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Abstract: Microscopic imaging is of great significance for medical diagnosis. However, due to
the strong scattering and absorption of tissue, the implementation of non-invasive microscopic
imaging is very difficult. Traditional single-pixel microscopes, based on reflective optical systems,
provide an alternative solution for scattering media imaging. Here, the single-pixel microscope
with transmissive liquid crystal modulation is proposed. The microscopic ability of the proposed
microscope is calibrated. The multi-spectral microscopic imaging of the object is demonstrated. The
transmissive imaging of the object behind the scattering media is analyzed. The proposed prototype
of the transmissive single-pixel microscope is expected to be applied in microscopic imaging through
scattering media and medical imaging.

Keywords: single-pixel imaging; microscopic imaging; multi-spectral; LC-SLM; scattering media

1. Introduction

Non-invasive microscopic imaging, a secure scatheless internal micro-objects imaging
method, is pervasively applied in medical science, such as fundus examination [1–5], an-
giography [6], wound monitoring [7], and cancer nest detection [8,9]. These micro-objects
have large scattering angles and much absorption to incident light [10–12]. Observing
internal micro-objects requires methods with high penetration and low-light imaging ca-
pabilities, avoiding invasive observation of the microscopic structure within tissues. The
penetration and scattering angles of incident light are both disparate in different wave-
lengths. Short wave incident light, such as X-ray, is efficient in improving the penetration
and reducing scattering angle. Certain long wave incident light, such as infrared light,
is absorbed enormously by cancer cells, and is suitable for multi-spectral imaging and
locating cancer [13]. However, there is a certain compromise between deeper penetration
and detecting cancer. As a result, non-invasive and multi-spectral imaging has limited
capabilities in detection, which is critical in identifying cancer accurately.

Conventional microscopes, using visible light for illumination, have a penetration
depth of only 10–20 µm, which are not suitable for non-invasive microscopic imaging.
The confocal microscope, utilizing the light beam from focal plane for imaging, has up
to 0.2 mm penetration depth [14–16]. Multi-photon fluorescence microscopy has the
penetration of 0.5 to 1 mm by exciting fluorophore to produce the emitted light, without
the ability of thick tissue imaging [17]. X-ray and γ-ray imaging use light sources with low
scattering coefficients to reduce the scattering angle in the propagation path and can directly
penetrate human tissues [18]; however, high-energy rays may cause irreparable damage
to the human body. Traditional methods are limited to be employed in non-invasive
multi-spectral imaging.
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The deeper penetration and multi-spectral imaging of tissue are difficult to achieve
simultaneously in traditional methods, which are both based on the theory of linear
propagation of light and the theory of keyhole imaging [19–26]. Recent studies on single-
pixel imaging show that the theory of linear propagation of light and the theory of keyhole
imaging can be broken through, and object reconstruction can be performed based on
one-dimensional data [27–33]. To reduce sampling data for single-pixel imaging, a set
of modulated patterns is used to realize compressed sampling [34–42]. It improves the
speed of single-pixel microscopic imaging. Single-pixel imaging provides a potential
solution for penetrating scattering media. Penetrating scattering media are achieved
through second-order correlation [43]. There are tests and reference optical paths for
correlation. To simplify the optical path in the scattering media imaging, the Digital Mirror
Device (DMD) is used in the optical path and the reference path is unnecessary [44]. The
simplified optical system combined with microscopic technology is utilized to achieve
4× microscopic imaging through scattering media [45]. Then, the pattern codification
is proposed to cancel the optical influence of DMD diamond-like shaped structure [46].
Besides, simultaneous infrared and visible light microscopic imaging are achieved by
single-pixel microscopic imaging [47]. The single-pixel microscope, using a photodetector
(PD) instead of a traditional array detector, has the superiority of having a wideband
response and high sensitivity to the measured signal. Single-pixel imaging is suitable for
overcoming interference and detecting weak light. However, the optical path of traditional
single-pixel microscopic imaging is a reflective structure, in which the pattern is generated
by irradiating the DMD with a light source, and then being reflected onto the object. The
PD receives the light intensity signals modulated by the object, which are used to recover
the image.

