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Parvovirus B19 (B19V) is pathogenic to humans and causes bone marrow failure

diseases and various other inflammatory disorders. B19V infection exhibits high tropism

for human erythroid progenitor cells (EPCs) in the bone marrow and fetal liver. The

exclusive restriction of B19V replication to erythroid lineage cells is partly due to the

expression of receptor and co-receptor(s) on the cell surface of human EPCs and partly

depends on the intracellular factors essential for virus replication. We first summarize the

latest developments in the viral entry process and the host cellular factors or pathways

critical for B19V replication. We discuss the role of hypoxia, erythropoietin signaling

and STAT5 activation in the virus replication. The B19V infection-induced DNA damage

response (DDR) and cell cycle arrest at late S-phase are two key events that promote

B19V replication. Lately, the virus infection causes G2 arrest, followed by the extensive

cell death of EPCs that leads to anemia. We provide the current understanding of

how B19V exploits the cellular resources and manipulate pathways for efficient virus

replication. B19V encodes a single precursor mRNA (pre-mRNA), which undergoes

alternate splicing and alternative polyadenylation to generate at least 12 different species

of mRNA transcripts. The post-transcriptional processing of B19V pre-mRNA is tightly

regulated through cis-acting elements and trans-acting factors flanking the splice donor

or acceptor sites. Overall, in this review, we focus on the recent advances in the molecular

virology and pathogenesis of B19V infection.
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INTRODUCTION

Parvovirus B19 (B19V) is a small, non-enveloped virus that has a diameter of approximately
23–26 nm and contains a linear single-stranded DNA genome of 5.6 kb, flanked by two identical
terminal hairpin structures (Figure 1A) (Qiu et al., 2017). B19V belongs to Erythroparvovirus of
the Parvoviridae family (Cotmore et al., 2014). The name B19 was coined after the sample number
containing the virus; panel B and no.19, during the screening of hepatitis B virus (Cossart et al.,
1975). B19V infection causes several diseases in humans, including like fifth disease in children
(Brass et al., 1982), transient aplastic crisis (Chorba et al., 1986), non-immune hydrops fetalis
in pregnant women (Parilla et al., 1997), persistent anemia in immunocompromised patients,
arthropathy (Hosszu and Sallai, 1997), cardiomyopathy (Simpson et al., 2016) and inflammation
of various other tissues (Adamson-Small et al., 2014; Qiu et al., 2017).
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FIGURE 1 | Transcription map of Parvovirus B19. (A) Linear ssDNA genome of B19V. The genome is flanked by two inverted terminal repeats (ITRs), containing

unpaired and mismatched bases, shown as bulges and bubbles, respectively. (B) Double stranded replicative form of B19V genome. The viral promoter denoted as

P6 transcribes a single precursor mRNA (pre-mRNA). Pre-mRNA has two donor sites (D1 and D2) and four acceptor sites (A1-1, A1-2, A2-1, and A2-2). Using

alternative splicing and polyadenylation, pre-mRNA is processed into at least 12 different mRNAs (only R1–R9 shown here). Mature mRNAs polyadenylate at (pA)p or

(pA)d sites. At least five different proteins are known to be encoded by different species of mRNA transcripts. Different colors indicate the use of different open reading

frames for the translation of proteins. Question marks indicate mRNAs encoding unknown proteins.

In this review, we focus on recent advances in B19V tropism,
viral DNA replication and viral transcription. Importantly, we
will focus on four key factors involved in B19V replication
that are: (a) erythropoietin (EPO) signaling; (b) hypoxia; (c)
DNA damage response (DDR); and (d) late S-phase arrest. We
also summarize the new advancements in B19V pre-mRNA
processing and its regulation. We also discuss host factors
STAT5 (Signal Transducer and Activator of Transcription-5) and
RBM38 (RNA-Binding Motif protein-38), which regulate virus
replication andmRNAprocessing, respectively. Lastly, we discuss
the underlying mechanism of NS1 induced cell cycle arrest, B19V
pathogenesis, and the future directions in the development of
therapeutics for B19V infection.

VIRAL ENTRY AND DETERMINANTS OF
VIRAL TROPISM

Productive infection of B19V is restricted to human erythroid
progenitor cells, particularly, during the stages of burst
forming unit-erythroid (BFU-E) to colony forming unit-
erythroid (CFU-E) (Young et al., 1984a; Srivastava and Lu, 1988).
B19V infects ex vivo expanded EPCs from human bone marrow
(Young et al., 1984a; Ozawa et al., 1986; Srivastava and Lu, 1988),
peripheral and umbilical blood (Serke et al., 1991; Schwarz et al.,
1992; Sosa et al., 1992; Srivastava et al., 1992) and the fetal liver
(Yaegashi et al., 1989; Morey and Fleming, 1992). In addition to
expanded primary EPCs, various other cell lines have been used
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for B19V infection, including MB-02, UT7/Epo and UT7/Epo-
S1 (megakaryoblastoid cell lines) (Shimomura et l., 1992; Munshi
et al., 1993; Morita et al., 2001) and JK-1, KU812-Ep6 (erythroid
leukemia cell lines) (Takahashi et al., 1993;Miyagawa et al., 1999).
For efficient B19V replication, erythropoietin and hypoxia play a
critical role under in vitro conditions (Chen et al., 2010a, 2011).
B19V also infects endothelial cells of various tissues, but the
infection is largely non-productive (Adamson-Small et al., 2014).
In addition, U937 cells, circulating angiogenic cells (CACs) and
CD34+ endothelial progenitor cells from bone marrow have also
been reported to be susceptible to B19V infection (Munakata
et al., 2006; Schmidt-Lucke et al., 2010, 2015). All these cells either
express viral receptor/co-receptors or use an antibody dependent
route via c1q receptor for viral entry (von Kietzell et al., 2014).

