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SUMMARY

Regeneration and homeostasis in the adult intestinal
epithelium is driven by proliferative resident stem
cells, whose functional properties during organismal
development are largely unknown. Here, we show
that human and mouse fetal intestine contains pro-
liferative, immature progenitors, which can be
expanded in vitro as Fetal Enterospheres (FEnS). A
highly similar progenitor population can be estab-
lished during intestinal differentiation of human
induced pluripotent stem cells. Established cultures
of mouse fetal intestinal progenitors express lower
levels of Lgr5 than mature progenitors and propa-
gate in the presence of the Wnt antagonist Dkk1,
and new cultures can be induced to form mature in-
testinal organoids by exposure to Wnt3a. Following
transplantation in a colonic injury model, FEnS
contribute to regeneration of colonic epithelium by
forming epithelial crypt-like structures expressing
region-specific differentiation markers. This work
provides insight into mechanisms underlying devel-
opment of the mammalian intestine and points to
future opportunities for patient-specific regeneration
of the digestive tract.

INTRODUCTION

Fertilization of the oocyte initiates a series of events that,

following gastrulation, leads to organ formation in the developing

fetus. During this process, pluripotent stem cells progressively

lose potential as the early embryo is patterned along its axes

and organ structures are specified. Tissue-specific programs

subsequently direct the formation and maturation of adult or-
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gans, which are maintained throughout life by stem cells with

tissue-restricted lineage potential. It remains unclear whether

transitory stem cell states exist in the embryo, responsible for

tissue maturation, or whether maturation is achieved via adult

tissue-specific stem cells in the fetal tissue. Understanding the

process of tissue maturation in vivo has implications for the

directed differentiation of pluripotent cells into functionally

mature tissue types (Zorn and Wells, 2009).

The intestinal epithelium is continuously replenished by resi-

dent stem cells. The mature mammalian small intestine is a

tube-like structure with an inner epithelial lining facing the lumen.

This layer is organized into differentiated villi protruding into the

lumen and proliferative crypt compartments invaginated into the

underlying mesenchyme. Intestinal Stem Cells (ISCs) reside at

the crypt base and give rise to all the differentiated cell types

(Barker et al., 2007, 2012). Development of the small intestine

follows a specific pattern. Villus formation in humans begins

around the ninth week of gestation and embryonic day 15

(E15) in mouse. In the human, crypt formation occurs before

birth, whereas in the mouse this happens during the first 2

postnatal weeks (Montgomery et al., 1999; Spence et al.,

2011a). Beyond these morphological rearrangements, the

mechanisms of initial intestinal lineage differentiation and func-

tional maturation are less well characterized. Despite temporal

differences in the ontogeny of the small intestine between human

and mouse, the overall process of development is identical,

making the mouse an accessible model to interrogate the pro-

cess of human intestinal maturation.

Our understanding of the mature intestine has been acceler-

ated by the establishment of culture conditions for long-term

maintenance of adult mouse and human intestinal epithelium

in vitro (Jung et al., 2011; Sato et al., 2009, 2011a). In this system,

single ISCs or dissociated crypt fragments are embedded in

Matrigel where they exhibit self-organization into ‘‘mini-guts.’’

Here we describe the identification of proliferative progenitors

captured in the human fetal intestine and during intestinal differ-

entiation of human induced pluripotent stem cells (hiPSCs). This
rs

mailto:kim.jensen@bric.ku.dk
http://dx.doi.org/10.1016/j.stem.2013.09.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stem.2013.09.015&domain=pdf
http://creativecommons.org/licenses/by/3.0/


Figure 1. Derivation of Immature Intestinal

Progenitors from Human Fetal and Pluripo-

tent Cells

(A) Whole mount of human gestational week 10

small intestine.

(B) Higher magnification of villi (arrow) and inter-

villus regions (arrowhead) in (A).

(C–E) Immunohistochemistry analysis for Ki67 (C),

PAS staining (D), and Lysozyme (E) in week 10

human small intestine.

(F and G) Spheroid cultures from week 10 human

small intestinal epithelium, grown with (G) and

without (F) prostaglandin E2 (PGE2) (2.5 mM).

(H and I) Intestinal tissue derived from directed

differentiation of human induced pluripotent stem

cells (hiPSCs), cultured with (I) and without (H)

PGE2.

(J) Relative expression levels of intestinal lineage

markers in material from undifferentiated human

induced pluripotent stem cells (hiPSC), iPSC-

derived intestine (Int. diff.), human primary fetal

enterospheres (hFEnS), human adult organoids

(hOrgs), primary fetal human small intestine (FhSI),

and primary adult human small intestine (AhSI).

Red and green colors reflect increased and

decreased deviation from the mean, respectively.

(K) Detection of VILLIN (green) and CHGA (red) in

hiPSC-FEnS.

