 
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Fig. 2  Predicted versus empirical accuracies of the multi-population, single GRM genomic prediction model (5553 individuals from population 
B and 476 individuals from population A in the training population) under the three different levels of inclusion of causal SNPs in the GRM , with 
genetic correlation ( rg ) between populations A and B of 0.4, 0.6 and 0.8, and a heritability of 0.3 in both populations. The standard error bars 
represent twice the standard deviation of the accuracies across 100 replicates
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of empirical accuracy seems to be consistently higher at 
low heritability (Fig.  4) than at high heritability (Fig.  5). 
This also the case for the WPMG model (Fig. 1) and for 
most scenarios of the MPSG model (Figs.  2 and 3). A 
possible explanation might be that for a lower heritabil-
ity trait, the SNPs have more difficulty in explaining all 
the genetic variance. This can result from a larger envi-
ronmental effect in the phenotypes, which can be consid-
ered as a noise term in the phenotype around the genetic 
effect. Furthermore, the level of over-estimation of 
empirical accuracies with the MPMG model (between ~ 2 
and ~ 10%, Figs. 4 and 5) is within the range of over-esti-
mation observed with the MPSG model (between ~ 5 and 
10%, Figs. 2 and 3). Hence, the relative advantage of the 
MPMG model over the MPSG model as assessed by the 
corresponding deterministic prediction equations should 
be a good indication of the true advantage of the MPMG 
over the MPSG model.

In general, we observed a positive correlation between 
the EGV from the two GRM in MPMG, albeit with high 
standard errors, except in the CSNP_500 for which all 
the QTL underlying the trait are in one GRM , where 

the correlation was around zero (see Additional file  1: 
Table S1).

Potential accuracies of different models in relation 
to different levels of rg , ρA1

 , and MeAB2
The potential accuracies of within-and multi-population 
GP models, with either single or multiple GRM fitted, 
in relation to different levels of genetic correlation ( rg ; 
case 1) between populations are presented in Fig. 6. The 
accuracy of the within-population, single GRM (WPSG) 
model, is not affected by rg between populations. The 
result shows that a 9.6% increase in accuracy is possi-
ble by splitting SNPs into separate GRM based on prior 
information on their causality (WPMG model), when the 
preselected SNPs explain 40% of the total genetic vari-
ance for the trait. Compared to WPSG, the multi-popu-
lation, single GRM (MPSG) model can result in a small 
increase in the accuracy of prediction, ranging from 0% 
( rg = 0) to a maximum of 3.1% ( rg = 1). When the multi-
population, multiple GRM (MPMG) model is imple-
mented, the increase in accuracy as compared to the 
WPSG model ranges from 9.6% ( rg = 0) to 32% ( rg = 1), 
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Fig. 3  Predicted versus empirical accuracies of the multi-population, single GRM genomic prediction model (5553 individuals from population 
B and 476 individuals from population A in the training population) under the three different levels of inclusion of causal SNPs in the GRM , with 
genetic correlation ( rg ) between populations A and B of 0.4, 0.6 and 0.8, and a heritability of 0.8 in both populations. The standard error bars 
represent twice the standard deviation of the accuracies across 100 replicates
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again, assuming that the preselected SNPs explain 40% of 
the genetic variance.

The potential accuracies of the different models in 
relation to different proportions of total genetic vari-
ance explained by the pre-selected SNP set ( ρA1 ; case 2) 
are presented in Fig.  7. When the pre-selected SNP set 
explains zero proportion of genetic variance, the accu-
racy is equal for the models with one or two GRM for 
both within- and multi-population GP. Simply imple-
menting the multi-population single GRM model, instead 
of the within-population single GRM model results in a 
negligible (< 1%) increase in the accuracy of prediction. 
An increasing proportion of genetic variance explained 
by the pre-selected SNP set results in a linear increase in 
the accuracy of prediction, up to a maximum of ~ 18.4% 
when the WPMG model is implemented instead of the 
WPSG model. Increase in accuracy, as compared to the 
WPSG model, reaches a maximum of ~ 29.2% when the 
MPMG model is implemented instead.

