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Plasmon–emitter interactions at the nanoscale
P.A.D. Gonçalves 1,2,3,4*, Thomas Christensen 1*, Nicholas Rivera 1, Antti-Pekka Jauho 3,5,

N. Asger Mortensen 3,4,6* & Marin Soljačić 1

Plasmon–emitter interactions are of central importance in modern nanoplasmonics and are

generally maximal at short emitter–surface separations. However, when the separation falls

below 10–20 nm, the classical theory deteriorates progressively due to its neglect of quantum

effects such as nonlocality, electronic spill-out, and Landau damping. Here we show how this

neglect can be remedied in a unified theoretical treatment of mesoscopic electrodynamics

incorporating Feibelman d-parameters. Our approach incorporates nonclassical resonance

shifts and surface-enabled Landau damping—a nonlocal damping effect—which have a

dramatic impact on the amplitude and spectral distribution of plasmon–emitter interactions.

We consider a broad array of plasmon–emitter interactions ranging from dipolar and mul-

tipolar spontaneous emission enhancement, to plasmon-assisted energy transfer and

enhancement of two-photon transitions. The formalism gives a complete account of both

plasmons and plasmon–emitter interactions at the nanoscale, constituting a simple yet rig-

orous platform to include nonclassical effects in plasmon-enabled nanophotonic phenomena.
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The interaction between light and matter in free-space is an
intrinsically weak process. Strikingly, the interaction
strength can be enormously enhanced near material

interfaces. This is especially true in plasmonics1–6: for an emitter
separated from an interface by a subwavelength distance h, the
decay rate is increased by a factor /� h�3 in the classical, mac-
roscopic theory. However, as the separation—or the characteristic
dimension of the plasmonic system itself—is reduced to the
nanoscale ð≲10 – 20 nmÞ, the classical theory is rendered invalid
due to its neglect of all intrinsic quantum mechanical length
scales in the plasmonic material. Thus, to ascertain the ultimate
limits of plasmon-mediated light–matter interactions, the classi-
cal theory must be augmented.

In principle, time-dependent density functional theory
(TDDFT)7 may be used to describe plasmon excitations in a
quantum mechanical setting. Unfortunately, its application
imparts very substantial demands on the associated compu-
tational cost, effectively restricting applications of TDDFT
in plasmonics to few-atom clusters8–11 or highly symmetric
few-nanometer-scale systems12–15. In fact, the vast majority
of plasmonic designs—particularly those of relevance for
enhancing light–matter interactions, where it is often
the separation and not the system itself that is nanoscopic—
fall outside this space. As such, neither a classical (macro-
scopic) nor a purely quantum mechanical (microscopic)
approach can satisfactorily treat light–matter interactions in
the multiscale yet nanoscopic systems of experimental
relevance.

To overcome this, a mesoscopic treatment of light–matter
interactions in nanoplasmonics can be developed whose
applicability encompasses a wide range of length scales, and, in
particular, bridges the gap between microscopic and macro-
scopic descriptions (Fig. 1). This framework, which is based on
the so-called Feibelman d-parameters16,17, facilitates a simul-
taneous incorporation of electronic spill-out, nonlocality, and

surface-assisted Landau damping—all intrinsically quantum
mechanical mechanisms—through a simple modification of the
macroscopic framework, thereby enabling the calculation of
plasmon-mediated light–matter interactions in the mesoscopic
regime.

Here we report the impact of nonclassical corrections in a
broad range of prominent plasmon-mediated light–matter
interaction phenomena, namely, the Purcell—or, equivalently,
local density of states (LDOS)—enhancement18–21, the
enhancement of dipole-forbidden (i.e., multipolar) transi-
tions22–24, plasmon-mediated energy transfer between two
emitters25–27, and finally the enhancement of two-photon
processes for an emitter near a metal surface28–30. In all cases,
we find substantial deviations from classicality when the
emitter–metal separation or the intrinsic geometric para-
meters, like a sphere’s radius, fall below �10 nm. We identify
two key mechanisms that produce these deviations: (i) surface-
enhanced Landau damping, which broadens the plasmonic
response; and (ii) nonclassical frequency shifts, toward the red
in jellium and blue in noble metals. Intriguingly, these devia-
tions become nonnegligible well-before a completely non-
retarded regime is reached, demonstrating the existence of a
multiscale competition between retardation and nonclassical
corrections even at mesoscopic scales.

Results
Nonclassical optical response. The optical response of any
structure is encoded by a set of scattering coefficients: e.g., for a
planar system, they are the reflection coefficients frTM; rTEg—
whose mesoscopic generalizations Feibelman introduced16—and
for a spherical system, they are the Mie coefficients faTMl ; aTEl g—
whose mesoscopic generalization we introduce here. These coef-
ficients constitute the fundamental building blocks from which
the optical response to all external stimuli—and associated
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Fig. 1 Nonclassical mesoscopic electrodynamics via d-parameters. The nonclassical surface-response functions—the Feibelman d-parameters—rigorously
incorporate quantum mechanical effects in mesoscopic electrodynamics, bridging the gap between the purely quantum (microscopic) and classical
(macroscopic) domains. Inset: d?-parameter of an rs ¼ 4 jellium computed from TDDFT17; the corresponding dk-parameter vanishes (due to charge-
neutrality33).
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nanophotonic phenomena such as plasmonic enhancements of
light–matter interactions—can be inferred.