The scale bars represent 2mm in (A) and 100 mm in

(C)–(E) and (K). See also Figure S1 and Table S1.
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is recapitulated in murine tissues, where fetal progenitors can

transition spontaneously and by Wnt induction into an adult

state. Finally, we present evidence that fetal progenitors can

contribute to the regeneration of adult colonic epithelium in vivo,

as proof of principle that developmentally immature cells have

clinical potential.

RESULTS

Fetal Human Intestinal Epithelium Can Be Propagated
Long-Term In Vitro as Fetal Enterospheres
Previous studies have described the establishment of organoid

cultures from mature human gut epithelium (Jung et al., 2011;

Sato et al., 2011a). To investigate the in vitro potential of imma-

ture gut epithelium, we analyzed human fetal intestinal tissue

around gestational week 10. At this stage, crypts have not

formed and the human intestine consists of a series of undulating
Cell Stem Cell 13, 734–744,
villi, with proliferation localized primarily

to the intervillus regions (Figures 1A–

1C). Here a subset of cells is weakly pos-

itive for Periodic Acid Schiff’s (PAS),

though they do not have the mature

morphology of goblet cells and there are

no detectable Lysozyme+ve Paneth cells

(Figures 1D and 1E). The reduced level

of secretory differentiation was confirmed

at the transcriptional level (Figure 1J).

Fetal human intestinal tissue at around

gestational week 10 was dissected and

dissociated epithelial fragments were
seeded in Matrigel. The conditions used for propagation of adult

murine organoids (EGF, Noggin, and R-spondin1 [ENR]) caused

the growth of small granular spheres that could not be main-

tained long-term without the addition of prostaglandin-E2

(PGE2) (Figures 1F and 1G). We term these human Fetal Entero-

spheres (hFEnS). hFEnS are highly proliferative and can be

passaged repeatedly by mechanical dissociation for over

2 months with no spontaneous transition into budding organoids

during this time.

Intestinal Tissue from Human Pluripotent Cells Has
Fetal Characteristics
Human induced pluripotent stem cells (hiPSCs) can be differen-

tiated into intestinal epithelium (Spence et al., 2011b). We set out

to determine whether hiPSC-derived intestinal tissue transitions

through a fetal state. Using a chemically defined protocol, PSCs

were directed toward definitive endoderm (DE) and further
December 5, 2013 ª2013 The Authors 735
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patterned into posterior DE (Hannan et al., 2013). Raised aggre-

gates of cells forming from the sheet of posteriorized endoderm

were transferred as small clumps to Matrigel (Figure S1A avail-

able online). Again PGE2 facilitated the formation of larger cystic

epithelial spheroids, morphologically analogous to primary

hFEnS (Figures 1H and 1I). These structures were maintained

for over 2 months, through repeated passaging. In both cases

PGE2 provides a pro-proliferative signal that drives the growth

of spherical structures. hiPSC-FEnS also require low levels of

Wnt3a to support growth, suggesting that although morpholog-

ically alike, they possess slightly different properties. Expression

analysis verifies the immature nature of human FEnS and hiPSC-

FEnS when compared to human adult organoids as well as fetal

and adult intestine (Figures 1J and S1B). iPSC-derived FEnS had

Villin present at the apical cell membrane in the spherical struc-

ture, and its immature nature is further supported by the lack of

secretory Chromogranin-A+ve cells (Figure 1K).

Establishment of FEnS from Immature Mouse Intestine
We reasoned that development of the mouse intestine would

provide an accessible model system to interrogate intestinal

maturation more closely. The mouse intestine at embryonic

day 16 (E16) resembles the human intestine at around 10 gesta-

tional weeks with high proliferation in the intervillus regions and

scattered immature goblet cells (Figures 2A, S2A, S2B, S2E,

and S2F). By postnatal week 2, mature crypts are forming (Fig-

ures 2B, S2C, and S2D) and mature Lysozyme+ve Paneth cells

can now be detected in the proliferative zones (Figures S2G

and S2H). The appearance of secretory cells is also evident by

expression analysis during the course of intestinal development

(Figure 2C).

To investigate whether fetal murine intestine contains equiva-

lent FEnS progenitors, we seeded epithelial cells from the prox-

imal half of the small intestine. During a developmental time

course, we observed that FEnS form exclusively up to P2,

whereas organoids are formed from P15 and onward (Figures

2D–2I). Interestingly, analysis of material from P2 to P15 illus-

trates the formation of both FEnS and organoids with an

increasing fraction of the latter (Figures 2G�2I). Murine FEnS

(mFEnS) are morphologically indistinguishable from hFEnS and

can be expanded through fortnightly passaging for at least 2

years (Passage n z 100). During their serial passaging we

observe no spontaneous maturation or morphological and

karyotypic alterations (Figure 2J). Although PGE2 is not required

for maintenance of mFEnS, it does provide a pro-proliferative

effect independent of Wnt signaling (Figure S2I). As has been

reported for the adult colonic cultures, this is most likely via

cAMP-mediated block of anoikis and stimulation of MAP kinase

signaling (Jung et al., 2011). Established mFEnS can grow

without R-spondin1 and in the presence of the natural Wnt

antagonist DKK1, Porcupine inhibitor (which inhibits Wnt secre-

tion), and tankyrase inhibitor (which stabilizes the Axin2/APC

complex responsible for degradation of b-catenin), hereby

demonstrating that FEnS can be maintained independently of

Wnt signaling (Figures S2J and S2K). This distinguishes them

from adult organoids.