We investigated further the impact of the num-
ber of independent chromosome segments between 

populations based on the non-causal SNPs ( MeAB ; case 
3) on the accuracy of GP models, the results are pre-
sented in Fig. 8. For the WPSG and WPMG models, the 
parameter MeAB has no relevance. However, in both the 
MPSG and MPMG models, the accuracy of prediction 
decreases with increasing MeAB . The rate of decrease in 
accuracy with increasing MeAB , however, is higher in the 
MPSG model than in the MPMG model. For example, 
an increase in MeAB from 1000 to 20,000 resulted in an 
11.3% decrease in accuracy of the MPSG model, while 
this decrease was only 4.8% in the MPMG model. In gen-
eral, the difference in accuracy between the MPSG and 
MPMG models increases with increasing MeAB . For MeAB 
values smaller than 5000, both multi-population mod-
els (MPSG and MPMG) have higher accuracies than any 
within-population GP model. For larger values of MeAB , 
however, the accuracy of the MPSG model is lower than 
that of the WBMG model, while the accuracy of the 
MPMG model tends to flatten above that of the WPMG 
model.
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Fig. 4  Predicted versus empirical accuracies of the multi-population, multiple GRM genomic prediction model (5553 individuals from population 
B and 476 individuals from population A in the training population) under the three different levels of pre-selection of causal SNPs, with genetic 
correlation ( rg ) between populations A and B of 0.4, 0.6 and 0.8, and a heritability of 0.3 in both populations. The standard error bars represent twice 
the standard deviation of the accuracies across 100 replicates
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Furthermore, we assessed the potential bias in the 
predicted accuracies due to the under-estimation of Me 
within the predicted population A . Across different GP 
models, an underestimation of Me within population A 
of ~ 20% resulted in an inflation of predicted accuracies 
ranging between 4.5 (MPMG model) to 7.4% (WPSG 
model). At level of under-estimation of 90%, inflation of 
predicted accuracies ranged from 36 (MPMG) to 58% 
(WPSG)”.

Discussion
The objective of this study was to underpin theoretically 
the advantages and limits of the multi-population, mul-
tiple GRM (MPMG) genomic prediction model over the 
multi-population, single GRM (MPSG) genomic predic-
tion (GP) model, by deriving and validating a determin-
istic prediction equation for its accuracy. We derived the 
deterministic prediction equation for the accuracy of the 
MPMG model using selection index theory and building 
upon previous works by Daetwyler et al. [6] and Wientjes 

et al. [16]. We showed that, the derived equation can pre-
dict the accuracy of the MPMG model under varying lev-
els of genetic correlation between the target population 
and the additional population in the training population, 
varying levels of the heritability of the trait and varying 
levels of the proportions of genetic variance explained by 
the pre-selected and differentially weighted SNPs. The 
equation can be used to assess the potential benefit of 
combining information from different populations, e.g., 
different breeds or lines for GP in livestock or plants, or 
different groups of people based on their ethnic back-
ground for the prediction of disease risk scores.

To date, in the literature, increase in the accuracy of GP 
in a multi-population, single-GRM (MPSG) context as 
compared to within-population GP has been limited as 
illustrated in Table  2 of the review paper of Lund et  al. 
[32]. This is consistent with our result shown in Fig.  7, 
where less than 1% increase in accuracy is projected if 
the MPSG model is implemented, assuming a genetic 
correlation of 0.6 between populations, instead of a 
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within-population, single-GRM model. However, Ray-
mond et  al. [20] showed that the MPMG model, which 
differentially weights SNPs based on prior knowledge of 
potential causality, can yield significant increases in the 
accuracy of GP as compared to a within-population or 
multi-population model in which all markers are equally 
weighted. The prediction equation developed in this 
study, highlights two parameters: number of independent 
chromosome segments across populations A and ( MeAB ), 
and the proportion of genetic variance explained by pre-
selected SNPs ( ρ2

A1
 ), that may underlie the improved per-

formance of the MPMG model as compared to a single 
GRM model. These parameters and their estimation 
are discussed below. We also discuss the values for the 
genetic correlation between populations as used in the 
prediction equation.

