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1  | INTRODUC TION

Polysaccharides as indispensable biopolymers in all living organ-
isms made of more than ten monosaccharides are linked together 
through sequential glycosidic bonds. Such valuable and ubiquitous 
biopolymers cover a wide array of biological properties like anti-
oxidant (Shabani, Askari, Jahanbin, & Khodaeian, 2016; Siu, Xu, 
Chen, & Wu, 2016), antitumor (Meng, Liang, & Luo, 2016), anti-in-
flammatory (Lajili, Deghrigue, Amor, Muller, & Bouraoui, 2016), and 
immunomodulatory activities (Yang, Jia, Meng, Wu, & Mei, 2006). 

Polysaccharides could be definitely found in plants, animals, and 
microorganisms. The preferred features for microbial extracellu-
lar polysaccharides (EPS) are as follows: high EPS yield, high EPS 
productivity, capability to grow in sufficiently low-cost substrates 
(Villano et al., 2014) and curative properties (Galinari et al., 2017; 
Kogani et al., 2008; Sutherland, 2001). As far as EPS productions 
are concerned, microbial strains have been extensively examined (Lu 
et al., 2019; Ma, Mao, Geng, Wang, & Xu, 2013). Rhodotorula, be-
longed to environmental basidiomycetous, is a genus of unicellular 
pigmented yeasts. Importantly, three out of 46 species of the genus, 
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Abstract
Several strains of microorganism are capable of converting carbohydrates into ex-
tracellular polysaccharide. The preset research is a first effort made to optimize ex-
tracellular polysaccharide (CRMEP) by Rhodotorula minuta ATCC 10658 using one 
factor at time and response surface methods. One factor at time was applied in the 
initial screening of substrates prior to optimization study. Of all the substrates exam-
ined, starch as carbon source and defatted soy bean powder as protein source were 
discovered to be best for CRMEP production. Response surface analysis revealed 
that 15 g/L starch and 30g/L defatted soy bean powder were the optimal chemical 
conditions. The model predicted 13.22 g/L for CRMEP, which went along with the 
experimentally observed result. Purification of CRMEP by anion-exchange column of 
DEAE-cellulose yielded RMEP. Structural investigation indicated that the main chain 
of RMEP was composed of (1 → 3) and (1 → 4)-linked mannopyranosyl residues, 
with branches attached to O-6 of some (1 → 3)-linked mannopyranosyl residues. The 
branches were composed of Glcp-(1 → residues.
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namely R. mucilaginosa, R. glutinis, and R. minuta, have been rarely 
recognized as human pathogens (Arendrup et al., 2014). R. minuta 
has been recognized as a well-known source of EPS served in food, 
cosmetic, and pharmaceutical fields (Seveiri et al., 2019). The influ-
ence of substrate properties and their concentrations on microbial 
productions has been well-characterized. The quality and quantity 
of carbon and nitrogen in medium highly impact on the microbial 
proliferation and EPS synthesis (Kim et al., 2003; López et al., 2003; 
Nicolaus, Kambourova, & Oner, 2010). Organic carbon and nitrogen 
sources support microbial growth rate and EPS production (Czaczyk 
& Wojciechowska, 2003; Görke & Stülke, 2008). The synthesis of 
heteroglycan made of D-glucose, D-mannose, and D-glucuroic acid 
was stimulated by organic nitrogen (Elinov et al., 1988). Given this 
in view, enhanced productivity can be achieved by using proper 
substrates and optimization methods (Ma et al., 2013). Among 
various statistical methods, response surface methodology (RSM) 
has worldwide served as a pioneer in mathematical analysis of the 
variable factors on responses. Such a method was served to opti-
mize the valuable products produced by fermentation method (Ma 
et al., 2013; Malinowska, Krzyczkowski, Łapienis, & Herold, 2009). 
Prior to the optimization, screening method like one a factor at a time 
method was served to identify the key substrates among the various 
selected substrates (Singh, Singh, Tripathi, Khare, & Garg, 2011).

Rhodotorula minuta (R. minuta) capability of producing EPS 
has been well-documented (Ramirez, 2016; Seveiri et al., 2019). 
However, there are no available data for statistical optimization of 
EPS by R. minuta in submerge conditions. More importantly, the 
structural features of R. minuta´ EPS have not been well-character-
ized yet. Therefore, the objective of this research was the optimiza-
tion of R. minuta’ EPS production, purification of the produced EPS 
by anion-exchange column chromatography and finally, characteri-
zation of the main purified EPS by gas chromatography-mass spec-
trometry (GC–MS).