Characterization of mFEnS revealed that they consist of a

polarized epithelium with Villin localized to the apical surface,

similar to the small intestine (Figures 2K and 2L). Moreover,
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FEnS phenocopy the differentiation patterns of the immature

epithelium as there are no detectable secretory cell markers at

both the protein and RNA level and reduced expression of adult

stem cell markers (Figures 2M–2P and S3A). BrdU incorporation

analysis showed that proliferative cells in mFEnS are scattered

across the whole surface, whereas proliferative zones in organo-

ids are restricted to the crypt domains (Figures 2Q and 2R). The

overall morphology and growth of FEnS as spheres are reminis-

cent of that reported for organoids that form as a result of

augmented Wnt signaling following loss of APC (Sato et al.,

2011b). However, expression analysis demonstrates distinct

expression patterns between FEnS and APCnull organoids (Fig-

ure S3B). In particular, it is clear that loss of APC causes

increased levels of adult stem cell markers, whereas these are

generally reduced in the fetal state (Figure S3B). In summary,

this demonstrates that progenitors within the fetal small intestine

have a unique behavior that sets them aside from both normal

and cancerous adult stem cells.

In Vitro Maturation of Fetal Enteric Progenitors
Intestinal maturation in vivo has been proposed to follow a wave

from proximal to distal sites (Spence et al., 2011a). To assess the

positional effect along the length of the small intestine, we

analyzed the regional differences in in vitro growth potential at

postnatal day 2 (Figure 3A). Contrary to expectations, FEnS

formed fromproximal tissue, whereasmore distal tissues formed

organoids (Figures 3A and 3B). Gene expression analysis

showed that the ability to form organoids correlates with

increased levels of Lgr5 and Axin2 (Figure 3C). Analysis of the

cultured material from the proximal and mid regions of the small

intestine shows variable but comparable expression of Wnt

target genes, suggesting that FEnS can respond to Wnt stimula-

tion and that this represents a transitory and dynamic cellular

state (Figure 3D). In line with the observed adult stem cell

behavior, the distal part of the small intestine expresses higher

levels of secretory lineage markers, which are characteristic of

the adult small intestine, and contains a greater number of

Ulex europaeus agglutinin I (UEA-I) reactive secretory cells (Fig-

ures 3C, 3E–3E00, and 3F). This further supports a distal to prox-

imal wave of tissue maturation.

In the mature intestine, Lgr5 marks ISCs, and single sorted

Lgr5+ve cells give rise to adult organoids (Barker et al., 2007;

Sato et al., 2009). In the immature intestine Lgr5 is expressed

by cells in the intervillus regions (Figure 4A). We hypothesized

that Lgr5 expression defines progenitors permissive for transi-

tioning into the adult state. In line with this, Lgr5-EGFP+ve cells

sorted from neonatal intestinal epithelium form organoids

in vitro, whereas FEnS are formed from cells in the Lgr5-EGFP�ve

population (Figures 4B–4E). It is impossible to assess whether

organoids form exclusively from Lgr5+ve cells, as a large propor-

tion of Lgr5-expressing cells in the Lgr5 knockin model are

EGFP�ve due to the mosaic nature of the mouse model.

To assess the relationship between organoids and FEnS,

we analyzed samples from P2. Approximately one-half of the

structures grow in a manner indistinguishable from fetal tissues

(Figure S4A, Movie S1), whereas the rest followed a distinct

pattern indicative of spontaneous differentiation (Figure S4B,

Movie S2). All structures grow exponentially for around 7 days.

At this point some structures collapse and start to form budding
rs



Figure 2. Establishment of mFEnS from Immature Mouse Intestine

(A and B) Immunohistochemistry analysis for Phospho-Histone-H3 (pHist) on sections of small intestine from E16 mice (A) and P15 mice (B).

(C) Relative expression levels of intestinal lineage markers in tissue isolated from proximal murine intestine at increasing developmental age from E16 to adult.

Red and green colors reflect increased and decreased deviation from the mean, respectively.

(D–H) Representative images of in vitro structures derived from E14 to P15. The arrow and arrowhead in (G) indicate an FEnS and an organoid, respectively.