For concreteness, we take a jellium metal with a Wigner–Seitz
radius of rs ¼ 4 (_ωp � 5:9 eV ; representative of Na31,32)
throughout our calculations: the associated d-parameters are
shown in Fig. 1. The corresponding classical response,
ϵmðωÞ ¼ 1� ω2

p=ðω2 þ iωγÞ, is of the Drude-type and we assume
a damping rate corresponding to _γ ¼ 0:1 eV . Additional results
for the cases of an rs ¼ 2 jellium (representative of Al31,32) and
Ag are given in Supplementary Notes 4 and 5. For a succinct
description of the d-parameter formalism, see Methods (and
Supplementary Note 1).

We first consider the simplest case, that of a planar
dielectric–metal interface onto which a transverse magnetic
(TM) or a transverse electric (TE) polarized plane-wave impinges
from the dielectric side. The mesoscopic, Feibelman-d-parameter-
corrected generalizations of the associated Fresnel reflection
coefficients rTM and rTE are (Supplementary Note 3)16,33,34

rTM ¼ ϵmkz;d � ϵdkz;m þ ðϵm � ϵdÞ
�
iq2d? � ikz;dkz;mdk

�
ϵmkz;d þ ϵdkz;m � ðϵm � ϵdÞ

�
iq2d? þ ikz;dkz;mdk

� ; ð1aÞ

rTE ¼ kz;d � kz;m þ ðϵm � ϵdÞik20dk
kz;d þ kz;m � ðϵm � ϵdÞik20dk

; ð1bÞ

with in-plane, free-space, and bulk wavevectors q, k0 � ω=c,

kj � ffiffiffiffiϵjp k0, respectively, and where kz;j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2j � q2

q
(for

j 2 fd;mg). Here, ϵd � ϵdðωÞ and ϵm � ϵmðωÞ denote the local
bulk permittivities of the dielectric and metallic media, respec-
tively. Importantly, all quantum mechanical contributions in Eqs.
(1a) and (1b) are completely captured by the microscopic surface
response functions d? and dk; the classical limit is
naturally recovered when d?;k ! 0. The retarded surface
plasmon-polariton (SPP) dispersion can be determined from the
poles of the associated reflection coefficient for TM polarized
waves [cf. Eq. (1a)], and thus follows from the solution of the
implicit equation:

ϵd
κd

þ ϵm
κm

� ðϵm � ϵdÞ
�

q2

κmκd
d? � dk

�
¼ 0; ð2Þ

where κj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � k2j

q
¼ �ikz;j. In the nonretarded limit (where

κd;m ! q), this reduces to the simpler condition:

ϵm þ ϵd � ðϵm � ϵdÞqðd? � dkÞ ¼ 0: ð3Þ
Naturally, the well-known retarded and nonretarded classical
plasmon conditions, ϵd=κd þ ϵm=κm ¼ 0 and ϵm ¼ �ϵd, respec-
tively, are recovered in the limit of vanishing d-parameters.

While the mesoscopic reflection coefficients of the planar system
were determined by Feibelman16, the corresponding scattering
coefficients of the spherically symmetric system—the so-called Mie
coefficients aTMl and aTEl ref. 35—have remained unknown, despite
their significant practical utility. Here, we derive the mesoscopic
generalization of Mie’s theory by incorporating the Feibelman

d-parameters through a generalization of the usual electromagnetic
boundary conditions36 (Supplementary Note 5). For a metallic
sphere of radius R, we find that the generalized, nonclassical TM
and TE Mie coefficients are