The primary receptor for B19V is globoside or P antigen
(Figure 2) (Brown et al., 1993). However, all P antigen expressing
cells are not permissive to B19V (Weigel-Kelley et al., 2001).
Various other co-receptors like Ku80 (Munakata et al., 2005),
integrin α5β1 (Weigel-Kelley et al., 2003) and antibody-mediated
B19V entry routes (von Kietzell et al., 2014) are presumed to
be involved in B19V entry. Importantly, the B19V capsid binds

its primary receptor, P antigen and undergoes a conformational
change, exposing VP1u, a unique (273 aa) N-terminus of the
VP1 capsid protein (Figure 2) (Ros et al., 2006; Bonsch et al.,
2008, 2010). Since Ku80 and α5β1 integrin haven’t been shown to
interact with VP1u, it has been hypothesized that VP1u interacts
with some unknown co-receptor for subsequent internalization.
Further, the N-terminal 100 amino acids of VP1u are required
for internalization, which implies that the PLA2 (phospholipase
A2) activity of VP1u is not essential for viral entry (Leisi
et al., 2013). Interestingly, the VP1u region (without capsid)
is efficiently internalized by B19V-permissive cells (Leisi et al.,
2016a,b), which suggests that primary interaction of B19V
with P antigen is required only for externalization of VP1u.
Mature RBCs also express P antigen and hence show primary
attachment to B19V, but the virus is not internalized (Bonsch
et al., 2008). It is presumed that this primary interaction may
be responsible for systemic dissemination of the virus. Similar to
other parvoviruses, B19V uses the endocytic pathway but escapes
lysosomal degradation to enter the nucleus for subsequent
replication, transcription and packaging (Figure 2) (Harbison
et al., 2008; Quattrocchi et al., 2012). In conclusion, the B19V

FIGURE 2 | Proposed model of B19V life cycle. B19V infects human erythroid progenitor cells. The virus first interacts with globoside (Step 1) and undergoes a

conformational change that exposes VP1u which subsequently binds an unknown co-receptor (Step 1). Thereupon, the virus is endocytosed and somehow escapes

the lysosomal route and enters the nucleus (Step 3). Inside the nucleus, the virion uncoats and releases the ssDNA genome (Step 4). Using the 3′OH of the left ITR,

the second strand is synthesized to form a functional origin of replication (Step 5). Next, EPO and hypoxia activates and increases pSTAT5, which interacts with MCM

and then binds Ori region. NS1 binding to NS1BE is critical for nicking ssDNA at trs and for helicase activity (step 6). The nicking creates a new 3′ OH end to continue

DNA replication that results into duplex replicative intermediate (Step 7). The dsDNA form also transcribes a single pre-mRNA that is processed into various mRNAs

which are exported to cytoplasm for translation (Step 8). VP1/2 assemble into trimers to form capsids, which are transported back to the nucleus (Step 9). Through

strand displacement, ssDNA is packaged into capsids, which probably requires NS1 (step 10). NS1 and 11-kDa in the cytoplasm induce apoptosis (Step 11). After

multiplication, the virions are released though cell lysis.
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first interaction with the globoside leads to the externalization of
VP1u, which then interacts with some unknown co-receptor for
internalization of the virus.

GENE EXPRESSION, SPLICING, AND ITS
REGULATION

Upon entry of the virus into the nucleus, the B19V ssDNA
genome is converted to double-stranded replicative form (dsRF),
which acts a template for both DNA replication and transcription
(Figure 2) (Cotmore and Tattersall, 2014). The dsRF viral DNA
has a unique but single promoter at map unit 6 (P6) that
expresses a single precursor mRNA (pre-mRNA) (Figure 1B)
(Blundell et al., 1987; Doerig et al., 1987). The P6 promoter has
an upstream enhancer region and NS1 binding elements that
bind transcription factors (e.g., CREBP, GATA, Oct1 etc.) and
NS1 protein, respectively, for promoter transactivation (Blundell
and Astell, 1989; Liu et al., 1991; Momoeda et al., 1994a; Raab
et al., 2001). B19V pre-mRNA undergoes alternative splicing and
polyadenylation to express at least 12 mature mRNA transcripts
that encode two structural (VP1 and VP2) and three non-
structural (NS1, 7.5 and 11-kDa) proteins (Ozawa et al., 1987;
Beard et al., 1989; Yoto et al., 2006). The pre-mRNA contains
two splice donor sites (D1 and D2) and four acceptor sites
(A1-1, A1-2, A2-1, and A2-2) (Figure 1B) (Qiu et al., 2017).
In addition, it harbors two proximal [(pA)p]1/2 and a distal
[p(pA)d] polyadenylation sites (Figure 1B) (Qiu et al., 2017).
Unspliced mRNA transcripts (R1 and R1′) that polyadenylate at
(pA)p encode theNS1 protein while those spliced at A1-1 (R2 and
R2′) and use (pA)p sites encode the 7.5-kDa protein (Figure 1B).
The mRNA transcripts polyadenylated at (pA)d and where 1st
intron (R4 and R5), 1st and 2nd (R6 and R7), and 1st, 2nd, and
3rd introns (R8 and R9) are spliced out encode the VP1, VP2, and
11-kDa proteins, respectively (Figure 1B) (Luo and Astell, 1993;
St Amand and Astell, 1993; Yoto et al., 2006). Whether other
mRNAs (R3 and R3′) encode a protein or play any role during
virus infection is unknown.