(I) Relative proportions of FEnS and organoids present after 2 weeks from E16, P2, and P15 tissues.

(J) Metaphase spread of a cell at day 180 shows a normal karyotype (n = 15).

(K and L) Detection of apical villin expression (green) in adult small intestine (K) and mFEnS (L).

(M–P) Lysozyme expression in adult small intestine (M), cross sections of mFEnS (N), and whole-mount organoids and mFEnS (O and P).

(Q and R) BrdU incorporation analysis in whole mounts of organoids and FEnS (green). b-catenin (red) is used as a counterstain.

The scale bars represent 100 mm. E, embryonic day; P, postnatal day; adult, >3 weeks postnatal. See also Figures S2 and S3.
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protrusions from the surface (Figure S4B). After passaging, these

P2 organoids become R-spondin1 dependent and identical to

structures obtained from more mature intestinal tissue (Fig-

ure S4C, Movie S3).

Since Lgr5 and Axin2 are bothWnt target genes, and given the

dynamic regional expression correlating with organoid formation

(Figure 3C), we investigated whetherWnt3a can induce intestinal

maturation in vitro. Stimulation of cells from E16 proximal intes-

tine, which normally only form FEnS, promoted the transition into

budding organoids in a proportion of the forming structures (Fig-

ure S4D). This effect is enhanced upon passaging and the form-
Cell
ing organoids can subsequently be maintained without exoge-

nous Wnt in an R-spondin1-dependent manner (Figure S4Dix).

Continued culture of organoids with high levels of exogenous

Wnt3a produced the cystic morphology previously described

for Wnt overactivity in adult cultures (Sato et al., 2011b; Figures

S4Dviii). In contrast, FEnS could not be induced to transit

to an adult state with Wnt3a (Figures S4Dvi and S4Dvii). The

observed Wnt-stimulated maturation of FEnS to organoids is

associated with the expected upregulation of secretory lineage

markers (Figure S4E). It is clear that FEnS respond to Wnt stim-

ulation, as Lgr5 and Axin2 expression is elevated compared to
Stem Cell 13, 734–744, December 5, 2013 ª2013 The Authors 737



Figure 3. Adult Stem Cell Behavior Follows a Caudal to Rostral Pattern

(A) Schematic diagram of the Proximal, Mid, and Distal parts of the small intestine and the representative images of cultures derived at P2.

(B) Relative proportion of FEnS and organoids in the different sections of the small intestine.

(C) Expression analysis in material isolated from Proximal, Mid, and Distal regions. Data represent the mean, and the error bars, the SEM (n = 3). Data are ex-

pressed relative to Proximal, on a Log2 scale.

(D) Expression analysis of cultures from proximal and mid intestine enriched for FEnS and organoids, respectively. Data represent the mean, and the error bars,

the SEM (n = 3), and are normalized to proximal cultures.

(E) Detection of cells of the secretory lineage based on binding of Ulex europaeus agglutinin I (UEA-I) in the proximal, mid, and distal small intestine.

(F) Quantification of UEA-I+ve cells. Data represent the mean, and the error bars, the SEM (n = 3).

The scale bars represent 100 mm.
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established cultures and also newly transitory organoids (Fig-

ure S4E); however, the signal is insufficient to induce maturation.

In order to further probe the functional significance of Wnt in

the transition from a fetal to an adult phenotype, epithelial cells

were isolated from P2 proximal small intestine. Because a

proportion of FEnS at this stage naturally transition to the adult

organoids, it is possible to investigate the importance of Wnt

signaling in the establishment of both organoids and FEnS, as

well as the transition between the two states. Epithelial cells

were isolated from the Lgr5-reporter model in order to visualize
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Lgr5 expression. Whenever we observe high Lgr5-EGFP expres-

sion, this is in association with structures that are beginning to

transition into the adult state. In medium supplemented with

ENR, EGFP+ve cells can be found either in mature crypt domains

(Figures 4F and 4F0) or in regionswith columnarmorphology (Fig-

ures 4G and 4G0), whereas FEnS structures are seemingly

EGFP�ve or dim (Figures 4H and 4H0). The addition of Wnt in-

creases the number of formed organoids (Figure 4N) and the re-

gions of Lgr5 expression in the developing structures. This varies

from single positive buds to extensive regions of Lgr5-EGFP+ve
rs



Figure 4. In Vitro Maturation of Fetal Enteric Progenitors Is Associated with Lgr5 Expression and Wnt Signaling

(A) Detection of Lgr5-EGFP at P2 from Lgr5-EGFP-ires-CreERT2 mice.

(B) Isolation of Lgr5-EGFP+ve and Lgr5-EGFP�ve epithelial cells from P2 small intestine by flow cytometry.

(C) Quantification of proportion of FEnS and organoids formed in vitro from Lgr5-EGFP�ve and Lgr5-EGFP+ve neonatal intestinal epithelial cells.