2  | MATERIAL S AND METHODS

2.1 | Materials and chemicals

Rhdotorula minuta ATCC 10658 was purchased from Persian Type 
Culture Collection (PTCC). DEAE-Cellulose A52 and bovine serum 
albumin (BSA) were purchased from Pharmacia Co. and Merck, re-
spectively. All materials were also provided from Merck. Aqueous 
solutions were prepared with ultra-pure water from a Milli-Q water 
purification system (Millipore). All other reagents used in this study 
were of analytical grades.

2.2 | General methods

Concentrations were performed under reduced pressure in a rotary 
evaporator (Heidolph Laborota 4,000 efficient rotary evaporator, 
Germany). The products were dried by vacuum freeze-drying (Christ 

Alpha 1–2 freeze-dryer). Protein in the exopolysaccharide was quan-
tified according to the Bradford method (Bradford, 1976), using BSA 
as the standard. Ultraviolet-visible absorption spectra were recorded 
with a VarianCary100-Bio UV/visible spectrophotometer. Gas chro-
matography-mass spectrometry (GC–MS) was done on a HP5890 (II) 
instrument (Hewlett-Packard Component, USA) with an HPS quartz 
capillary column (25 m × 0.22 mm × 0.20 μm), and at temperatures 
programmed from 120 ºC (maintained for 2 min) to 260ºC (kept for 
40 min) at a rate of 15ºC/min.

2.3 | Microorganisms, inoculums, and 
cultivation conditions

The strain was grown on potato dextrose agar (PDA), and for long-
term storage, it was incubated at 4°C. 250 ml Erlenmeyer flasks with 
50 ml medium was used for yeast growth. Seed cultures contained 
20 g/L glucose and 10 g/L yeast extract with essential mineral ele-
ments. After sterilization, R. minuta ATCC 10658 was cultivated in 
seed medium and centrifuged cells were used in fermentation media.

2.4 | Fermentation media

Various substrates such as carbon and protein resources as variable 
factors were utilized to examine EPS productions in the fermenta-
tion media. Mineral elements (magnesium sulfate (7 mg/L), calcium 
chloride (2 mg/L), di-potassium hydrogen phosphate (1 g/L), ammo-
nium sulfate (5/2 g/L), sodium chloride (0.1 g/L)), a rotary shaker at 
180 RPM and 28°C were selected as constant factors. 3 percent of 
fresh seed culture was used in the fermentation media.

2.5 | Isolation and purification of exopolysaccharide

Yeast cells were removed from the submerge medium by dilution 
with distilled water (two times) and centrifugation (12,000 g, 5 min). 
The cell-bound exopolysaccharides were removed with 0.25 N 
NaOH for 2 hr and mixed with supernatant. The supernatant was 
concentrated 3-fold with the rotary evaporator at 45°C. The con-
centrated solution was deproteinated by sevag method (1-butanol: 
chloroform at a ratio of 1:4, v/v) (Staub, 1965). After the removal of 
sevag reagent, to remove small molecules, the solution was dialyzed 
against deionized water for 48 hr. The non-dialyzate was then pre-
cipitated with 96% ethanol (1:4, v/v, stored for 24 hr at 4°C). Finally, 
the precipitate, collected by centrifugation, was lyophilized to give 
crude R. minuta ATCC 10658’ exopolysaccharide (CRMEP). The 
CRMEP was dissolved in deionized water and filtered (0.45 μm). The 
solution was passed through an anion-exchange column of DEAE-
Cellulose A52 (2.6 × 30 cm) (Jahanbin, 2018). The elution was a gra-
dient of 0–1 M aqueous solution of NaCl. The collected fractions 
were monitored by the phenol–sulfuric acid colorimetric method 
at 490 nm (Dubois, Gilles, Hamilton, Rebers, & Smith, F., 1956). 
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Fractions, which corresponded to the major peak, were pooled, dia-
lyzed, and lyophilized to result white pure polysaccharide (RMEP) 
and used for further study (Beigi & Jahanbin, 2019).