While the B19VmRNAs are splice products from a single pre-
mRNA, the expression levels of the different encoded proteins
varies considerably (Guan et al., 2011b). Therefore, the virus
must employ different strategies to regulate the level of gene
expression. In the absence of viral DNA replication, most
of the mRNA transcripts polyadenylate at (pA)p leading to
the expression of NS1 and 7.5-kDa proteins in both B19V-
permisssive or non-permissive cells (Figure 1B) (Liu et al., 1992).
Viral DNA replication facilitates the read-through of (pA)p and
overcomes the blockade to express mRNAs that polyadenylate at
(pA)d encoding for the VP1, VP2 and 11-kDa proteins (Guan
et al., 2008). Thus, the early and late phases of virus infection are
dominated by NS1-encoding and VP/11-kDa-encoding mRNAs,
respectively (Bua et al., 2016). An alternative model for virus
infection was also proposed suggesting that B19V genome be
considered as single, two state replicative and transcription unit,
where the increase in viral RNA correlates with viral DNA
levels (Bonvicini et al., 2006). Next, the central exon or exon 2
(spanning A1-1/2 to D2) harbors serine arginine (SR) protein

binding GAA motifs, and the GAA motif between A1-1 and
A1-2, constitutes exon splicing enhancer 1 (ESE1), which defines
exon-2 and facilitates splicing at A1-1. The 5′ end of exon 2
promotes splicing at A1-2 and serves as exon splicing enhancer
2 (ESE2) (Guan et al., 2011a). Splicing at second donor site
(D2) is critical for the expression of capsid proteins and 11-
kDa encoding mRNAs, and also competes with polyadenylation
at (pA)p (Guan et al., 2011b). Binding of U1 snRNA to D2
splice donor site inhibits polyadenylation at (pA)p (Guan et al.,
2011a). D2 is a weak splice donor site and requires two cis-
acting elements: exon splicing enhancer 3 (ESE3) and intron
splicing enhancer 2 (ISE2) for its efficient splicing (Guan et al.,
2011a). Hence, the interplay of cis-acting elements and trans-
acting factors determine the splicing efficiency of different splice
sites to regulate the expression of different mRNA species.
While looking for the trans-acting factors that bind ISE2, we
demonstrate that RNA binding protein-RBM38, expressed in
the middle stages of erythropoiesis, promotes the expression
of 11-kDa protein (Ganaie et al., 2018). Specifically, RBM38
binds ISE2 and promotes splicing of third intron (D2 to A2-2),
that results in the production of 11-kDa encoding mRNAs.
Therefore, RBM38 is one of the essential trans-acting factors that
regulates the expression of 11-kDa protein (Ganaie et al., 2018).
In conclusion, B19V efficiently uses the alternative splicing and
alternative polyadenylation processes to ensure the expression of
the viral proteins at a given ratio. However, such tight regulation
is dependent on the cis-acting elements and the trans-acting
factors flanking the splice donor/acceptor sites.

VIRAL PROTEINS AND THEIR FUNCTIONS

B19V expresses three non-structural (NS1, 11- and 7.5-kDa) and
two structural proteins (VP1 and VP2).

Non-structural Proteins
Non-structural Protein 1 (NS1)

NS1 is 671 amino acid long protein that has a MW of ∼78 kDa.
NS1 contains two nuclear localization signals; KKPR (177–179)
and KKCGKK (316–321) (Figure 3) and is found predominantly
in the nucleus of infected cells (Cotmore et al., 1986; Ozawa and
Young, 1987; Ozawa et al., 1987; Wan et al., 2010). NS1 contains
a DNA binding and endonuclease domain at the N-terminus
(Tewary et al., 2014), an ATPase and NTP-binding domains in
the central region (Momoeda et al., 1994b) and a transactivation
domain at its C-terminus (Lou et al., 2012) (Figure 3). NS1
is critical for virus DNA replication (Zhi et al., 2006), and
binds NSBEs (NS1 binding elements) of the minimum origin of
replication of B19V dsRF DNA (Figure 4) (Tewary et al., 2014).
Upon NS1 binding to NSBEs, it presumably opens up the dsRF
DNA and nicks the ssDNA substrate at trs (terminal resolution
site) (Figure 2) (Sanchez et al., 2016). With the assistance of
Sp1/Sp3, NS1 binds P6 promoter for its transactivation (Gareus
et al., 1998; Raab et al., 2002). NS1 induces apoptosis via NTP-
binding motif (328-335 amino acid) (Momoeda et al., 1994b;
Moffatt et al., 1998; Poole et al., 2006), a DNA damage response
(Luo et al., 2011; Lou et al., 2012) and cell cycle arrest (Morita
et al., 2003; Wan et al., 2010; Luo et al., 2013; Xu et al., 2017).
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FIGURE 3 | A diagram of NS1 functional domains. The N-terminus (amino