aTMl ¼ ϵmjlðxmÞΨ0
lðxdÞ � ϵdjlðxdÞΨ0

lðxmÞ þ ðϵm � ϵdÞ
�
jlðxdÞjlðxmÞ lðl þ 1Þ½ �d? þ Ψ0

lðxdÞΨ0
lðxmÞdk

�
R�1

ϵmjlðxmÞξ0lðxdÞ � ϵdh
ð1Þ
l ðxdÞΨ0

lðxmÞ þ ðϵm � ϵdÞ
�
hð1Þl ðxdÞjlðxmÞ lðl þ 1Þ½ �d? þ ξ0lðxdÞΨ0

lðxmÞdk
�
R�1

; ð4aÞ

aTEl ¼ jlðxmÞΨ0
lðxdÞ � jlðxdÞΨ0

lðxmÞ þ
�
x2m � x2d

�
jlðxdÞjlðxmÞdkR�1

jlðxmÞξ 0lðxdÞ � hð1Þl ðxdÞΨ0
lðxmÞ þ

�
x2m � x2d

�
hð1Þl ðxdÞjlðxmÞdkR�1

; ð4bÞ

with dimensionless wavevectors xj � kjR, spherical Bessel and

Hankel functions of the first kind jlðxÞ and hð1Þl ðxÞ, and the

Riccati–Bessel functions ΨlðxÞ � xjlðxÞ and ξ lðxÞ � xhð1Þl ðxÞ;
primed functions denote their derivatives. Equations (4a) and
(4b) constitute the spherical counterparts to the reflection
coefficients of the planar interface. Like them, they directly
determine the response of the scattering object, here a metallic
sphere, to any external perturbation (in a basis of spherical vector
waves; see Supplementary Note 5). For instance, the extinction
cross-section is simply σext ¼ 2πk�2

d

P1
l¼1ð2l þ 1ÞRe�aTMl þ aTEl

�
ref. 35 with resonances determined by the poles of the nonclassical
Mie coefficients. For subwavelength metal spheres, the optical
response is primarily embodied in aTMl , which has a series of peaks
that correspond to the excitation of localized surface plasmons
(LSPs) of dipole, quadrupole, etc., character (for l 2 f1; 2; ¼ g,
respectively)35,37. In the small-radius limit, xj � 1, a small-
argument expansion of spherical Bessel and Hankel functions
produces the nonretarded equivalent of the TM Mie coefficient,
the mesoscopic multipolar polarizability38 (Supplementary Note 5)

αl ¼ 4πR2lþ1
ðϵm � ϵdÞ

	
1þ l

R

�
d? þ lþ1

l dk
�


ϵm þ lþ1
l ϵd � ðϵm � ϵdÞ lþ1

R ðd? � dkÞ
: ð5Þ

In the nonretarded limit, the extinction cross-section σext �
σabs þ σsca is dominated by l ¼ 1 dipole contributions so that
σabs ’ kdIm α1 and σsca ’ k4djα1j2=6π, peaking around the dipole
LSP frequency35. More generally, the lth nonretarded LSP
condition is set by the poles of αl :

ϵm þ l þ 1
l

ϵd � ϵm � ϵdð Þ l þ 1
R

ðd? � dkÞ ¼ 0: ð6Þ

Once again, Eqs. (4)–(6) reduce to their well-known classical
counterparts when d?;k ! 0. It is interesting to note that the
incorporation of quantum mechanical effects breaks the scale-
invariance that usually characterizes the nonretarded classical
limit, wherein plasmon resonances ωcl are scale-independent
(e.g., ωcl ¼ ωp=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵd

p
and ωcl ¼ ωp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵd

p
for the surface

and dipole plasmon of a planar and spherical jellium interface,
respectively). Here, the introduction of the length scale(s)
associated with d?;k breaks this scale-invariance, producing
finite-size corrections parameterized by either qd?;k or d?;k=R,
cf. Eqs. (3) and (6).

In this context, it is instructive to seek a perturbative solution
that incorporates the first-order spectral corrections in the
nonretarded limit. Expanding Eqs. (3) and (6) around ωcl, one
finds (for a low-loss jellium in free-space)

ω ’ ωcl 1� 1
2

ϒ?d
ð0Þ
? þ ϒkd

ð0Þ
k

� �
 �
; ð7aÞ

where ϒ?;k are geometry- and mode-dependent parameters17.
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For the planar interface and sphere, they equal

ϒ? ¼ �ϒk ¼
(

q planar interface;

ðl þ 1Þ=R sphere:
ð7bÞ

In the above, dð0Þ?;k � d?;kðReωclÞ is the result of a pole-like
approximation. Four points are worth making: (i) the nonclassical
correction is directly proportional to an effective d-parameter
deff � d? � dk; (ii) the nonclassical frequency shift is approxi-

mately proportional to Re dð0Þeff ; (iii) the sign of Re deff dictates the
frequency shift’s direction (towards the blue if negative, and
towards the red if positive); and (iv) nonclassical broadening due

to Landau damping is approximately proportional to Im dð0Þeff .
The results outlined in this section form the basis for

understanding the optical response in the mesoscopic regime,
beyond the validity of the classical electrodynamics formulation.