2.6 | Structure determination of RMEP

Methylation analysis was employed to determine the positions of 
glycosidic linkages and their proportions in RMEP. RMEP was meth-
ylated according to the Needs and Selvendran method (Needs & 
Selvendran, 1993). Briefly, 1 ml DMSO was added to dry RMEP (5 mg) 
in a 25 ml flask. The mixture was sonicated at room temperature for 
20 min and 4 ml methyl sulfinyl methyl sodium (MSMS) was added to 
the solution to form a gel, and the mixture was again treated by soni-
cation for 20 min. 0.3 ml methyl iodide was then added, and the mix-
ture was sonicated for 15 min at 25°C once more. After incubation for 
6 hr at room temperature, excess MSMS was removed by the addition 
of water and subsequent centrifugation (Chaplin & Kennedy, 1994). 
The methylated polysaccharide was extracted with chloroform (4 ml) 
and was examined by IR spectrometry. Complete methylation was 
confirmed by the absence of an absorption peak related to the hy-
droxyl group in the region of 3200–3700 cm-1. The methylated RMEP 
was hydrolyzed with formic acid and TFA (2 M), reduced with NaBD4 
for 24 hr, and finally acetylated with acetic anhydride–pyridine (1:1). 
The partially methylated alditol acetates were analyzed by GC–MS 
(Sahragard & Jahanbin, 2017), according to the procedure above.

2.7 | Statistical method

One factor at a time method was used to identify the key substrates 
among the various carbons and nitrogen sources which exerted high 
influence on EPS production, then the selected carbon and nitrogen 
sources were optimized using response surface method.

3  | RESULTS AND DISCUSSION

3.1 | Investigation of substrates on CRMEP 
production using one factor at time

3.1.1 | Carbon sources

Temperature (21°C), yeast extract (20 g/L), pH (5.5), stirring round 
(180 rpm), minerals, and 4 days fermentation were constant factors. 
On the other hand, carbon sources (starch, glucose, fructose, sorbi-
tol, and lactose) were variable factors. As can be seen in Figure 1, 
starch source was ranked as the best substrate for CRMEP produc-
tion, followed closely by sorbitol. By contrast, glucose had the least 
impact on CRMEP production.

Many research put forward hypotheses that carbon sources as 
a main precursor for EPS production had the highest effect on the 
polysaccharide's properties and supported the high quantity of 

polysaccharide. Various research studies were carried out to in-
vestigate the effect of the carbon and nitrogen sources on polysac-
charides production (Gientka, Bzducha-Wróbel, Stasiak-Różańska, 
Bednarska, & Błażejak, 2016; Khani et al., 2016). Khani et al., 2016 
(Khani et al., 2016) stated that EPS production was stimulated by the 
high content of glucose. A study done by Gientka et al., 2016 (Gientka 
et al., 2016) revealed that, of all substrates used, carbon source signifi-
cantly enhanced the yeast polysaccharide. Maalej et al., 2014 stated 
starch was discovered to be preferred over other carbon sources for 
EPS by Pseudomonas stutzeri AS22. Polysaccharide was better off 
than other carbon sources for ease of polymerization (Fan, Soccol, 
Pandey, & Soccol, 2007). However, microbial EPS depends upon the 
types of carbon source and the yeast species. Lactose, for instances, 
was ranked as the best substrate for EPS production by Zunongwangia 
profunda SM-A87 (Liu et al., 2011), while Pavlova & Grigorova, 1999 
(Pavlova & Grigorova, 1999) stated that sucrose was chosen to be the 
best source of carbon source for EPS by Rhodotorula acheniorum MC.

3.1.2 | Protein sources

Temperature (21°C), starch (7 g/L), pH (5.5), stirring round 180 rpm, 
minerals, and the duration of 4 days fermentation were considered 
constant factors. The effects of nitrogen sources on CRMEP produc-
tion were investigated. Inorganic nitrogen sources had a negligible 
impact on CRMEP yields (urea and NH4NO3). To be more precise, 
the least quantity of CRMEP was obtained in medium containing 
urea as nitrogen sources. However, organic nitrogen sources were 
rated as good substrates to stimulate R. minuta ATCC 10658̕ CRMEP. 
Importantly, appreciable amount of CRMEP was achieved in medium 
containing soybean protein (Figure 2).