(D and E) Representative images of structures formed in vitro from Lgr5-EGFP�ve and Lgr5-EGFP+ve neonatal intestinal epithelial cells.

(F–M) Representative images of FEnS and organoids derived from Lgr5-EGFP-ires-CreERT2 mice and cultured in the presence of EGF, Noggin, and R-spondin1

(ENR), ENR and the porcupine inhibitor IWP2 (ENR/IWP2), ENR andWnt3a (WENR), orWENR in the presence of the tankyrase inhibitor IWR (WENR/IWR). (F0)–(M0)
show grayscale images of EGFP in the derived structures.

(N) Quantification of proportion of FEnS and organoids formed in the different treatment groups (ENR: 18/8; ENR/IWP2: 26/0;WENR: 21/30;WENR/IWR: 33/0). Two-

tailedFisher’s exact test showssignificantdifferencebetweenENRandENR/IWP2 (p=0.0042),ENRandWENR (p=0.0297), andWENRandWENR/IWR (p<0.0001).

(O) Expression analysis of the different treatment groups normalized to the ENR condition. Data represent the mean (n = 2).

(P and Q) Detection of b-catenin (green) in organoids and FEnS. Arrows indicate cells with nuclear localization of b-catenin suggestive of active signaling. P‘-Q’

show b-catenin expression in grayscale.

(legend continued on next page)
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cells (Figures 4J–4L0). The transition and Lgr5 expression is

blocked by the addition of porcupine inhibitor to ENR-supple-

mented cultures (Figures 4I, 4I0, and 4N) and by the addition of

the tankyrase inhibitor IWR-1 to cells cultured in the presence

of ENR andWnt (Figures 4M, 4M0, and 4N). Importantly, these in-

hibitors do not preclude the formation of FEnS. Thematuration is

reflected at theRNA level,whereWnt inducesa robust increase in

the Paneth cell marker Lysozyme. However, it is also clear that

FEnS in early cultures express endogenousWnt3a, which drives

bothAxin2 andLgr5 expressionwithin the fetal population of cells

(Figure 4O). In linewith the elevated expression ofAxin2 andLgr5,

b-catenin can be observed in the nucleus of cells in FEnS as

well as in the formed organoids (Figures 4P, 4P0, 4Q and 4Q0).
In vivo tissue maturation correlates with the emergence of

secretory Paneth cells, which have been identified as the major

source of epithelial Wnt secretion in the intestinal epithelium

(Sato et al., 2011b; Farin et al., 2012). Although mature

Lysozyme+ve Paneth cells cannot be observed until postnatal

week 2 (Figure S2E–S2H), these are preceded by immature

secretory cells, which can be detected based on Cryptdin6

expression (Wong et al., 2012). Assessment of tissues from P2

and P15 demonstrates that Cryptdin6-expressing cells can be

detected as early as P2 (Figures 4R and 4S). This correlates

with the appearance of cells that are weakly positive for the

stem cell marker Olfm4 as well as Wnt3a within the bottom of

the intervillus regions (Figures 4T–4W). This provides an epithe-

lial source of Wnt3a that can drive tissue maturation.

In summary, this demonstrates that exogenous Wnt induces

elevated focal Lgr5 upregulation in the fetal state and that matu-

ration proceeds from these Lgr5 expression domains. Expres-

sion of Wnt3a can be detected in proliferative intervillus regions

as the tissue proceeds into its adult state, suggesting that Wnt

induction in vivo correlates with tissue maturation.

Regeneration of Adult Colonic Epithelium from mFEnS
To assess the differentiation potential of immature intestinal pro-

genitors and whether they represent a transplantable source,

EGFP+ve established mFEnS were injected under the renal

capsule of mice (n = 8). In all cases at analysis, EGFP FEnS cells

had either not proliferated or were not detectable. To test a more

physiologically relevant approach, we transplanted EGFP FEnS

into a chemically induced colonic injury model, where the repair

process is associated with endogenous activation of Wnt

signaling (Figure 5A; Yui et al., 2012; Koch et al., 2011). Within

3 hr after the first transplantation, FEnS-derived cells attached

to ulcerated regions in the distal colon and were subsequently

maintained long-term (Figures 5B and S5A–S5H). Initially, cells

engrafted as a single-layered epithelium on top of the denuded

lamina propria (Figures S5I and S5J). Three days following trans-

plantation, grafted regions migrated downward into the underly-

ing mesenchyme. Here they formed epithelial ‘‘pockets’’ with a

central lumen and Ki67+ve cells distributed along the length (Fig-

ures 5C, S5K, and S5L). One week after the second transplanta-

tion, engrafted cells formed epithelial crypt-like structures.
(R–W) In situ hybridization for Cryptdin6, Olfm4, and Wnt3a in tissue from P2 an

respectively.