acid 2-176) of NS1 possesses DNA binding and endonuclease activity. The

endonuclease motif resides between amino acids 137 and 145. The central

region of NS1 exhibits putative helicase activity. Transactivation activity is

restricted to the C-terminus of NS1. NS1 carries two nuclear localizing signals,

between amino acids 177–179 and 316–321 (NLS, in green). Three putative

transactivation domains have been identified in the C-terminus of the NS1

protein: TAD1 (aa 416–424), TAD2 (aa 523–531), and TAD3 (aa 566–574). The

central region also contains two NTP binding motifs between amino acids

323–378 and 367–378 (NTP binding motifs, in purple).

The putative transactivation domain 2 (TAD2) of NS1 is critical
for cell cycle arrest and the transactivation of host genes. NS1
is thought to be a global transactivator as the expression of
NS1 protein in UT7/Epo-S1 affected around 1,770 genes, by
upregulating 1,064 genes and downregulating 706 genes (Xu
et al., 2017). In short, NS1 is a multifunctional protein and plays
various roles during B19V infection (Figure 5).

11-kDa Protein

The 11-kDa protein is expressed at high levels during B19V
infection and localizes more in the cytoplasm than in the nucleus
of infected cells. The abundance of the 11-kDa protein in infected
cells is at least 100 times greater than NS1 protein (St Amand and
Astell, 1993; Chen et al., 2010b). The 11-kDa protein is potent
inducer of apoptosis during B19V infection and involves caspase-
10 (Figure 2) (Chen et al., 2010b). We demonstrate that the 11-
kDa protein enhances viral DNA replication (∼10-fold), and thus
determines virion production (Ganaie et al., 2018). Finally, the
11-kDa protein has also been implicated in VP2 production and
its distribution (Zhi et al., 2006).

7.5-kDa Protein

The function(s) of 7.5-kDa are still unknown.

Structural Proteins
Capsid Proteins (VP1 and VP2)

VP1 is a minor capsid protein, 781 amino acids long (∼84 kDa)
(Ozawa and Young, 1987). VP1 shares the same C-terminus
with VP2, with extra 273 amino acids, called as VP1-unique
(VP1u) (Ozawa and Young, 1987; Ozawa et al., 1987). VP2 is a
major capsid protein, 554 amino acid long (∼58 kDa) (Ozawa
and Young, 1987). VP1 expression is low (Ozawa et al., 1988)
and with VP2 assembles into the viral capsid (VP1:VP2 =

1:20) (Figure 2) (Ozawa and Young, 1987). VP2 has a nuclear
localization signal at its C-terminus, therefore both the VP1
and VP2 proteins are found in the nucleus of infected cells
(Pillet et al., 2003). The capsid first interacts with P antigen

(Figure 2) (Brown et al., 1993) and thereafter first 100 amino
acids of VP1u help in internalization of the virus particles (Leisi
et al., 2013). VP1u region from 128 to 160 amino acids exhibits
phospholipase A2 activity (Dorsch et al., 2001, 2002; Zádori
et al., 2001), which is possibly used to evade lysosomal fusion
and ensure nuclear entry of the virions. In conclusion, the viral
structural proteins (VP1/VP2) form the viral capsids for viral
DNA encapsidation, whereas, non-structural proteins ensure the
efficient virus replication, packaging and release of infectious
viral particles. The non-structural proteins need to be further
investigated for their functional characterization.

B19V REPLICATION AND ITS REGULATION

B19V replication takes place in the nucleus of the infected cells.
The single-stranded genome of the virus is first converted to
dsRF DNA. B19V genome (RF) contains a 67-bp (nt 5214–
5280) long minimum origin of replication (Ori) at each ends
(Guan et al., 2009). Although the origins function independently,
but both origins are required for the efficient DNA replication
of the virus (Ganaie et al., 2017). B19V genome can replicate
even with half inverted terminal repeats (ITR), however, the full
ITRs significantly enhance viral DNA replication (Ganaie et al.,
2017). Ori contains NS1 binding elements (NSBEs) (Tewary et al.,
2014), terminal resolution site (trs) (Sanchez et al., 2016), STAT5
binding site, and potential host factor binding sites (Figure 4)
(Ganaie et al., 2017). NS1 binds NSBEs and nicks DNA at trs
(Sanchez et al., 2016), whereas STAT5 binds Ori and recruits
the MCM (Minichromosome Maintenance) complex (Ganaie
et al., 2017). After NS1 nicking, DNA replication continues,
and presumably follows rolling hairpin model of replication
(Figure 2), as suggested for other parvoviruses (Tattersall et al.,
2005). Upon microarray analysis of the dynamic transcriptome
of B19V infected EPCs, we recently found that DNAmetabolism,
DNA replication, DNA repair, DNA damage response, cell cycle
and cell cycle arrest pathways are significantly altered upon virus
infection (Zou et al., 2017). Broadly, B19V replication is regulated
by the following factors:

EPO-Signaling
In response to low oxygen tension, human kidney interstitial
fibroblasts secrete EPO, a glycoprotein cytokine that promotes
the differentiation and development of erythroid progenitors
that results in the production of mature RBCs (Testa, 2004).
During erythropoiesis, pluripotent hematopoietic stem cells
(HSCs, CD34+) are differentiated into enucleated erythrocytes,
encompassing the following stages – BFU-Es, CFU-Es,
normoblasts, erythroblasts, reticulocytes and finally the
mature erythrocytes (Ogawa, 1993; Testa, 2004). The earlier
stages of differentiation are EPO-independent (Ogawa, 1993),
and rely on factors like, stem cell factor (SCF) (Dai et al., 1991;
Papayannopoulou et al., 1993), IL-6 (Sui et al., 1996), and
IL-3 (Papayannopoulou et al., 1993). However, the late stage
differentiation process requires EPO (Koury and Bondurant,
1992; Ogawa, 1993). The exclusive tropism of B19V for erythroid
progenitor cells partly depends on the expression of receptor and
co-receptors on the cell surface and partly on the essential host
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FIGURE 4 | A diagram of the B19V minimal origin of viral DNA replication (Ori). B19V has a 67-bp long minimum origin of DNA replication (Ori) at each end of the

genome. Ori harbors two NS1 binding elements (NSBE1&2, in red), one STAT5 binding element (STAT5BE, in green), a terminal resolution site (trs, black), and two

potential cellular factor binding elements (CFBE1&2). Question marks denote two unidentified host factors binding Ori.

FIGURE 5 | NS1 is a multi-functional protein. The B19V NS1 multimer binds the dsDNA form of the genome at NSBE1-2 via N-terminus region (5–7), but nicks

ssDNA at trs and covalently attaches to the 5′ end. NS1 induces a DNA damage response that is essential for virus replication. The virus replication process leads to

the activation of ATR, ATM and DNA-PKcs. However, the activation of ATR and DNA-PKcs, but not ATM, is essential for virus replication. NS1 transactivates its P6

promoter with the assistance of Sp1/Sp3. NS1 is a global transactivator and regulates ∼1,700 genes. NS1 induces apoptosis through the activation of caspases

2/6/8 and TNF-α. The central region of NS1 protein exhibits putative helicase activity.

cellular factors for efficient virus replication. Erythroid lineage
cells depend on EPO for survival (Grebien et al., 2008), but B19V
also needs EPO for its replication (Chen et al., 2010a). BFU-Es
and CFU-Es, the late stage erythroids, are highly susceptible to
B19V infection (Takahashi et al., 1990). B19V-semi permissive
cell lines (e.g., UT7/Epo-S1) depend on EPO for cell proliferation
and survival. Interestingly, B19V-permissivity of these cell lines
strictly depends on EPO (Figure 2) (Takahashi et al., 1990).
CD36+ EPCs differentiated from CD34+ in the absence of EPO
are not permissive to B19V infection and B19V genome replicates
only in the presence of EPO and requires phosphorylated Janus
kinase 2 (JAK2) (Chen et al., 2010a). EPO binds EPO-receptor
and activates ERK, Phosphoinositide 3-kinase (PI3K) and JAK2-
STAT5 pathways (Figure 2) (Lodish et al., 2009). JAK2-STAT5
pathway is essential for B19V replication while the ERK pathway
negatively regulates B19V replication and PI3K is dispensable
for virus replication (Chen et al., 2011). Although EPO signaling
activates the ERK pathway, B19V inhibits the ERK pathway
presumably through its 11-kDa protein (Fan et al., 2001; Chen
et al., 2011). Therefore, B19V fine tunes the EPO-signaling that
favors efficient virus replication. In order to understand the
underlying mechanism of STAT5 dependent B19V replication,
we demonstrate that STAT5 phosphorylation is critical for B19V
DNA replication (Ganaie et al., 2017). The viral Ori harbors
a STAT5 binding site (Figure 4) and phosphorylated STAT5

binds viral origins both in-vivo as well as in-vitro (Ganaie et al.,
2017). The mutation of STAT5 binding site within viral origins
completely abolishes viral DNA replication (Ganaie et al., 2017).
Furthermore, STAT5 interacts with the MCM complex and the
disruption of STAT5-Ori complex leads to decrease in virus
DNA replication and the abundance of MCM complex decreases
significantly at the viral Ori (Ganaie et al., 2017). Therefore, in
our proposed model, B19V utilizes the STAT5 interaction with
viral Ori to recruit the MCM complex for initiation of viral DNA
replication (Ganaie et al., 2017).