Nonclassical corrections to the plasmon dispersion. Figure 2
shows the nonclassical spectral properties of plasmons in a planar
(Fig. 2a–d) and spherical (Fig. 2e–h) metallic jellium, contrasting
the retarded and nonretarded regimes, as well as the classical and
nonclassical behaviors. Figure 2 can thus be regarded as a

corollary of the equations presented in the preceding section.
Three (inverse) length scales characterize the plasmonic disper-
sion in the planar system: the free-space wavevector k0, the
plasmon wavevector q, and the inverse centroid of induced
charge d�1

? . The plasmon dispersion, consequently, spans up
to three distinct regimes, namely a classical, retarded regime
q � k0 � jd?j�1, a deeply nonclassical, nonretarded regime
q � jd?j�1 � k0, and an intermediate regime. Figure 2a–d
demonstrate that each of these regimes are well-realized in
the planar rs ¼ 4 jellium: (i) at small wavevectors, nonclassical
effects are negligible; (ii) at large wavevectors, they substantially
redshift and broaden the plasmonic dispersion, manifesting
the “spill-out” characteristic of simple metals (i.e., Re d? > 0) and
surface-enhanced Landau damping, respectively, consistent with
earlier findings12,33,39–41; and (iii) at intermediate wavevectors,
both retardation and nonclassical corrections are nonnegligible,
and therefore need to be taken into account simultaneously.
Intriguingly, the existence of a well-defined intermediate regime
demonstrates that the transition from classical to nonclassical
response is intrinsically multiscale.

Figure 2e–h outline the plasmonic features of metal spheres as
a function of their radii. In most respects, they mirror the
qualitative conclusions drawn for the planar case, but with the
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inverse radius R�1 playing the role of an effective wavevector
(increased losses at large radii are due to radiation damping) (see
also Supplementary Note 6). Concretely, and focusing on the
dipole LSP, Fig. 2e–f show the shortcomings of the classical
theory for jellium spheres with dimensions below 2R � 20 nm.
For extremely small spheres, the nonretarded limit reproduces the
nonclassical redshift and broadening well. Again, we observe an
intermediate region where both retardation and nonclassical
effects are of comparable magnitude. Notably, this regime has
been probed by several experiments that investigated nonclassical
plasmons42–45. Finally, in Fig. 2g–h we present the normalized
extinction cross-sections of jellium spheres under plane-wave
illumination. Besides reproducing the main features already
observed in Fig. 2e–f, they also exhibit extra resonances due to
higher-order LSP modes (Supplementary Fig. S7). The cross-
sections associated with these higher-order LSPs, however, fall off
rapidly with decreasing radii owing to the realization of the dipole
limit. In the nonclassical case this reduction is amplified further,
as higher-order LSPs are progressively impacted by surface-
induced Landau damping [cf. Eqs. (7a) and (7b)]. These
observations are in accord with recent experimental data42.

The formalism and results presented in the preceding sections
establish the fundamentals governing plasmon-enhanced nano-
photonic phenomena in the mesoscopic regime. In the following,
we exploit this understanding to assess plasmon–emitter inter-
actions at the nanoscale.

Nonclassical LDOS: Purcell enhancement. A hallmark of plas-
monics is its ability to support extreme field enhancements and
correspondingly large Purcell factors3,19,21, enabling control over
the emission properties of emitters. At its core, this is a mani-
festation of the reshaping of the LDOS spectrum, which is
enhanced near plasmon resonances46–49. Importantly, the Purcell
enhancement is generally maximized at short emitter–surface
separations, i.e., exactly where nonlocality and quantum effects
become important. Thus, as we show in what follows, a rigorous
description of the governing electrodynamics that incorporates
nonclassical effects is not only necessary, but essential.

The LDOS, ρEn̂, experienced by an emitter with orientation n̂
(and incorporating both radiative and nonradiative contribu-
tions) is proportional to the imaginary part of the system’s
Green’s dyadic50, which in turn is expandable in the previously
introduced scattering coefficients (see Methods section). We
exploit this fact to directly incorporate nonclassical surface
corrections into the LDOS, by simply adopting the mesoscopic
scattering coefficients, Eqs. (1a) and (1b) or (4a) and (4b), instead
of their classical equivalents. In Fig. 3a–b we show the classical
and quantum LDOS, normalized to the free-space LDOS, ρE0 , near
a planar metal interface as a function of the emitter–metal
separation h, for a normally-oriented emitter (see Supplementary
Note 7 for the parallel and orientation-averaged cases). The
enhancement of the LDOS near the surface plasmon frequency is
markedly sharper in the classical case and less pronounced in the
nonclassical one at shorter separations. This observation is
particularly evident in Fig. 3b, which shows the plasmon-
enhanced LDOS for different emitter–metal separations. In the
classical formulation, the peak in the LDOS remains relatively
sharp, approaching the nonretarded plasmon frequency ωp=

ffiffiffi
2

p
at

small separations. Contrasting this, in the nonclassical framework
the LDOS peak redshifts (consistent with the spill-out character-
istic of jellium metals) with decreasing h, and evolves into a broad
spectral feature at very small emitter–metal distances. This
behavior simply reflects the nonclassical corrections to the
plasmonic spectrum outlined in the previous section. Evidently,
the most significant impact of nonclassicality here is the

substantial reduction (notice the logarithmic scale) of the
maximum attainable LDOS in the nonclassical case, particularly
for h≲ 10 nm. Lastly, it is interesting to observe the emergence of
a broad spectral peak at frequencies above ωp=

ffiffiffi
2

p
that is absent

in the classical setting. This feature is a manifestation of the so-
called surface-multipole plasmon or Bennet mode51 that
originates due to the finite-size of the inhomogeneous surface
region33; mathematically, it corresponds to a pole in d?ðωÞ;
physically, it represents an out-of-plane oscillation confined to
the surface region.