To achieve single-pixel microscopic imaging, we have proposed a single-pixel micro-
scope that uses the liquid crystal spatial light modulator (LC-SLM) to modulate the object
and Fourier Transform (FT) to realize reconstruction. Here, LC-SLM is used to set up a
transmissive optical system. This transmissive system is simple and efficient, in which the
number of optical components is simplified and the 4F Fourier filter is removed because the
diffraction phenomenon is negligible. The optical distortion of the illumination pattern is
acceptable when the optical imaging system is simplified. In the experiments, single-pixel
microscopic imaging with different magnifications were performed, and the image resolu-
tion was up to 9 µm. Microscopic imaging experiments with different compression ratios
were performed, in which 10% of data in the frequency domain was demonstrated to be
sufficient to reconstruct the image. The multi-spectral microscopic images were obtained
by illuminating liver cancer slices with different spectra. Finally, the proposed transmissive
single-pixel microscopes capability was demonstrated via microscopic imaging through
scattering media.

2. Materials and Methods
2.1. Methods of Single-Pixel Imaging

Single-pixel imaging, as an alternative method to traditional imaging based on the
array detector, encodes the two-dimensional optical image into the sequence of one-
dimensional signals. To decrease measurements in single-pixel imaging, different pat-
terns such as random patterns, Hadamard patterns, and Fourier patterns are generated
to modulate the object. Due to characters of high sensitivity to low-light, quick response
to high-frequency signals, and detectable of wide-band light compared with the Charge
Coupled Device (CCD) sensor, the PD is used as a detector to measure intensities of pat-
terns transmitted by the object. As a result, single-pixel imaging has natural advantages
in compressed sampling and multi-spectral imaging. Meanwhile, single-pixel imaging
with Fourier patterns is helpful in compressed imaging and recovering high signal-to-noise
ratio images.



Sensors 2021, 21, 2721 3 of 12

Sinusoidal Fourier patterns are composed of 2n pixels and are generated from the
following expression:

fΦ(x, y, fx, fy) = cos(
fx

N
x +

fy

N
y + Φ) (1)

fx
N and fy

N are two-dimensional discrete frequencies of the sinusoidal pattern. Φ is the
phase of the sinusoidal pattern and Φ = 0, π

2 , π, 3π
2 . The pattern focused on the object

is: f ′Φ(x, y) = a + b fΦ(x, y). a represents the influence of ambient light, and b represents
the loss coefficient of the light beam. The object is modulated with four different phases:
D0, D π

2
, D 3π

2
, Dπ , which are combined to reduce the interference of ambient light by the

differential algorithm. The four-step phase-shifted modulation is conducted to sample the
frequency data of the object. The process can be expressed mathematically as
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The R(x, y) is the 2D transmittance distribution function of the object. The recovered
image of the object is represented by the R(x, y) in the experiments.
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k is the light loss coefficient. After sampling the frequency data, the image of the object is
recovered through inverse Fourier transform, as is shown below mathematically:
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2.2. Transmissive Optical Modulation

At present, the gray response time of liquid crystal is reduced to the order of millisec-
ond. The TSLM017-A is chose as LC-SLM to generate sinusoidal patterns (1024 Pixel (H) ×
768 Pixel (V), 36.8 (H) × 27.6 mm (V)). Tr is the time for precisely twisting the liquid crystal
by 90◦. Td is the time for liquid crystal restoring to an undistorted state. The maximum
gray-scale response time Tr + Td is 35 ms for the liquid crystal switching between 10%
maximum grayscale and 90% maximum grayscale. The actual response curve is measured
by the PD and recorded by the desktop multimeter. The sampling rate of the desktop
multimeter is 1000 Hz. As shown in Figure 1d, the response curve of the liquid crystal is
recorded. The horizontal axis shows 1000 measurements recorded in 1 s. The response
curve is recorded rightly when 15 patterns including white and black patterns are displayed
alternately in LC-SLM. To reduce measurement error, the LC-SLM is operated stably by
10 Hz in the latter experiments. According to Equation (1), the required sinusoidal patterns
are generated by Matlab software. In the following experiments, sinusoidal patterns of
different frequencies are displayed sequentially in LC-SLM.

The transmission of light is controlled by changing the shape of liquid crystals in
LC-SLM. When penetrating the first polarizer, the light beam is modulated to be linear
polarized. There will be no light passing through the second polarizer if the liquid crystal
is not modulated because the polarization of the two polarizers is perpendicular to each
other. After the polarization modulation of the liquid crystal, the light beam can partially
penetrate LC-SLM. It should be noted that the linear polarized light beam is transmitted
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completely only when the liquid crystal is precisely twisted by 90◦ (Twisted nematic field
effect). Therefore, the optical 2-D sinusoidal patterns are generated by controlling the shape
of liquid crystals. Sinusoidal patterns of various frequencies are displayed on LC-SLM to
measure the frequency domain data of the recovered object. In the experiment, LC-SLM
plays pre-made sinusoidal patterns in video mode under the control of the computer. The
light beam is modulated by sinusoidal 2-D patterns when penetrating LC-SLM.