The number of independent chromosome segments 
across populations ( MeAB ) is an important parameter that 
influences the accuracy of multi-population GP, since it 

determines the effective number of effects that are esti-
mated in the model [22, 33]. For example, Wientjes et al. 
[16] showed that when MeAB is large, combining popula-
tions together in a multi-population single GRM model 
is less likely to result in a significant increase in accuracy 
as compared to single-population GP model. However, 
the prediction equation developed here shows that the 
MPMG model is still able to take advantage of informa-
tion from distantly related populations (large MeAB ), 
mainly by partitioning the parameter MeAB into two 
components, corresponding to pre-selected and remain-
ing SNPs, respectively. In most cases, the value of MeAB 
due to the pre-selected SNPs is small, given that, in most 
cases, only a few hundred SNPs are pre-selected from 
e.g., a genome-wide association study. The small value 
for MeAB due to pre-selected SNPs means that the accu-
racy contributed by the pre-selected SNPs is high, and 
completely unaffected by the value for MeAB due to the 
remaining SNPs.
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Fig. 6  Potential accuracy of predicting the genomic value of individuals from population A under different models: within-population, single GRM 
(WPSG), within-population, multiple GRM (WPMG), multi-population, single GRM (MPSG), multi-population, multiple GRM (MPMG), in relation to 
different values of genetic correlation ( rg ) between population A and B . The following assumptions were made: Me within population A based on 
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(calculated from real genotype data) = 463; Me within population A based on 48,412 non- causal SNPs (calculated from real genotype data) = 280; 
Me across populations A and B based on 48,412 non-causal SNPs (calculated from real genotype data) = 32,970; Me within population A based on 
all 48,912 SNPs (calculated from real genotype data) = 280; Me across populations A and B based on all 48,912 SNPs (calculated from real genotype 
data) = 33,242; heritability of the trait = 0.3 in both populations; proportion of genetic variance explained by all SNPs = 0.8; proportion of genetic 
variance explained by 500 pre-selected causal SNPs = 0.4; number of individuals from population A in the training population = 476; number of 
individuals from population B in the training population = 5553
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For distantly related populations such as Holstein 
and Jersey, a good estimate for MeAB based on a few 
pre-selected SNPs is the number of pre-selected SNPs 
(Table  1), which in any case is the maximum possible 
value. For MeAB based on the remaining SNPs, it is very 
difficult to get an estimate without genotype data, as this 
value depends on the relatedness between populations. 
Similar to Wientjes et al. [16], our suggestion is to con-
sider genotyping a sample of individuals from each of 
the populations, e.g. 100 each, from which MeAB can be 
estimated. With the availability of genotype data on indi-
viduals from the target population, the number of inde-
pendent chromosome segments within population ( MeA ) 
can be estimated empirically as the reciprocal of the vari-
ance of within-population genomic relationships [27, 28, 
34]. It is also possible to estimate MeA based on popula-
tion parameters such as the effective population size [22, 
35, 36]. However, this approach cannot be used to par-
tition MeA into values corresponding to the pre-selected 

and remaining SNPs, respectively, which are required for 
the prediction equation.

All the Me values used in our prediction equation were 
estimated from the GRM . Van den Berg et al. [31] argued 
that Me values estimated from the GRM are under-esti-
mated, and, when used in a prediction equation, result in 
the over-prediction of empirical accuracy. We observed 
that an underestimation of Me within the target popula-
tion A results in a substantial inflation of predicted accu-
racies (Fig. 9). The prediction equation developed in our 
study, with Me values calculated from the GRM tend to 
over-predict the accuracy of the MPMG model, although 
in most of the scenarios evaluated, predicted accuracies 
were still within the standard errors of empirical accura-
cies. However, the extent of over-prediction of accuracy 
in van den Berg et  al. [31], using the deterministic for-
mula of Goddard et  al. [22] with Me values estimated 
from the GRM , was much higher than in our study. We 
cannot pinpoint, with certainty, the underlying reasons 
for the differences in the extent of over-prediction of 
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relation to different proportion of genetic variance explained by the causal SNP set. The following assumptions were made: Me within population 
A based on 500 pre-selected causal SNPs (calculated from real genotype data) = 159; Me across populations A and B based on 500 pre-selected 
causal SNPs (calculated from real genotype data) = 463; Me within population A based on 48,412 non- causal SNPs (calculated from real genotype 
data) = 280; Me across populations A and B based on 48,412 non-causal SNPs (calculated from real genotype data) = 32,970; Me within population A 
based on all 48,912 SNPs (calculated from real genotype data) = 280; Me across populations A and B based on all 48,912 SNPs (calculated from real 
genotype data) = 33,242; heritability of the trait = 0.3 in both populations; genetic correlation between populations A and B = 0.6; proportion of 
genetic variance explained by all SNPs = 0.8; number of individuals from population A in the training population = 476; number of individuals from 
population B in the training population = 5553
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empirical accuracies in our study and in van den Berg 
et al. [31]. However, there are a few possible explanations. 
For example, van den Berg et  al. [31] fitted a polygenic 
component (pedigree-based relationship matrix) in their 
model, which was meant to capture the genetic variance 
for the trait that is not picked up by SNPs. Although 
the authors did not present the results of variance com-
ponents estimation, it is likely that the polygenic com-
ponent picked up some proportion of the total genetic 
variance for the trait. If that is the case, using a prediction 
equation with the assumption that SNPs explain 100% of 
the total genetic variance for the trait, as the authors did, 
could have resulted in the over-prediction of empirical 
accuracies. The chances that the polygenic component 
picks up some proportion of the total genetic variance 
for the trait are higher when QTL are sampled from 
sequence variants that have low MAF, and effects that 
are difficult to estimate or regressed heavily towards zero 
in the model, than when QTL are sampled from com-
mon SNPs [16]. Furthermore, in their prediction equa-
tion, van den Berg et al. [31] corrected for the reduction 