Figure 3c–d show the LDOS of a radially-oriented emitter
placed at a distance h from the surface of an R ¼ 5 nm metal
sphere (see Methods section). The LDOS enhancement in the
spherical geometry is richer in features, partly because the sphere,
unlike the plane, has an intrinsic length scale (its radius R), and
partly because it hosts a series of l-dependent multipolar LSPs.
The LDOS enhancement is centered around these LSP frequen-
cies. In the nonclassical case, we again observe redshifted and
broadened spectral features relative to their classical counterparts.
The impact of Landau damping is amplified by the order of the
LSP mode, cf. Eq. (7b); as a result, only the dipole and quadrupole
modes are discernible in the nonclassical case (in the classical
case, a faint l ¼ 3 LSP remains identifiable). Next, in Fig. 3e we
investigate the LDOS enhancement’s dependence on the sphere’s
radius R for a fixed emitter–sphere separation of h ¼ 10 nm. In
particular, the impact of nonclassical effects—particularly its
reduction of the maximum LDOS—is more pronounced at
smaller radii, in agreement with the approximate ðl þ 1ÞR�1

scaling previously derived in Eq. (7b). In fact, for very small metal
spheres, only the LDOS enhancement associated with the dipole
plasmon remains identifiable in the nonclassical case, due to
surface-enabled Landau damping. Crucially, although deviations
from classicality are most pronounced for spheres with radii
≲1 nm, even relatively large spheres (that are otherwise usually
considered within the classical regime, e.g., 2R ¼ 50 nm) exhibit
significant nonclassical corrections at small emitter–metal
separations. Indeed, this constitutes an example of a multiscale
regime where both retardation (a classical effect) and quantum
effects must be addressed simultaneously.

Enhancement of dipole-forbidden multipolar transitions. The
set of optical transitions associated with the emission of radiation
by atoms is in practice limited due to the mismatch between the
atom’s size and the wavelength of the radiation emitted by it. This
fact leads to the selection rules for dipole-allowed transitions that
originate from the so-called dipole approximation52. Such tran-
sitions, however, constitute only a fraction of a much richer
spectrum. Nevertheless, transition rates other than the dipole-
allowed are simply too slow (by several orders of magnitude) to
be accessible in practice and are consequently termed “for-
bidden”. Previous works24,53 have shown that it is possible to
increase the effective light–matter coupling strength for such
transitions by exploiting, for instance, the shrinkage of the
wavelength of light brought about by surface plasmons. Not-
withstanding this, a satisfactory framework for describing the
impact of nonclassical effects in the plasmonic enhancement of
forbidden transitions remains elusive. Below, we remedy this by
extending our formalism to the class of dipole-forbidden transi-
tions of electric multipolar character, which can be exploited to
probe even larger plasmon momenta. These are transitions in
which the orbital angular momentum of the emitter changes by
more than one; hereafter denoted En with n ¼ 2; 3; 4; ¼ (thus,
E1 denotes a dipole transition, E2 a quadrupole transition, etc). It
should be emphasized that while we consider hydrogenic systems
for definiteness in the following, the theory presented here can be
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readily applied to any point-like emitter (e.g., atoms, quantum
dots, nitrogen-vacancy centers, or dyes).

We consider an emitter at a distance h from a planar metal
surface (Fig. 4a), and treat the light–matter interaction in its
vicinity using a formulation of macroscopic quantum electro-
dynamics which enables a rigorous account of the quantum
nature of the emitter and of the plasmon, and the inherent
presence of loss54,55. Within this framework, the multipolar decay
rates, ΓEn, can be evaluated as24 (Supplementary Note 8)

ΓEn ¼ 2α3ω0
ðk0aBÞn�1

ðn� 1Þ!

 �2

Ξ

Z 1

0
u2ne�2uk0hIm rTM du; ð8Þ

where u � q=k0, aB denotes the Bohr radius, α is the fine-
structure constant, and the dimensionless quantity Ξ is related to
the matrix element associated with the transition (Supplementary
Note 8). In the previous expression, the nonretarded limit is
assumed, valid for k0h � 1. Nonetheless, in our calculations we
use the retarded reflection coefficient to accurately incorporate
the plasmon pole’s spectral position. Moreover, in this limit
ΓtotEn ¼ Γ0En þ ΓEn ’ ΓEn since the free-space contribution Γ0En is
many orders of magnitude smaller.