As is shown in Figure 2, the structure of the proposed transmissive single-pixel
microscope is achieved with the LC-SLM (composed of a vertical polarization filter, a
horizontal polarization filter, and liquid crystals in the middle). By twisting liquid crystals
with different degrees, sinusoidal patterns of different spatial frequencies are continuously
generated by LC-SLM under the control of the PC. First, LC-SLM is illuminated by the
light source, and patterns generated by LC-SLM are projected to the objective. When
passing through the objective, patterns are zoomed out to modulate the microscopic
target. Subsequently, the total light intensity is measured by the PD and then collected
by DAQ. Eventually, the spatial transmittance distribution of the object is obtained by the
IFFT algorithm.
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Figure 1. (a,b) liquid crystal modulation principle and modulation process of sinusoidal patterns
as the microscopic image passes through liquid crystal spatial light modulator (LC-SLM). (c,d) the
response time of the liquid crystal. The response time of LC-SLM (TSLM017-A) is Tr + Td ≤ 35 ms.
The actual data of response time are measured by Data Acquisition (DAQ). The frame rate of LC-SLM
is about 15 Hz. The sampling rate of DAQ is 1000 Hz.
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Figure 2. Experimental principle of transmissive single-pixel microscopic imaging. Target, USAF-
1951 resolution test target.

3. Results
3.1. Compressed Sampling

Most of the existing microscopes are based on the array sensor to receive the light
intensity signal. Large amounts of data are measured by the multiple pixel array sensor
in high-resolution imaging. Then, the measured data are compressed to a Joint Picture
Group (JPG) image to alleviate the storage pressure. Anyway, the redundant data are
measured necessarily in the traditional microscopes. Here, the single-pixel microscope is
proposed to decrease redundant measurements. Through encoding spatial information
in the temporal dimension, the proposed single-pixel microscope has the property that
measurement and imaging are separate. By illuminating the object with different sparse
patterns, compression sampling can be achieved when measuring the sequence signal. In
the obtained sequence signal, the low-frequency data represent the main information of the
image while the high-frequency data represents the secondary information of the image.
The microscopic image is recovered by processing the acquired sequence signals. As a
result, an acceptable image can be recovered from a small number of measurements. In the
experiment, to acquire the acceptable image with compressed measurements, single-pixel
imaging with the compressed method first samples the main information of the image, and
then gradually samples the secondary information.

Here, Fourier patterns of different frequencies are used as sparse patterns to modulate
the object. To observe recovered images under different Fourier sampling rates, microscopic
imaging experiments are performed with spectral sampling rates of 1%, 3%, 5%, 10%, 15%,
20%, 25%, and 30%. Besides, the magnification of the microscope maintains a constant of
100×. The LC-SLM is used to generate sinusoidal patterns of 128 × 128 at 10 Hz, and the
DAQ acquires the voltage change of the PD at 1000 Hz. Each frequency in the image is
sampled 100 times, and random noise interference is reduced by averaging 100 data. Only
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half the spectrum data need to be measured because the Fourier spectrum distribution is
conjugate symmetrical. As a result, the number of sinusoidal patterns generated on the
LC-SLM is reduced by half. Figure 3 shows reconstructed microscopic images at different
sampling rates. The number 11.3 indicates 11.3 LP/mm, and the corresponding line width
is 44 ± 1 µm. When the sampling ratio reaches 10%, the PSNR is about 17 and the SSIM
is about 0.4, and the image quality remarkably improves [32]. We find that only 10%
Fourier-spectra is enough for distinguishing engraving lines. Both compressed sampling
and acceptable imaging are achieved in the proposed microscope.
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The number 11.3 represents 11.3 LP/mm. Objective lens is 20× and eye lens is 5×.