in prediction error variance as the accuracy of predicted 
genomic values increases. This correction results in 
higher predicted accuracies than when the correction is 
not applied. In our study, however, this correction was 
not applied. There are other factors, such as the differ-
ence in the design of cross-validation schemes to calcu-
late empirical accuracies and structure of the populations 
analyzed that could potentially underlie the difference 
in the extent of over-prediction of empirical accuracies 
between the two studies.

The ability of the MPMG model to take advantage 
of the small value of MeAB due to pre-selected SNPs 
depends on the accuracy of SNP pre-selection, which 
in turn determines the proportion of genetic variance 
explained by the pre-selected SNPs. Our results (Fig. 7) 
show that for an improvement in accuracy of GP by 
using the MPMG instead of the MPSG model, it is not 
sufficient to split randomly SNPs into two classes with-
out accurate prior knowledge on potential causality of 
the SNPs. Instead, the pre-selected SNPs must explain 
some proportion of the genetic variance for the trait. Our 
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Fig. 8  Potential accuracy of predicting the genomic value of individuals from population A under different models: within-population, single GRM 
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(calculated from real genotype data) = 463; Me within population A based on 48,412 non- causal SNPs (calculated from real genotype data) = 280; 
Me within population A based on all 48,912 SNPs (calculated from real genotype data) = 280; heritability of the trait = 0.3 in both populations; 
genetic correlation between populations A and B = 0.6; proportion of genetic variance explained by all SNPs = 0.8; proportion of genetic variance 
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results agree with those of Sarup et al. [33], who showed 
that a significant improvement in accuracy by using the 
“genomic feature” model over the standard GBLUP could 
be achieved provided the prioritised variants explained 
more than 10% of the total genetic variance for the trait. 
In their study, Sarup et al. [33] fitted a linear mixed model 
including two random genomic effects, with the genetic 
effects estimated from “genomic feature” or prioritized 
variants and the remaining variants, respectively. In gen-
eral, when the pre-selected SNPs explain zero proportion 
of genetic variance, the accuracy of the MPMG model 
is expected to be the same as the accuracy of the MPSG 
model (Fig.  7). Furthermore, if the prior information is 
accurate, such that the pre-selected SNPs explain some 
proportion of the genetic variance for the trait, fitting the 
pre-selected SNPs in a separate GRM in a within-popula-
tion GP scenario may be more beneficial than combining 
distantly related populations in a multi-population sin-
gle-GRM model (Fig. 6).