In Fig. 4b we plot the En decay rates associated with the 6{p, d,
f, g, h} ! 2s transition series in hydrogen (δ-transitions of the
Balmer series). While at relatively large distances from the metal
the spontaneous emission rates of higher-order multipolar
transitions are several orders of magnitude slower than E1, this
difference is dramatically reduced at smaller emitter–metal
separations. Interestingly, at nanometric separations the higher-
order multipolar rates can exceed the E1 free-space rate, signaling

a breakdown of traditional dipole-allowed selection rules. More
interesting still, the inclusion of nonclassical effects via d-para-
meters increases the multipolar decay rates relative to the classical
predictions (Fig. 4b, inset), by roughly one order of magnitude at
the smallest separations. To understand the physical mechanism
for this additional enhancement, we show in Fig. 4c–e the
integrand of Eq. (8) for the first three multipolar orders, each
evaluated at three distinct atom-metal separations. Two main
contributions can be readily identified: (i) a sharp, resonant
contribution corresponding to the plasmon pole embodied in
Im rTM at the transition frequency (i.e., at the intersection of the
blue and red lines in Fig. 4a), associated with emission into
plasmons; and (ii) a broad, nonresonant contribution associated
with quenching by lossy channels in the metal, e.g., Landau
damping, disorder, phonons, etc. The relative contribution of (i)
and (ii) to the overall decay rate depends strongly on the
emitter–metal separation (due to the u2ne�2uk0h scaling of the
integrand), with loss-related quenching dominating over plasmon
emission at very small emitter–metal separations. This effect is
more pronounced for higher-order multipolar transitions since
the integrand of Eq. (8) initially grows with u2n. The additional
nonclassical enhancement is thus readily understood: it is a direct
result of an increased nonresonant, loss-related contribution due
to surface-enabled Landau damping. Finally, the dotted lines in
Fig. 4b, f indicate regions in which a significant fraction of ΓEn is
accumulated at very large wavevectors where the condition
qRe d? � 1 is only approximately valid; evidently, at the smallest
separations and at large transitions orders n, our mesoscopic
framework is pushed beyond its range of validity.
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Figure 4f considers a similar transition in a hydrogen-like
atom, but now occurring at a higher frequency—i.e., closer to
ωp=

ffiffiffi
2

p
—and thus probing larger plasmon wavevectors. We

assume, for simplicity, that the magnitude of the matrix elements
in Eq. (8) still equal those in the 6{p, d, f, g, h} ! 2s hydrogen

series. The enhancement of the En rates is qualitatively similar to
the previous case, albeit with some quantitative differences: for
instance, as shown in Fig. 4g–i, the resonant plasmon contribu-
tion now peaks at larger u; a simple consequence of the increased
plasmon momentum at this higher transition frequency. This is
in principle beneficial because even a small increase in
confinement can result in a huge increase of the decay rates
due to the u2n scaling of dΓEn=du. However, plasmon losses tend
to increase concomitantly with increasing confinement, resulting
in broader plasmon peaks (cf. Fig. 4g–i). Lastly, we observe that
the nonclassical multipolar decay rates no longer consistently
exceed the classical predictions at this higher frequency,
contrasting our findings in Fig. 4b. This difference reflects a
more complicated and substantial nonclassical modification of
the plasmonic response at such frequency (see Fig. 2d). The
overall impact on ΓEn ultimately results from an nontrivial
interplay between the modified scattering response Im rTM and
the scaling u2ne�2uk0h.

Our calculations demonstrate that quantum surface corrections
substantially modify the multipolar decay rates from those
predicted in classical electrodynamics; especially off-resonance,
where the discrepancy increases with the multipolar transition
order. Radiation from these multipolar transitions can be delivered
to the far-field by outcoupling the SPPs via gratings or antennas.
Moreover, even in the regime dominated by nonresonant
enhancement, the breakage of the conventional selection rules
should still have clear experimental signatures, with potential
implications for photovoltaic devices56 or hot-electron catalysis56,57.

Energy transfer between two emitters. The interaction between
emitters in optical cavities or near plasmonic structures is
instrumental to many scientific disciplines, ranging from quan-
tum optics58 to chemical physics and the life sciences59,60. A
prominent example is energy transfer (ET) between two fluor-
ophores: the fundamental process by which an excited flour-
ophore (the donor, D) lowers its energy by transferring it to
another flourophore (the acceptor, A). The signature of this
mechanism is the observation of fluorescence emitted by the
acceptor. In free-space, the ET between the two emitters takes
place primarily via dipole–dipole interaction and is typically
short-ranged; in this limit, it is commonly referred to as Förster
resonant energy transfer (FRET). Here too, the integration of
emitters with plasmonic nanostructures can enhance the
emitter–emitter ET rate, ΓET, through the introduction of a new,
plasmonic near-field channel between the donor (D) and the
acceptor (A)61–63.