Based on the research conducted to evaluate EPS production, 
protein properties had a substantial impact on it. Liu et al., 2011 
reported peptone stimulated Zunonwangia profunda to produce the 
higher content of EPS (8.90 g/L). Srinivas & Padma, 2014 stated that 
organic protein sources were more effective than inorganic nitrogen 
sources. Cordyceps jiangxiensis JXPJ 0109 and Rhodotorula bacarum 
were able to produce the highest content of EPS in media containing 

F I G U R E  1   Effect of various carbon resources on CRMEP 
production
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yeast extract and soybean protein, respectively (Jin et al., 2008; 
Shuangzhi & Zhenming, 2003).

3.2 | Optimization of CRMEP production using RSM

Central Composite Rotatable Design (CCRD) was used as promising 
method for optimization. One factor at a time conducted disclosed 
that starch as carbon source and soybean as nitrogen sources were 
typically key factors enhancing CRMEP production by R. minuta. The 
data were statically analyzed using Design-Expert software (6.0.10 
version) and the method of the least squares was applied to formu-
late second equation. R2 index was used as an adequacy of model 
(Giovanni, 1983). Significance at 5 percent level of confidence was 
selected to identify the effect of variables at linear, quadratic, and 
interactive level on response. ANOVAs results indicated that the 
model term and linear effect of starch and soybean powder having 
values “Prob > F” less than 0.05 were significant (Table 1).

As shown in Table 1, F value of soybean powder was higher than 
that of the carbon source; as a result, protein source was quantita-
tively more important than that of carbon source on CRMEP produc-
tion. Starch and soybean powders were the variable factors as given 
in Table 1. Once, soybean concentration rose to 30 g/L along with the 
high and constant level of glucose (15 g/L), CRMEP production con-
siderably climbed from 9.9 up to 13.2 (run 4 and 8). Similar patterns re-
peated at the lower rate for glucose substrate (run 4 and 10) (Table 2).

That is to say, soybean was more effective than starch on CRMEP 
production. Analysis of variance (ANOVA) was applied to fit a sec-
ond order polynomial equation. The fitted equation of CRMEP pro-
duction over the starch and soybean powder was shown as where, Y 
was the ESP production and A and B were starch and soybean pow-
der, respectively. The model terms with “Prob > F” less than 0.05 are 
regarded significant.

p  = 31.58416–4.40242 × A+0.08066B−0.02187 × A × B  
 + 0.2044 × A2+0.010267 × B2.

3.3 | Verification of optimum condition

There was no considerable difference between the predicted 
values and actual values of response, reflecting the adequacy 
of RSM. The experimental values (actual values) were compared 
with that of predicted values (Figure 3). On the basis of the 
findings of the present study, appropriate selections of the key 
substrates either in quality or quantity considerably enhanced 
CRMEP (Figure 4).

3.3.1 | CRMEP production

The 3-dimensional plot showed that the highest CRMEP was attained 
at the lowest and highest quantity of starch combined with the highest 
soybean content. On the other hand, the result disclosed the negative 
effect of middle concentration of starch on CRMEP production. To be 
more precise, R. minuta’ CRMEP was stimulated by the highest quan-
tity of soybean powder. The same result was obtained by Moghannem, 
Farag, Shehab, & Azab, 2018 who stated that as carbon and protein 
source gradually climbed up to the highest points, EPS production 
sharply rose.

F I G U R E  2   Effect of various nitrogen resources on CRMEP 
production
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Source
Sum of 
Squares df

Mean 
Square F Value

p-value 
Prob > F

Model 43.09 5 8.62 206.23 <.0001 Significant

A-starch 2.31 1 2.317 55.44 .0017

B-soya 32.64 1 32.64 781.01 <.0001

AB 0.67 1 0.67 16.08 .0160

A2 7.46 1 7.46 178.50 .0002

B2 1.52 1 1.52 36.47 .0038

Residual 0.16 4 0.04

Lack of fit 0.16 3 0.05 10.81 .2191 not Significant

Pure error 0.005 1 0.005

Core total 43.26 9

TA B L E  1   ANOVA for Response 
Surface Quadratic. Model Analysis of 
variance table
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3.3.2 | Validation of the optimized 
culture conditions

Under the optimum conditions, the predicted CRMEP content reached 
the highest point (13.35 g/L). To validate the suitability of the model 
equation, predicted optimal condition was run. Under the actual ex-
perimental condition, the CRMEP level was 13.82 ± 0.2 g/L, which 
was slightly higher than the predicted maximum value (13.22 g/L).