Hypoxia
During the propagation of B19V in ex-vivo expanded CD36+

EPCs, progeny virion production is not as efficient as under
natural conditions in human bone marrow on B19V infection
of EPCs. The viremia in B19V infected patients goes up
to 1013 genomic copies per ml of plasma (Wong and
Brown, 2006; Takano and Yamada, 2007), which indicates the
requirement of other factors in determining the production
of virions. Oxygen tension is low in bone marrow (Rogers
et al., 2008) and lower oxygen pressure favors erythroid cell
development in culture (Koller et al., 1992). Interestingly,
B19V infected human EPCs at hypoxia (1% O2) enhances
viral gene expression, viral replication, and virus production.
Hypoxia augmentation of B19V replication is independent
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of the PHD/HIFα pathway. Hypoxia also enables the B19V-
infected pluripotent erythroid cells (KU812F) to yield high
progeny virions (Caillet-Fauquet et al., 2004). Increase in the
productive B19V infection under hypoxic conditions wasn’t
due to increase in the B19V entry or intracellular trafficking
of the virus. Also, HIF-1 was shown not to play any role
in hypoxia-induced enhancement in B19V infectivity (Chen
et al., 2011). However, hypoxia regulates the EPO/EPO-receptor
signaling pathway by upregulating STAT5 and downregulating
MEK activation, thereby enhancing B19V DNA replication in
both B19V-infected EPCs andM20 (infectious clone)-transfected
UT7/Epo-S1cells (Chen et al., 2011). We strongly believe
that upregulation of STAT5 and downregulation of MEK/ERK
signaling during hypoxia promotes virus replication. The B19V
infectious clone grows rapidly (∼80 times) in UT7/Epo-S1
cells under hypoxia (Chen et al., 2011). The culture of EPCs
or UT7/Epo-S1 cells under hypoxia for B19V propagation is
currently the best culture system in use. The efficient replication
of M20 infectious clone and the subsequent production of
infectious virions holds promise to study B19V replication and
the underlying mechanism(s) of replication. Also, mutagenesis of
B19V molecular clone M20 could help to understand the role of
individual viral proteins and the specific protein domains in virus
replication.

Late S Phase Cell Cycle
B19V DNA replication is dependent on host cellular DNA
replication, since the virus doesn’t encode a viral DNA
polymerase (Luo and Qiu, 2015). B19V induces cell cycle arrest
in both virus-infected CD36+ EPCs and UT7/Epo-S1 or M20
transfected UT7/Epo-S1 cells at G2/M (Morita et al., 2001; Luo
et al., 2013). Virus infected UT7/Epo-S1-arrested cells display
4N DNA content and (5′-bromo-2-deoxy-uridine) BrdU-pulse
labeling for de novo DNA synthesis along with DAPI staining
indicates that the cells are precisely in late-S phase (Luo et al.,
2013). Upon B19V infection of UT7/Epo-S1, cyclin A, cyclin B1
and phosphorylated cell division cycle 2 (CDC2) were shown to
accumulate and CDC2-cyclin B1 complex displayed enhanced
kinase activity (Morita et al., 2001). The sequestration of cyclin
B1 to the cytoplasm in B19V-infected cells indicates that B19V
somehow prevents its import to nucleus, thus results into cell
cycle arrest at G2 phase (Morita et al., 2001). NS1 alone has been
shown to induce a true G2/M cell cycle arrest, doesn’t show BrdU
incorporation but displays 4N DNA content (Luo et al., 2013),
and de-regulation of E2F family transcription factors have been
implicated for such arrest (Wan et al., 2010).

While B19V induces DDR that promotes virus replication,
virus-induced DDR is not involved in cell cycle arrest at
G2/M (Lou et al., 2012). Like other autonomous parvoviruses,
B19V infection also induces arrest at S phase (Luo et al.,
2011, 2013). Therefore, B19V induced late S phase arrest is
possibly an outcome of replication-induced S phase arrest and
NS1-induced G2/M arrest. Various S phase replication factors
like polymerase delta (pol δ), proliferating cell nuclear antigen
(PCNA), replication factor C-subunit 1 (RFC-1), the MCM
complex except the DNA repair DNA polymerases are actively
recruited to viral replication centers with pol δ and pol α essential

for viral DNA replication (Luo et al., 2013; Zou et al., 2017).
It is likely that like other parvoviruses (Parris and Bates, 1976;
Oleksiewicz and Alexandersen, 1997; Deleu et al., 1999), B19V
exploits the cell cycle arrest at late S phase and uses S phase factors
to for viral DNA replication. In addition, replication protein
A-32 (RPA32) also colocalizes with viral replicating machinery.
Although phosphorylated RPA32 forms also show colocalization,
phosphorylation itself seems dispensable for virus replication
(Zou et al., 2017), supporting the observation that B19V uses S
phase for genome amplification.