The scale bars represent 50 mm (F, J, K–L, P–Q, and V–W) or 100 mm (A, D–E, G–I, M

also Figure S4 and Movie S1, Movie S2, and Movie S3.
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These fetal-derived cells, although refractory to maturation

in vitro, adapt to the colonic tissues, with subsets of cells differ-

entiating appropriately into Mucin-2+ve and PAS+ve goblet cells

and starting to express carbonic anhydrase-II, a specific marker

of colonic tissue. None of this was detected in FEnS (Figures 5C,

S5L, S5N, and S5P–S5R). Importantly, the grafted material did

not express markers normally associated with the small intestine

such as Lysozyme and alkaline-phosphatase (Figures S5S–S5T).

Fetal-derived colonic crypts persisted at 1.5 months after trans-

plantation, with continued evidence for proper differentiation and

proliferation (Figures 5C, S5O, and S5P). Thus, immature enteric

progenitors represent a transplantable source of cells with the

capacity to differentiate in vivo.

DISCUSSION

In this study, we reveal the existence of a transitory population of

progenitors present during the intestinal growth phase in both

human and murine tissues. Moreover, a population of cells

with similar characteristics can be obtained from pluripotent

stem cells. This population is characterized by distinct prolifera-

tive and differentiation potential and reduced in vitro growth

factor requirements compared to progenitors in the adult intesti-

nal epithelium. Transition of fetal enteric progenitors into an adult

state can be induced in vitro via stimulation with high levels of

Wnt or alternatively by transplantation in vivo into an injury

model. These cells are a valuable asset for understanding tissue

maturation and an attractive source of transplantable progeni-

tors for regenerative therapies.

Studies of human organ development are complicated by the

availability of material. We provide evidence that mouse and

human fetal intestine contain an immature population of epithe-

lial progenitors and that similar immature cells can be obtained

from hPSCs. Here the immature progenitors represent a transi-

tory population of cells. Interestingly, many differentiation proto-

cols from PSCs result in cells with a stable immature phenotype

(Meyer et al., 2009; Nicholas et al., 2013). Based on our results

this is not necessarily a tissue culture artifact but rather a result

of the in vitro stabilization of an otherwise transitory state in vivo.

It is however clear that it is not straightforward to extrapolate

growth factor requirements from mouse to human cells as has

been reported for their adult counterparts (Jung et al., 2011;

Sato et al., 2009, 2011a).

Intestinal maturation has been proposed to follow a rostral-to-

caudal (proximal-to-distal) wave (Spence et al., 2011a). We

observe that FEnS form from the proximal region and organoids

from the distal region, indicating that maturation in actual fact

proceeds in the opposite direction. This is correlated with the

expression pattern of markers of the mature secretory lineage

and correlates with the observation that Lgr5 expression is asso-

ciated with progenitors in a transitory competent state. These

spatial and temporal observations are in agreement with previ-

ous work showing that Lgr5 gene expression is higher in the

ileum than in the duodenum at E18.5 (Garcia et al., 2009). It
d P15. Arrows in (S) and (U) indicate regions of Olfm4 and Wnt3A expression,

, and R–U). Cells are counterstainedwith DAPI (blue) in (A), (O), (P) and (Q). See

rs



(legend on next page)
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does remain a possibility that the culture conditions thatmaintain

adult stem cells in vitro are optimal for the distal intestine at this

developmental time point rather than a reflection of tissue

maturation.

The spatial differences in expression of the Wnt target genes

Lgr5 and Axin2 (Barker et al., 2007; Lustig et al., 2002) prompted

the investigation ofWnt signaling in the developmental transition.

The differing requirements between the mature and immature

states imply that Wnt signaling has a context-dependent role in

development and tissue homeostasis or alternatively that ligands

are dynamically regulated. There are several potential Wnt

ligands in the intestine, where Wnt3a has been shown to play

an autonomous role in epithelial stem cell maintenance (Sato

et al., 2011b; Farin et al., 2012). In line with this, we observe

that the expression of Wnt3A is correlated with the appearance

of adult stem cell markers as well as adult stem cell behavior in

the developing epithelium. Interestingly, this pattern of expres-

sion coincides with the phenotype of the knockout of the major

b-catenin effector, Tcf4, which die shortly after birth with intesti-

nal hypoplasia (Korinek et al., 1998).

In vitro Wnt stimulation and spontaneous maturation can be

blocked by Wnt inhibition. Here, Wnt causes a prominent focal

upregulation of Lgr5 expression in the developing structures.