In this study, the proportions of total genetic variance 
explained in the validation population by the SNPs in the 

first GRM ( ρ2
A1

 ) was determined in a simulation context. 
There was 100% certainty that the selected SNPs were 
causal, and that ρ2

A1
 did not depend on linkage disequilib-

rium (LD) between non-causal SNPs and the underlying 
causal SNPs. In this case, we found that the estimate of 
genomic heritability (proportion of the genetic variance 
explained by the SNPs) from the GREML model [37, 38] 
was equivalent to ρ2

A1
(results not shown). de los Campos 

et al. [39] also showed that when all causal mutations are 
included in the GREML analysis, the genomic heritabil-
ity parameter is equivalent to the proportion of genetic 
variance explained by SNPs ( ρ2) . However, in practice, 
the causal mutations that underlie a trait are not always 
observed, and pre-selected SNPs will usually come from 
GWAS studies, in which SNPs can show an association 
with a trait due to LD with unobserved causal mutations. 
When SNPs that are proxies for causal mutations are 
used for the analysis, the variance components estimates 
depend on the effects of the unobserved causal mutations, 
the extent of LD between SNPs and the causal mutations, 
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Fig. 9  Potential accuracy of predicting the genomic value of individuals from population A under different models: within-population, single 
GRM (WPSG), within-population, multiple GRM (WPMG), multi-population, single GRM (MPSG), multi-population, multiple GRM (MPMG), in 
relation to different levels of underestimation of Me within the predicted population A (0 – 90%). The following assumptions were made: Me across 
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remaining SNPs (calculated from real genotype data) = 32,970; genetic correlations between populations A and B = 0.6; heritability of the trait = 0.3 
in both populations; proportion of genetic variance explained by SNPs in GRM1 = 0.5; number of individuals from population A in the training 
population = 476; number of individuals from population B in the training population = 5553



Page 18 of 22Raymond et al. Genet Sel Evol           (2020) 52:21 

and the extent of LD between the SNPs themselves [39]. 
Not accounting explicitly for the LD between SNPs and 
the causal mutations in the model used for analysis can 
result in the over-estimation of variance components 
[39]. This means that the estimate of genomic heritabil-
ity from the GREML model cannot be considered to be 
equivalent to ρ2 . Browning et  al. [40] also showed that 
population structure can inflate SNP-based heritability 
estimates. Although genomic heritability from GREML 
models are higher than ρ2 , they are still a good indication 
for ρ2 , as they have similar trend [41]. Thus, for compari-
son of the proportion of genetic variance explained by 
SNPs in different SNP sets, genomic heritability from a 
GREML model can be used.

In practice, when two GRM are fitted simultaneously 
in a bivariate GREML model, two estimates of genetic 
correlation are obtained, one for each GRM . However, 
in this study, we used only the simulated value for the 
genetic correlation between populations for both GRM in 
the prediction Eq.  (17). This is because the pre-selected 
SNPs were randomly sampled from all causal SNPs. In 
practice, a general expectation is that causal SNPs that 
are pre-selected from e.g. GWAS have a higher effect on 
the trait than the remaining unselected SNPs, and are 
most likely to be more consistent across populations [20, 
42]. Therefore, the genetic correlation of the preselected 
SNPs can be higher than that for the remaining SNPs. In 
the cases that this expectation holds, it is inappropriate 
to use a single value of genetic correlation for both GRM 
in the prediction Eq.  (17). A solution to this issue is to 
use the estimated genetic correlation. However, one must 
take into account that the estimated genetic correlation 
can be biased when the causal and non-causal SNPs used 
to estimate the genetic correlation do not have similar 
properties, e.g., similar pattern of allele frequencies [43]. 
In general, it is likely that causal SNPs have lower MAF 
than non-causal SNPs, which means that estimates of 
genetic correlation obtained by non-causal SNPs can be 
underestimating the genetic correlation between popula-
tions at the causal SNPs [20].

In the derivation of the predicting Eq. (17), we assumed 
that there is no covariance between EGV from different 
GRM , since the expectation is zero when the GRM are 
jointly fitted [25]. Because a negative sampling covari-
ance might appear when effects cannot be estimated 
independently, and the covariance might bias predicted 
accuracies using the derived equation, we tested this 
assumption. We calculated the correlations between 
EGVA1

 and EGVA2
 in each replicate and averaged these 

across replicates. In general, we observed a positive cor-
relation between the EGV from the two GRM in MPMG, 