DNA Damage Response (DDR)
DNA damage response (DDR) is a cellular defense mechanism
to preserve genomic stability and integrity in response to double
strand breaks (DSBs), single strand DNA breaks, or installed
replication (Ciccia and Elledge, 2010). There are three major
kinases (mediators) responsible for signaling downstream DDR
effects, including Ataxia telangiectasia mutated (ATM), Ataxia
telangiectasia and Rad3 related (ATR), and DNA dependent
protein kinase, catalytic subunit (DNA-PKcs). Apart from
recognizing the damaged cellular DNA, DDR is also activated
by various DNA viruses either to combat the infection by
invoking innate immune response or to facilitate viral DNA
replication (Luo and Qiu, 2015; Trigg and Ferguson, 2015).
B19V infection induces a DDR by activating all the three
PI3K kinases (ATR, ATM, and DNA-PKcs) (Luo et al., 2011).
Phosphorylated ATM, ATR, DNA-PKcs and their downstream
effectors (CHK1, CHK2, and Ku70/80) localize within the virus
replication centers. Activated ATR and DNA-PKcs, but not ATM
were found essential for B19V replication (Luo et al., 2011; Lou
et al., 2012). Further, it was found thatmere expression of the viral
genes didn’t lead to the phosphorylation of RPA32 and γH2AX,
a hallmark of DDR (Lou et al., 2012). Interestingly, NS1 itself
phosphorylates ATR to induces cell cycle arrest, however, such
activation of ATR doesn’t lead to phosphorylation of RPA32 and
γH2AX (Xu et al., 2017). It was found that replicating, infectious
clone-M20, but not a replication deficient M20 mutant, led to
the induction of DDR (Lou et al., 2012), which implies that the
replication process per se is responsible for inducing DDR.

In conclusion, Epo signaling and the virus induced-
DDR and late S-phase arrest are essential for the efficient
virus replication. Hypoxia stimulates virus replication through
upregulation of the STAT5A. These findings have revealed the
new mechanistic insights into B19V replication and also helped
in the identification of novel targets for inhibiting B19V at the
replication level. However, It remains to be seen that how virus
infection-induced DDR promotes the efficient B19V replication
in the erythroid cells?

VIRAL PATHOGENESIS

Productive Infection of B19V Induces Cell
Cycle Arrest and Erythroid Cell Death
B19V infection induces cell cycle arrest at G2 phase (Morita
et al., 2001). Upon further analyses of the cell cycle during the
virus infection, it was found that the arrest at G2 phase has 4N
DNA content but also incorporates BrdU, a thymidine analog,
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suggesting that the infected cells are in late S phase (Luo et al.,
2013). During early infection, the cells are precisely at late S
phase, however, at the late phase of infection most infected
cells are found in G2 phase (Luo et al., 2013). Interestingly,
the expression of NS1 induces a true G2 arrest where cells
don’t incorporate BrdU but only exhibit 4N DNA content
(Luo et al., 2013). There are many players responsible for
inducing cell cycle arrest during B19V infection. During the
B19V induced cell cycle arrest of UT7/Epo-S1 cells, it was
observed that nuclear import of CDC2/cyclin B1 is prevented
(Morita et al., 2001). NS1 itself causes a true G2 arrest by
importing the repressive E2F transcription factors (E2F4/E2F5)
(Wan et al., 2010). A putative NS1 transactivation domain-2
(TAD2) was found responsible for NS1-induced G2 arrest (Lou
et al., 2012). Recently, we explored the underlying mechanism
of the NS1 induced cell cycle arrest in great detail (Xu et al.,
2017). NS1-TAD2 domain transactivates several host genes that
lead to the activation of ATR. Activated ATR phosphorylates
cell division cycle 25C (CDC25C) at serine-216 through the
activation of CHK1 (Xu et al., 2017). Phosphorylated CDC25C at
S216 reduces its phosphatase activity and renders it complexed
with 14-3-3 protein in the cytoplasm (Peng et al., 1998). As
a result, inactive CDC25C is unable to dephosphorylate cyclin
B1/CDK1 (pT14/Y15) complex to activate it. An active cyclin
B1/CDK1 complex is essential for G2 to M transition (Dunphy
et al., 1988). In NS1-expressing UT7/Epo-S1 cells, nuclear
entry of cyclin B1/CDK1 complex is not hampered, rather
the complex exhibits reduced kinase activity (Xu et al., 2017).
Hence, B19V NS1 induces G2 arrest by activating the ATR-
CDC25C-CDK1 pathway (Xu et al., 2017). NS1 activation of
ATR doesn’t lead to the activation of γH2AX and RPA32, a
hallmark of DDR (Lou et al., 2012; Xu et al., 2017). Moreover,
DNA replication induced DDR and thereafter, activation of ATR
leads to the arrest of cells at late S phase (Luo et al., 2013).
It appears that NS1 or DNA replication mediated activation of
ATR transduce signaling through different downstream pathways
and results in cells arrested at different phases of cell cycle.
The last factor implicated in B19V infection induced cell cycle
arrest is the viral genome itself. A nucleotide sequence 5′-
GTTTTG T-3′ from the viral promoter region arrests BFU-E
progenitor cells at S and G2/M phase (Guo et al., 2010).This
promoter sequence is a CpG oligodoxynucleotide-2006 analog
that is a ligand of toll-like receptor 9 (TLR9). It appears that
viral genomic replication initially stalls infected cells at late S
phase and later with the help of NS1 arrests at G2/M, which
eventually leads to cell death. B19V infection specifically targets
BFU-E and CFU-E progenitors (Mortimer et al., 1983), disrupts
erythropoiesis and results in the transient aplastic crisis (Young
et al., 1984b). The virus-induced cell death is apoptotic in nature
and involves caspase-3/6/8 activation (Moffatt et al., 1998; Sol
et al., 1999). B19V NS1 activates the extrinsic apoptotic pathway
involving the TNF-α pathway in CD36+ EPCs or UT7/Epo
cells (Sol et al., 1999). The B19V encoded 11-kDa protein is
also implicated in causing cell death through apoptosis, which
involves caspase-10 (Chen et al., 2010b). It was found that 11-
kDa is a more potent inducer of apoptosis than NS1 (Chen et al.,
2010b).