This is associated with the transition from a thin epithelium to

domains with columnar morphology reminiscent of the cellular

architecture in the small intestine. After the emergence of Paneth

cells, these structures become independent of exogenous Wnt

similar to adult intestinal stem cells. We hypothesize that Lgr5

in this context facilitates the transition by enhancing focal Wnt

stimulation via the Wnt agonist R-spondin1 (de Lau et al.,

2011). This will also explain why established FEnS are resilient

to Wnt stimulation in vitro—they express significantly reduced

levels of Lgr5. Although Wnt signaling mediates the transitioning

of murine FEnS, it might be more complicated for hFEnS, where

a low level of Wnt stimulation is required for their normal

maintenance.

The gold standard for testing the true differentiation potential

of progenitor cells is in vivo transplantation (Lin et al., 2013).

We have previously demonstrated that adult colonic organoids

can engraft into an injury model (Yui et al., 2012). An initial

concern was that due to the striking morphological and growth

similarities between FEnS and APC null adult organoids (Sato

et al., 2011b), transplantation of FEnS in vivo would lead to tumor

formation. However, FEnS cells were shown to attach to

denuded regions of colonic epithelium and subsequently be

incorporated into the colonic epithelium. Furthermore, since

FEnS were unable to survive under the kidney capsule, this sug-

gests that orthotopic transplantation is a more useful readout of

in vivo potential. Our transplantation experiments unequivocally

demonstrate that established FEnS can mature in vivo and

contribute to regeneration of damaged gut epithelium in adult
Figure 5. Regeneration of Adult Colonic Epithelium from mFEnS

(A) Experimental protocol: gastrointestinal tract dissected from E16 EGFP transge

before mechanical dissociation and intracolonic transplantation into Rag2�/� ad

(B) Recipient colon at 1 week and 1.5 months posttransplantation. Lower panel

(C) Immunohistological analysis of EGFP+ve fetal-derived engraftments for Ki67 (K

1 week, and 1.5 months after transplantation.

The scale bars represent 1 mm (whole colons) and 200 mm (magnified areas) in (
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hosts. Moreover, it is striking that these fetal derivatives from

the small intestine rapidly respond to the new microenvironment

and differentiate appropriately to the regional requirements. This

might reflect their immature behavior although we cannot

exclude the possibility that adult organoids will behave similarly.

In summary, we have identified a population of expandable

fetal enteric progenitors from mouse and human that can be

used as a transplantable source. This work has important impli-

cations for understanding the mechanisms underlying intestinal

maturation and demonstrates that immature intestinal progeni-

tors, including fetal-like material derived from human pluripotent

stem cells, have the potential to be used in colonic regenerative

medicine. It will be interesting to see if similar populations of

immature progenitors exist in other endodermal organs.

EXPERIMENTAL PROCEDURES

Mice

Rag2�/� mice were from Taconic Farms and Central Laboratories for Experi-

mental Animals. EGFP transgenic mice and Lgr5-EGFP-ires-CreERT2 mice

are described elsewhere (Barker et al., 2007; Okabe et al., 1997). Experimental

animals were obtained by crossing these with C57BL/6 male or female ani-

mals. All animal experiments in Cambridge were performed under the terms

of a UKHomeOffice License and transplantation experiments were performed

with the approval of the Institutional Animal Care and Use committee of TMDU.

Transplantation

Transplantation was performed as described on days 7 and 10 following initi-

ation of dextran sulfate sodium-induced colonic injury (Yui et al., 2012). Donor

FEnS were released from the Matrigel and mechanically dissociated into small

sheets of epithelial tissue. Cell fragments from 500–1,000 FEnS were resus-

pended in 200 ml of Matrigel in PBS (1:20), which was instilled into the colonic

lumen using a syringe and a thin flexible catheter. Animals were subsequently

sacrificed at indicated time points.

In Vitro Cultures

Organoids

Primary crypts from proximal adult small intestine were cultured as previously

described with reduced concentration of murine recombinant R-spondin1

(500 ng/ml, R&D Systems; Sato et al., 2009).

FEnS

Fetal small intestines were opened longitudinally and cut into small pieces

prior to dissociation with 2 mM EDTA. Isolated epithelial units were embedded

in Matrigel and maintained in conditions identical to those used for adult orga-

noids. In certain experiments Wnt3a and R-spondin1 from conditioned media

were collected from HEK293 cell lines expressing recombinant Wnt3a and

R-spondin1 (kindly provided by Hans Clevers and Calvin Kuo, respectively).

Relative Wnt/R-spondin1 activity was measured using a TOPflash assay

with a Dual-Luciferase Reporter Assay System (Millipore).

Human Tissue

First-trimester human fetal material was obtained from the John van Geest

Centre for Brain Repair, University of Cambridge, and used with informed con-

sent under an Approved Protocol of Human Tissue Studies. Fetuses were

staged by Crown Rump Length. Fetal intestines were processed for in vitro

epithelial culture, paraffin sections, or RNA extraction, using procedures
nic mouse fetus (top left). Proximal small intestine was cultured in vitro as FEnS

ult recipients with Dextran Sulfate Sodium (DSS)-induced ulcerative colitis.

shows EGFP+ve areas in host colon.

i67+ve cells marked by arrowheads), carbonic anhydrase II, and PAS, 3 days,

B) and 100 mm in (C). See also Figure S5.
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identical to those described for murine material, with the addition of PGE2

(2.5 mM, Sigma-Aldrich). Adult human intestinal biopsies were obtained from

the Division of Gastroenterology and Hepatology, Department of Medicine,

University of Cambridge, and were used with local ethical permission, under

informed consent.