With this in mind, we investigate the impact of nonclassical
corrections to plasmon-mediated ET between two emitters near a
planar metal surface (Fig. 5a). The calculation of ΓET involves the
system’s Green’s function G (Supplementary Note 9), which in
turn depends on the system’s scattering coefficients. Concretely,
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for two emitters above a metal surface, the ET rate from a
donor located at rD to an acceptor placed at rA can be determined
via25–27,47,50

ΓET ¼
Z 1

0
wETðrD; rA;ωÞf emD ðωÞf absA ðωÞ dω; ð9Þ

where wETðrD; rA;ωÞ � 2π
_2

ω2

ϵ0c2

� �2
μ
A � GðrD; rA;ωÞ � μD
�� ��2 is the

ET amplitude, which governs the medium-assisted interaction.
Here, f emD (f absA ) is the donor’s emission (acceptor’s absorption)
spectrum, and μD (μA) the corresponding dipole moment.

Figure 5b–e show the ET amplitude wETðR;ωÞ (evaluated at
zA ¼ zD � h with a donor–acceptor separation jrA � rDj � R)
normalized to its value in free-space w0

ETðR; ωÞ. The advantage of
such procedure is that this ratio is emitter-independent,
facilitating a discussion on the impact of the plasmonic response
(also, for spectrally aligned narrowband emitters where
f emD ðωÞf absA ðωÞ � δðω� ω0Þ, this simply amounts to the total ET
rate enhancement ΓET=Γ

0
ET; we shall return to this point below).

Our results demonstrate that the omission of quantum mechan-
ical effects leads to a significant overestimation of the normalized
ET amplitudes, across a broad parameter space. This discrepancy
is particularly pronounced for emitter–metal separations of about
h≲ 10–15 nm, and spans a wide range of donor–acceptor
separations, R. The ET dependence on R is particularly interesting
and spans several distinct regimes: (i) for large R relative to the
SPP’s propagation length, Lp, the metal’s impact is negligible [the
emitters are simply too far away for the ET to be mediated by
surface plasmons (i.e., a SPP excited by the donor will be
dissipated long before it reaches the acceptor)]; (ii) for R � Lp,
the ET enhancement reaches its maximum, whose position and
value are dictated by the spectral properties of the SPP, and
therefore is affected both by the nonclassical spectral shift and
broadening; and (iii) for R � h, the interaction is dominated by
the free-space channel, rendering the metal’s impact negligible
again.

For emitters of sufficient spectral width, ET can assume a
broadband aspect: we explore this in Fig. 5f by computing
ΓET=Γ

0
ET for a Gaussian donor–acceptor overlap f emD ðωÞf absA ðωÞ ¼

e�ðω�ω0Þ2=2Δ2
=

ffiffiffiffiffi
2π

p
Δ, centered at ω0 and with a (joint) width Δ

and quality factor Q � ω0=Δ. Figure 5f shows the normalized
classical and nonclassical broadband integrated ET rates for
several Q as a function of the center frequency ω0. Clearly, the
maximum of ΓET=Γ

0
ET decreases with Q, with a concomitant

broadening and redshifting of the central peak. Interestingly,
though the highest ET rate enhancements are obtained at large Q,
and for ω0 near the SPP’s resonance, this shows that spectrally
misaligned emitters can benefit from small Q factors, as this
extends their spectral tails into the resonant region. More
importantly, our results show that nonclassicality remains
important even in the case of broadband emitters, and that
nonclassical deviations persist (after being broadband integrated)
even when the joint spectral width is larger than the nonclassical
plasmon resonance shift.

Lastly, Fig. 5 demonstrates the importance of accounting for
nonclassical effects in ET, which impose limits to the maximum
attainable plasmon-enhanced ET rate between emitters.

Plasmon-enhanced two-photon emission. The emission of light
by an excited emitter is generally very well-described by first-order
perturbation theory in the light–matter interaction described
by quantum electrodynamics (including every process considered
so far), reflecting its intrinsic weakness. At higher order in the

interaction, the possibility of two- and multi-photon spontaneous
emission emerges. While two-photon spontaneous emission was
predicted as early as 1931 by Göppert-Mayer64, it eluded observa-
tion for decades in both atomic and solid-state systems28,29, due to
the exacerbated weakness of the interaction at second order. Despite
this, two-photon emission is an attractive process due to the cor-
related nature of the emitted photons (entangled in e.g., energy and
angular momentum). The extreme nanoscale confinement of
plasmons in metals provides new opportunities to enhance two-
photon emission dramatically30 (in the guise of two-plasmon
emission), with recent work identifying opportunities to enhance
two-photon emission to be as strong24, or even far stronger65, than
single-photon emission. However, with these possibilities being
enabled essentially by extreme nanoscale confinement, it is natural
to anticipate a sizable impact of nonclassical effects.