Non-productive Infection of B19V Causes
Inflammatory Diseases of Various Tissues
Virus infection is seen in non-erythroid cells as well. The virus
uses an alternative entry route by complexing with antibody
and entering through complement factor C1q and C1q receptor
mediated endocytosis (von Kietzell et al., 2014). There is no clear
evidence that B19V replicates or produces virions in any non-
erythroid cell lineage, hence the infection is considered largely
non-productive.

B19V predominantly infects endothelial cells of various tissues
(e.g., aorta, umbilical vein, and pulmonary arteria etc.) (von
Kietzell et al., 2014). Other cell lines infected include U937 cells
(Munakata et al., 2006), circulatory angiogenic cells (CACs) and
CD34+KDR+ endothelial progenitor cells (Schmidt-Lucke et al.,
2010, 2015). B19V infection appears to be persistent and viral
genes are silenced through methylation of CpG sites on the DNA
(Bonvicini et al., 2012). Even after the infection is resolved, the
viral DNA can be found in various tissues like spleen, liver,
tonsils, testes and brain (Kerr, 2000; Adamson-Small et al., 2014).

Upon infection, the infected tissue evokes host-cellular
response against the virus which culminates in a myriad
of pathologies. B19V infection has been linked to several
inflammatory diseases like cardiomyopathy (Simpson
et al., 2016), rheumatoid arthritis (Simpson et al., 1984),
hepatitis (Longo et al., 1998), vasculitis (Finkel et al., 1994),
meningoencephalitis (Adamson-Small et al., 2014; Qiu et al.,
2017). B19V infection or the expression of viral proteins can
modulate the immune response. NS1 upregulates IFNAR1
and IL-2 (inflammatory response) and downregulates OAS1
and TYK2 (antiviral response) through the activation of
STAT3/PIAS3 signaling pathway in human endothelial cells
(HMEC-1) (Duechting et al., 2008). The increase in the
expression of inflammatory molecules like NF-κB, IL-6 and
COX2 correlated with expression of viral capsid proteins in
the colon, thyroid and synoviocytes (Lu et al., 2006; Li et al.,
2007; Wang et al., 2008; Polcz et al., 2013). Particularly, in
synoviocytes, VP1u phospholipase A2 activity is implicated
in the production of inflammatory response (Lu et al., 2006).
NS1 induces apoptosis in hepatocytes through the activation of
caspse-3 and caspase-9 (Poole et al., 2004, 2006).

In conclusion, the B19V productive infection causes cell death
of the erythroid progenitors and the non-productive infection
of non-erythroid tissues evokes inflammatory responses that
leads to various pathologies. However, with the exception of
the placental endothelium (Pasquinelli et al., 2009), no other
non-erythroid cell type supports B19V multiplication.

CONCLUSION AND FUTURE DIRECTIONS

It has been reported that almost 40–60% of the world’s population
is infected with parvovirus B19 (Nunoue et al., 1985). However,
such persistent infection is at sub-immunogenic levels, as viral
load is kept under control by our immune system (Anderson
et al., 1986; Kurtzman et al., 1989), particularly by neutralizing
antibodies against B19V VP1u region (Anderson et al., 1995).
During times when patients are under immunosuppression or
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during infection with other pathogens, the viral load increases,
causing extensive cell death of erythroid progenitor cells and
leads to various inflammatory diseases as described above
(Heegaard and Brown, 2002; Qiu et al., 2017).

There is no specific treatment for B19V infection, except
IVIG treatment (Watanabe and Kawashima, 2015) or blood
transfusion (Soothill, 1990), so there is a need to develop
antivirals for B19V infection. The new advancements in the field
of B19V viral replication have identified various critical steps
during the process of virus replication. One such important step
is NS1 binding to the viral origin and subsequent nicking of
B19V DNA at trs (Tewary et al., 2014). Recently, an in-vitro
nicking assay for NS1 was developed (Sanchez et al., 2016),
which could be utilized to screen for inhibitors of NS1 nicking.
Furthermore, since the VP1u region is essential for viral entry
and therefore, the peptide analogs of VP1u (1-100) (Leisi et al.,
2013) or neutralizing monoclonal antibodies (Gigler et al., 1999)
against VP1u can be employed to check B19V entry. We have
demonstrated that STAT5 phosphorylation is essential for B19V
DNA replication (Ganaie et al., 2017). Pimozide, a STAT5
inhibitor and an FDA approved drug abolishes virus replication

in CD36+ EPCs (Ganaie et al., 2017). However the levels used
in patients are too low to inhibit B19V. Therefore, derivatives of
pimozide could be explored as potential drugs for B19V infection
and for B19 related pathologies and included in prophylactic
antivirals for transplant recipients. However, the development of
new antivirals against B19V infection needs an animal model to
validate any new treatment. Currently, simian parvovirus (SPV)
infection of cynomolgus monkeys (O’Sullivan et al., 1994) is an
alternative to screen anti-B19 antivirals in animal model system.
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