3.4 | Purification of CRMEP and 
production of RMEP

CRMEP was further purified using an anion-exchange column of 
DEAE-cellulose A52. The main fraction (RMEP) was collected and 
lyophilized for next analyses. RMEP, which turned a white powder, 
showed a negative response to the Bradford method and had no 

TA B L E  2   Results of FCCCD using two variables indicating 
observed and predicted results

Run Starch (g/L) Soybean (g/L)

CRMEP (g/L media)

Observed Predict

1 0 (12.5) 0 (22.5) 9.4 9.35

2 0 (12.5) −1.4 (11.89) 7.80 7.64

3 0 (12.5) 0 (22.5) 9.3 9.35

4 1 (15) −1 (15) 9.90 10.13

5 1.41 (16.4) 0 (22.5) 12.90 12.66

6 −1 (10) 1 (30) 13.14 13.09

7 −1.41 (8.96) 0 (22.5) 11.10 11.14

8 1 (15) 1 (30) 13.2 13.35

9 0 (12.5) 1.41 (33.11) 13.40 13.62

10 −1 (10) −1 (15) 8.20 8.23

F I G U R E  3   The curve of predicted 
values against actual values of the 
response

F I G U R E  4   Response surface curve for 
CRMEP production by Rhodotorula minuta 
ATCC 10658 as a function of soybean and 
starch.
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absorption at 280 and 260 nm in the UV spectrum, indicating the 
absence of protein and nucleic acid.

3.5 | Methylation analysis of RMEP

Methylation analysis by GC–MS was employed to determine the types 
and proportions of glycosidic linkages of monosaccharide residues in 
RMEP. As summarized in Table 3, RMEP showed the presence of four 
components, namely 2,4,6-Me3-Man, 2,3,6-Me3-Man, 2,4-Me2-Man, 
and 2,3,4,6-Me4-Glc in molar ratios of 3.35:3.07:1.30:1.36 (about 
3:3:1:1). This result revealed that Man and Glc accounted for about 85% 
and 15% of the total methylated residues, respectively. It was also re-
vealed that some mannopyranosyl residues (around 17%) were branched 
and the molar number of 1,3,6-linked Manp was approximately equal to 
the number of the 1-linked Glcp, which implied all sugar residues ap-
peared to have been completely methylated and the RMEP branches 
terminated with glucose residues. Moreover, the methoxyl groups were 
not observed at the C-5 position, indicated that all the sugar residues ex-
isted in the pyranose ring forms. On the basis of the aforementioned re-
sults, it can be concluded that RMEP had a backbone chain of 1,3-linked 
and 1,4-linked Manp residues with side chains of terminal Glcp residues 
substituted in O-6 position of some 1,3-linked Manp.

Our results were in accordance with that of Ramirez (2016), who 
reported that EPS, produced by Rhodotorula minuta BIOTECH 2,178, 
composed of mannose and glucose (Ramirez, 2016). The author gave 
no more information about molar ratios of the monosaccharides. 
Seveiri et al. (2019) studied monosaccharide composition of exo-
polysaccharides from Rhodotorula minuta IBRC-M 30,135 (Seveiri 
et al., 2019). Their results showed the presence of glucose, mannose, 
and rhamnose in a molar ratio of about 3.8:3.0:1.0. The authors did 
not use progressive purification steps such as the ion-exchange col-
umn chromatography used in this study.

4  | CONCLUSION

In this study, one factor at a time was used to identify the key sub-
strates with a great impact on exopolysaccharide production, named 
CRMEP. The highest content of CRMEP in starch media indicated 
that this substrate could be assimilated by R. minuta ATCC 10658. 
The highest content of protein level stimulated CRMEP produc-
tion. CRMEP was chromatographed on a column of DEAE-cellulose 

A52 for further purification and yielded RMEP. GC–MS results indi-
cated that RMEP consisted of mannose and glucose at a molar ratio 
of about 1.4:7.7. Structural study revealed that RMEP possessed a 
backbone of → 3)-Manp-(1 → and →4)-Manp-(1 → residues, with 
branches attached to O-6 of → 3)-Manp-(1→ (~17%) by Glcp-(1→.
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