Adult primary human organoids were derived from biopsies obtained during

routine colonoscopies from the terminal ileum. A single crypt suspension was

obtained through chelation of the washed biopsies in cold chelation buffer

(distilled water with 5.6 mmol/l Na2HPO4, 8.0 mmol/l KH2PO4, 96.2 mmol/l

NaCl, 1.6 mmol/l KCl, 43.4 mmol/l sucrose, 54.9 mmol/l D-sorbitol,

0.5 mmol/l DL-dithiothreitol) containing 4 mM EDTA for 45 min followed by

release of the crypts in fresh chelation buffer by vigorous shaking. Isolated

crypts were treated like murine and fetal tissues; however, cultures were

additionally supplemented with 1xN2 and 1xB27 (from invitrogen), 2.5 mM

N-acetylcysteine (Sigma), 40%Wnt3a conditioned medium, 10% R-spondin1

conditioned medium, 10 mM nicotinamide, 10 mM SB202190, and 500 nM

A-83-01. Tissue for primary human cultures was obtained at Herlev Hospital

with local ethical permission and under informed consent.

Generation, Culture, and Differentiation of hiPSCs

hiPSCs (BBHX8) were derived using retrovirus-mediated reprogramming of

human skin fibroblasts (Rashid et al., 2010). hiPSCs were cultured in a chem-

ically defined, feeder-free culture system (Brown et al., 2011). Cells were

passaged every 7 days using a mixture of collagenase IV or collagenase and

dispase at a ratio of 1:1. hiPSCs were differentiated as outlined in Figure S1

and Table S1 (Hannan et al., 2013). Briefly, iPSCs were differentiated into DE

using Activin-A, BMP4, and LY294002 for 3 days. DE cells were subsequently

cultured with CHIR99021 for 4 days to generate posterior endoderm. Raised

aggregates of posteriorized endoderm were transferred into growth factor-

reduced Matrigel. The cell-Matrigel mix was overlaid with Advanced DMEM/

F12 supplemented with 2 mM GlutaMax (Invitrogen), 10 mM HEPES, and

100 U/ml Penicillin/100 mg/ml Streptomycin containing B27 supplement,

Y-27632 (10 mM), human Noggin (100 ng/ml), human EGF (100 ng/ml), human

R-spondin1 (1 mg/ml), and human Wnt3a (100 ng/ml).

Imaging and Histology

Live imaging of 3D cultures was performed using a Nikon Biostation IM

system. Structures in Matrigel were observed using phase contrast and DIC

microscopy using an Axiovert 200M microscope (Zeiss) equipped with an

AxioCam MRc (Zeiss).

Tissue preparation, staining, and image analysis were carried out as

described previously using antibodies listed in Table S2 (Wong et al., 2012;

Yui et al., 2012). Images of sections were acquired using a DeltaVision system

(Applied Precision) or a Zeiss Imager M.2, equipped with AxioCam MRm and

MRc cameras.

DIG in situ hybridization was carried out essentially as described before us-

ing IMAGE clones (Gregorieff et al., 2005).

RNA Extraction and qRT-PCR

RNA was isolated from intact intestine as described (Wong et al., 2012). Total

RNA was isolated from cultured cells using the Invitrogen PureLink RNAmicro

kit. cDNA was synthesized from 100 ng total RNA using the Invitrogen

SuperScript III Reverse transcriptase kit, using random primers. Gene-specific

expression assays (Applied Biosystems) or SYBR Green analysis (Invitrogen)

with optimized primer pairs was used for qPCR on an Applied Biosystems

7500HT RealTime PCR System (Applied Biosystems). Values were normalized

to 18S using the DCt method. Z scores were calculated and used to generate

heatmaps in R.

Isolation of Cells for Flow Cytometry

Cells were isolated essentially as described (Wong et al., 2012). A single-cell

suspension was achieved by subsequent incubation using trypsin. Cell sorting

was carried out using a MoFlo (Beckman Coulter). Ten thousand cells were

seeded into 25 ml Matrigel. Data analysis was performed in FlowJo.

Statistical Analysis

Statistical significance of quantitative data was determined by applying a

two-tailed Student’s t test to raw values or to the average values obtained
Cell
from analysis of independent experiments. A two-tailed Fisher’s exact test

was used to analyze the significance of the Wnt and inhibitor culture

experiment.
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