albeit with high standard errors, except in the CSNP_500 
in which case all the causal SNPs underlying the trait are 
in one GRM , where the correlation was around 0 (see 
Additional file  1: Table  S1). However, in most cases the 
correlations were not significantly different from 0. The 
positive correlation between the EGV mean that individ-
uals that have a high EGV based on the pre-selected SNPs 
( GRM1 ), on average also have a high EGV based on the 
rest of the genome ( GRM2 ). To check if the observed cor-
relation between EGV is an artefact of our simulation, we 
summed the effects of all causal SNPs in GRM1 as TGV1 
and summed the effect of all causal SNPs not in GRM2 as 
TGV2 . Across 100 replicates, we observed no correlation 
between the TGV : -0.007 (0.07) for CSNP_125 and 0.01 
(0.07) for CSNP_250. The observed correlation between 
EGV do not seem to be a result of sampling covariance, 
since the expected sign of the resulting correlation is 
negative, and are not an artefact of our simulation, given 
that the TGV based on the separate sets of causal SNPs 
were not correlated. We think that the empirical correla-
tion between EGV are a result of an estimation issue, but 
we are not sure. In any case, given that the level of over-
estimation of empirical accuracy of the MPMG model is 
in the range of overestimation observed in a model with 
only one GRM (MPSG), the impact of any possible covar-
iance between the EGV on the predicted accuracy of the 
MPMG model is expected to be small.

Conclusions
In this paper, we presented a deterministic prediction 
equation for the accuracy of a multi-population, multi-
ple GRM (MPMG) model, which gives insight into the 
underlying reasons for the superior performance of the 
MPMG model over the multi-population, single GRM 
(MPSG) model. With the help of the prediction equation, 
we showed that an important advantage of the MPMG 
model is its ability to benefit from the small number of 
independent chromosome segments ( Me ) due to the pre-
selected SNPs, both within and across populations, while 
for the MPSG model, there is only a single value for Me , 
calculated based on all SNPs. However, this advantage 
depends on the condition that the pre-selected SNPs can 
explain some proportion of the total genetic variance for 
the trait. The prediction equation developed here can be 
used as a deterministic tool to assess the potential ben-
efit of combining information from different popula-
tions e.g., different breeds or lines for GP in livestock or 
plants, or different groups of people based on their ethnic 
background for genomic prediction in humans. This is 
especially the case, when accurate biological information 
about the causality of the SNPs is available.
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Appendices
Appendix 1

where XAi,j is the genotype of validation candidate i from 
population A at locus j , β̂A1j and β̂B1j are the estimated 
SNP effects for locus j in training populations A and B , 
respectively, and rg is the genetic correlation between 
populations A and B.

(18)
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,

where cor
β̂A1 ,β̂B1

 is the correlation between the estimated 
SNP effects of GRM1 in populations A and B . Using the 
path coefficient method of Dekkers [23], it can be shown 
that cor

β̂A1 ,β̂B1
= rg rSNPA1 rSNPB1 , where rSNPA1 and rSNPB1 

are the accuracies of the estimated SNP effects in popula-
tions A and B , respectively. The square root of the vari-
ance of estimated SNP effects in populations A and B is 
equal to the accuracy of the estimated SNP effects, i.e. 
√

var
(

β̂A1j

)

var
(

β̂B1j

)

= rSNPA1rSNPB1 ..

Therefore:

and filling this in Eq. (18) results in:

Assuming that true genomic values are scaled such that 
they have a variance of 1, Eq. (19) becomes:

Appendix 2
Matrix P and vector g are shown below:

Since P is a block diagonal matrix, it can be split into 
2x2 sub-matrices for ease of inversion:
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Then, P =
[

P11 0
0 P22

]

 and P−1 =
[

P−1
11 0

0 P−1
22

]

 . The 

inverse of the two non-zero sub-matrices of P can be cal-
culated as:

Similarly:

Simplifying the equation above results in:

The reliability of estimated genomic values is a prod-
uct of the reliability of the estimated SNP effects ( r2SNP) 
and the proportion of genetic variance explained in the 
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validation population by the SNPs ( ρ2) . Ignoring ρ2 , for 
now, and replacing r2SNP with the deterministic equations 
to predict accuracy of GP [6, 27]:

then Eq. (21) becomes:
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Multiplying both the numerator and the denominator 
of the first component of Eq.  (22) by 
(
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 results in:

Taking into account the proportion of genetic vari-
ance explained by SNPs in GRM1 ( ρ2

A1
 ) and GRM2 ( ρ2

A2
 ), 

respectively, Eq. (23) becomes:
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