3.2. High Resolution Microscopic Imaging

To demonstrate the proposed single-pixel microscope, single-pixel microscopic imag-
ing with different magnifications is performed. The magnification of the objective deter-
mines the resolution of the microscope. The objective lens has a maximum magnifica-
tion of 40×, and the corresponding numerical aperture (N.A.) is 0.65. According to the
formula:D = 0.61λ

nsinα , the corresponding maximum optical resolution D is 0.469 µm (assum-
ing the average wavelength of the light source is λ = 500 nm). The USAF-1951 resolution
test target (new standard) has a resolution range of 1.8 to 500 µm with an error of ±1 µm.
The USAF-1951 resolution test target is employed as a specimen for quantitative evaluation
of microscopic imaging resolution at different magnifications. The number δ represents
the resolution of the test card. The larger number represents the higher the microscopic
imaging resolution ∆: ∆ = 1000/2δ µm; 5.04 LP/mm engraving line, 11.3 LP/mm engrav-
ing line, and 57.0 LP/mm engraving line are used for 50, 100, and 200 times magnification,
respectively.

The pixel size of the recovered microscopic image by the Fourier single-pixel imaging
method is the same as the pixel size of the sparse sinusoidal pattern (128 × 128) generated
by the LC-SLM. Different magnification microscopic imaging experiments were conducted
at a 10% spectral sampling rate. Figure 4a is the measured sequence signal that represents
the partial raw spectrum. Figure 4b shows the spectrum data after data processing and
eliminating random noise. As shown in Figure 4c, the three-dimensional visualization of
spectrum data demonstrates that the main information of the image is in the low-frequency
part. The microscopic image is reconstructed by IFFT calculation. Figure 4d–f show
images of the USAF-1951 target at different magnifications with sizes of 128 × 128. The
corresponding lines on the right can be distinguished.
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Figure 4. (a) The measurement data of Fourier spectrum. (b) The average value of measurement
data of (a). (c) Three-dimensional visualizations of sampled spectral data. (d) The objective lens is
10× and the eye lens is 5×. The line width corresponding to the number 5.04 is 99 ± 1 µm. (e) The
objective lens is 20× and the eye lens is 5×. The line width corresponding to the number 11.3 is
44 ± 1 µm. (f) The objective lens is 40× and the eye lens is 5×. The line width corresponding to the
number 57.0 is 9 ± 1 µm.

3.3. Multi-Spectral Test

The absorption spectrum of cancer cells is different from that of normal cells. Through
multi-spectral microscopic imaging, the location of the cancer is easier to identify. To
demonstrate the ability to detect cancer, multi-spectral imaging of cancer is performed with
the proposed transmissive single-pixel microscope. In the experiments, the magnification
of the microscope: the objective lens is 10×, the eyepiece is 5×. The size of Fourier patterns
is 128 × 128. The human pathological section (liver cancer) was used as a biological sample
and is stained with hematoxylin-eosin. The size of the sample is 2 × 2 × 0.3 cm. Here,
the texture of the biological section is delicate, so 100% Fourier-spectra were measured for
acquiring a high-quality image. The single-pixel imaging of the liver cancer section was
performed with different optical spectra: white light (440–670 nm), red light (621 nm), and
blue light (451 nm). The contrast ratio of recovered images is calculated as [48–50]:

C =
∑N

i=1 ∑8
j=1
(
ri − rij

)2

M

C is the contrast ratio. ri is the grayscale value of the pixel point and rij is an adjacent
point of ri; M is a count of the sum of squares. As shown in Figure 5b–d, dark areas in
the red rectangle are the cancer nests. The contrast ratios of the red rectangle areas are
174, 353, and 168, respectively. We find that it is easier to identify cancer nests under
red-light illumination compared to white-light and blue-light illumination. In the diag-
nosis of disease, multi-spectral microscopic imaging has the ability of multi-dimensional
imaging. Compared with traditional microscopic imaging under natural light and specific
wavelength, multi-spectral imaging has obvious advantages in accurately and efficiently
identifying the location of the disease. Therefore, the single-pixel microscope is helpful to
detect cancer through multi-spectral imaging compared with observing directly.
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Figure 5. Single-pixel multi-spectral microscopic imaging of liver cancer section. (a)The sample
image photographed by Charge Coupled Device (CCD) under white light illumination. (b–d) single-
pixel microscopic imaging under white light (440–670 nm), red light (621 nm) and blue light (451 nm)
respectively.

3.4. Microscopic Imaging through Scatter Media

The proposed single-pixel microscope is validated in microscopic imaging through
scattering media. Here, the ground glass diffuser (DG20-600, N-BK7, 2 mm thickness,
one side is ground glass and the other side is smooth) was used as scattering media. The
USAF-1951 resolution test target was used as the object to be recovered. In the first case, the
ground glass diffuser was placed between the target and PD. The light beam was scattered
before being measured by PD. However, the modulation between the pattern generated
by LC-SLM and the target is unaffected by the scattering media. The recovered image is
shown in Figure 6f. Meanwhile, the experiment without scattering media was conducted,
and the recovered image is shown in Figure 6e. Through comparing recovered images, the
proposed single-pixel microscope is insensitive to the scattering media between the target
and PD. In the second case, the ground glass diffuser was placed between the target and
the objective. The pattern was scattered by the diffuser before being projected to the target.
The pattern is blurred worse as scattering media thickness increased. When the ground
glass side was close to the target, the scatter media thickness of the diffuser was about
1mm. The recovered image of the target is shown in Figure 6g. When the smooth side was
close to the target, the scattering media thickness was about 2 mm. The recovered image
of the target is shown in Figure 6h. The recovered images indicate proposed microscope
is sensitive to the scattering media between the target and the objective. The target is
recovered acceptably when the scattering media thickness is less than 1 mm.

Figure 5. Single-pixel multi-spectral microscopic imaging of liver cancer section. (a) The sample
image photographed by Charge Coupled Device (CCD) under white light illumination. (b–d) Single-
pixel microscopic imaging under white light (440–670 nm), red light (621 nm) and blue light (451 nm)
respectively.

3.4. Microscopic Imaging through Scatter Media

The proposed single-pixel microscope is validated in microscopic imaging through
scattering media. Here, the ground glass diffuser (DG20-600, N-BK7, 2 mm thickness,
one side is ground glass and the other side is smooth) was used as scattering media. The
USAF-1951 resolution test target was used as the object to be recovered. In the first case, the
ground glass diffuser was placed between the target and PD. The light beam was scattered
before being measured by PD. However, the modulation between the pattern generated
by LC-SLM and the target is unaffected by the scattering media. The recovered image is
shown in Figure 6f. Meanwhile, the experiment without scattering media was conducted,
and the recovered image is shown in Figure 6e. Through comparing recovered images, the
proposed single-pixel microscope is insensitive to the scattering media between the target
and PD. In the second case, the ground glass diffuser was placed between the target and
the objective. The pattern was scattered by the diffuser before being projected to the target.
The pattern is blurred worse as scattering media thickness increased. When the ground
glass side was close to the target, the scatter media thickness of the diffuser was about
1 mm. The recovered image of the target is shown in Figure 6g. When the smooth side was
close to the target, the scattering media thickness was about 2 mm. The recovered image
of the target is shown in Figure 6h. The recovered images indicate proposed microscope
is sensitive to the scattering media between the target and the objective. The target is
recovered acceptably when the scattering media thickness is less than 1 mm.



Sensors 2021, 21, 2721 9 of 12
Sensors 2021, 1, 0 10 of 13

(a) (b) (c)

Incident light
scatter media

transmission light

(d)

397μm

(e)

397μm

(f)

397μm

(g)

397μm

(h)

Figure 6. (a) The target to be recovered. (b) The ground glass diffuser. (c) The photograph of the
optical structure. (d)The scatter model of the ground glass diffuser. (e) Image of the target without the
scattering media. (f) Image of the target when the scattering media was between the target and the
photodetector (PD). (g) Image of the target when the 1 mm thickness scattering media was between
the target and the objective. (h) Image of the target when the 2 mm thickness scattering media was
between the target and the objective.

4. Discussion

We have shown that the transmissive single-pixel microscope has a simplified optical
structure by utilizing LC-SLM for optical modulation. Comparing microscopic experiments
with different sampling rates, the image quality under 10% of the compressed sampling,
achieving PSNR = 17 and SSIM = 0.4, is enough for acceptable imaging. Through multi-
spectral microscopic imaging of pathological sections, the specific location of diseased
cells is easily identified. The proposed microscope is demonstrated in imaging through
scattering media. Compared to traditional optical microscopes, the transmissive single-
pixel microscope functions better than traditional approaches in terms of compressed
sampling, multi-spectral imaging, and imaging through scattering media.

We find that the relationship between sampling rate and image quality is not linear.
When the sampling rate is small, the quality of the microscopic image can be improved
obviously by increasing the sampling rate. However, as the sampling rate increases, the
efficiency of improving the image quality decreases fast. The optimized sampling rate could
be determined based on the results of single-pixel microscopic imaging. The experimental
results show that we have achieved microscopic imaging with a maximum precision of up
to 9 µm. Based on the transmissive optical modulation of LC-SLM and the measurements
of FFT spectrum data, the image quality of the transmissive single-pixel microscope is
greatly improved, compared with the image accuracy in the single-pixel microscope based
on reflective optical path and traditional reconstruction algorithm [45], which is about
30 µm.

The microscope behaves better when the scattering media is placed between target
and PD. When the scattering media are placed between the target and the objective, the
quality of the image will decrease significantly, the reason of which may be that the degree
of the blurred pattern determined the final reconstructed image. Anyway, this is the first
attempt at a single-pixel microscope using the transmissive optical path in scattering media
imaging compared to the research of the reflective single-pixel microscope [25,44–46,51–53].
Moreover, we find that random noise could not be ignored or eliminated in the measure-
ment of high-frequency data, which results in ineffective improvement of image quality
even in the case of a large sampling rate. Therefore, the proposed microscope is not suitable

Figure 6. (a) The target to be recovered. (b) The ground glass diffuser. (c) The photograph of the
optical structure. (d) The scatter model of the ground glass diffuser. (e) Image of the target without
the scattering media. (f) Image of the target when the scattering media was between the target
and the photodetector (PD). (g) Image of the target when the 1 mm thickness scattering media was
between the target and the objective. (h) Image of the target when the 2 mm thickness scattering
media was between the target and the objective.

4. Discussion

We have shown that the transmissive single-pixel microscope has a simplified optical
structure by utilizing LC-SLM for optical modulation. Comparing microscopic experiments
with different sampling rates, the image quality under 10% of the compressed sampling,
achieving PSNR = 17 and SSIM = 0.4, is enough for acceptable imaging. Through multi-
spectral microscopic imaging of pathological sections, the specific location of diseased
cells is easily identified. The proposed microscope is demonstrated in imaging through
scattering media. Compared to traditional optical microscopes, the transmissive single-
pixel microscope functions better than traditional approaches in terms of compressed
sampling, multi-spectral imaging, and imaging through scattering media.

We find that the relationship between sampling rate and image quality is not linear.
When the sampling rate is small, the quality of the microscopic image can be improved
obviously by increasing the sampling rate. However, as the sampling rate increases, the
efficiency of improving the image quality decreases fast. The optimized sampling rate could
be determined based on the results of single-pixel microscopic imaging. The experimental
results show that we have achieved microscopic imaging with a maximum precision of up
to 9 µm. Based on the transmissive optical modulation of LC-SLM and the measurements
of FFT spectrum data, the image quality of the transmissive single-pixel microscope is
greatly improved, compared with the image accuracy in the single-pixel microscope based
on reflective optical path and traditional reconstruction algorithm [45], which is about
30 µm.

The microscope behaves better when the scattering media is placed between target
and PD. When the scattering media are placed between the target and the objective, the
quality of the image will decrease significantly, the reason of which may be that the degree
of the blurred pattern determined the final reconstructed image. Anyway, this is the first
attempt at a single-pixel microscope using the transmissive optical path in scattering media
imaging compared to the research of the reflective single-pixel microscope [25,44–46,51–53].
Moreover, we find that random noise could not be ignored or eliminated in the measure-
ment of high-frequency data, which results in ineffective improvement of image quality
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even in the case of a large sampling rate. Therefore, the proposed microscope is not suitable
for imaging with a large sampling rate due to the measuring error of high-frequency data
caused by random noise.

5. Conclusions

We have come up with a single-pixel multi-spectral microscope with transmissive
liquid crystal modulation, in which partially transparent Fourier patterns are displayed
to modulate the object. The proposed single-pixel microscope achieves a transmissive
optical system using a partially transparent LC-SLM, which simplifies the optical path of
single-pixel microscopic imaging, where no complex optical path is required to project the
Fourier patterns and no 4F Fourier filter is required to remove the diffraction phenomenon.
Through microscopic imaging with different sampling rates, it is found that 10% Fourier-
spectral reconstruction can achieve acceptable imaging quality and therefore reduce the
number of measurements. Through different wavelengths of illumination, the multi-
spectral images of the cancer are obtained and evaluated by the contrast ratio. Taking
ground glass diffusers as scattering media, the thickness and position of the scattering
media were analyzed in microscopic imaging. The single-pixel multi-spectral microscope
based on transmissive liquid crystal modulation is simple and flexible, and is expected to be
widely used in computational microscopic imaging and multi-modal microscopic imaging.
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