A minimal model of two-photon spontaneous emission is
shown in Fig. 6a, where we illustrate an emitter at a distance h
from a semi-infinite metallic interface. To isolate the parts of two-
photon emission that depend on the metallic interface, as
opposed to the detailed atomic level structure, we consider two-
photon transitions between the s-states of a simple hydrogenic
atom. This subgrouping includes the most prominent example of
two-photon emission: the 2s ! 1s transition in hydrogen, with
level separation ω0 ¼ ω2s � ω1s � 10:2 eV. The level separation
ω0 restricts the frequencies of the two emitted photons to
ω 2 �0;ω0½ and ω0 � ω0 � ω (reflecting energy conservation)
but otherwise leaves their difference unconstrained. The
emission process is consequently broadband, with the total rate
ΓTPE a summation of all energy-allowed ðω;ω0Þ-pairs:
ΓTPE ¼ R ω0

0 ðdΓTPE=dωÞ dω, where dΓTPE=dω is the differential
decay rate for two-photon emission into frequencies ω and
ω0 � ω. As an example, for the 2s ! 1s transition of hydrogen in
free-space, dΓ0TPE=dω exhibits a broad peak around the equal ω ¼
ω0 ¼ ω0=2 splitting, as shown in Fig. 6b. Its integral, correspond-
ing to the decay rate, is about 8.3 s−1, nearly eight orders of
magnitude slower than the 2p ! 1s dipole-allowed single-
photon transition (�6.3 ´ 108 s−1)66.

In the presence of a metallic interface, the situation changes
drastically, due to a strongly enhanced LDOS. In fact, two-photon
emission benefits twice from an enhanced LDOS, encoded by the
following nonretarded expression65 for the enhancement of the
differential decay rate dΓTPE=dω for an s ! s transition in a
hydrogenic atom, relative to its free-space value dΓ0TPE=dω
(Supplementary Note 9):

dΓTPE=dω
dΓ0TPE=dω

¼ 1
2

ρE?ðωÞ
ρE0ðωÞ

� �
ρE?ðω0 � ωÞ
ρE0ðω0 � ωÞ

� �
: ð10Þ

Each fraction is a Purcell factor; thus, the order of magnitude
two-photon differential enhancement is roughly the square of the
one-photon enhancement (Fig. 3). More precisely, the differential
two-photon enhancement is directly and simply related to the
one-photon enhancement: it is (half) the Purcell enhancement at
ω multiplied by its reflection about ω0=2.

We note that the computation of ΓTPE ¼ R ω0
0

�
dΓTPE=dω

�
dω

for ω0 >ωp in a nonclassical setting requires knowledge of d?ðωÞ
above the plasma frequency (similarly so for ET when
f emD ðωÞf absA ðωÞ extends above ωp, see Eq. (9)). Direct calculation
of d?ðωÞ via TDDFT is cumbersome above ωp, since the induced
potential extends into the bulk; instead, following refs. 67, 68, we
extrapolate d?ðωÞ to ω>ωp by enforcing exact sum rules and
asymptotic limits on a fit of d?ðωÞ over frequencies below ωp

(Supplementary Note S9).
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Figure 6c–d contrast the classical and nonclassical predictions
of the differential two-photon emission enhancement near a
metal surface for different values of the (hydrogen-like emitter’s)
transition frequency, its separation from the surface, and
emission frequency. For separations ≳ 10 nm nonclassical effects
modify the physics quantitatively, but not qualitatively. Devia-
tions from classicality substantially increase at the separation of 5
nm, with clear hallmarks of nonclassical broadening in particular.
At a 1 nm separation, the classical and nonclassical predictions
differ qualitatively: at the transition frequency ω0 ¼ 1:2ωp

(Fig. 6c) the peak-structure and position is mostly dissimilar (as
can be understood and expected from Fig. 3b, where the LDOS
peak is similarly displaced from the classical prediction); at ω0 ¼
1:4ωp (Fig. 6d), the classical and nonclassical peak positions still
coincide but the nonclassical spectrum is far broader.

Finally, the impact of nonclassicality on the enhancement of the
total (i.e., integrated) two-photon decay rate is shown in Fig. 6e. For
small separations, the classical prediction can be quantitatively

inaccurate by an order of magnitude. However, as also seen in the
case of the LDOS, the classical prediction does not necessarily lead to
an overestimation of the decay rates: for some transition frequencies,
the nonclassical decay rate is higher, due to a redistribution of LDOS
into regions in which the classical LDOS was low. Due to the
quadratic dependence of two-photon emission enhancement on the
LDOS, this process is much more sensitive to deviations from
classicality. The considerations of two-photon emission in this section
provides yet another example of the substantial impact of
nonclassical effects to nanoscale plasmon–emitter interactions.

Discussion
In this article, we have considered the impact of nonclassical
corrections in a varied range of plasmon-enhanced light–matter
interaction processes using a scattering framework that incor-
porates nonclassical effects via Feibelman d-parameters. These
plasmon-empowered processes include spontaneous dipole
and multipole emission, ET between emitters, and spontaneous
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two-photon emission. Our findings elucidate and contextualize
the main physical mechanisms responsible for deviations
from the classical response in light–matter interactions at the
nanoscale: spectral shifting and surface-enabled Landau damping,
manifesting the joint impact of spill-out and nonlocality. For
deeply nanoscale emitter–surface separations, e.g., below � 5 nm,
the deviations can be order-of-magnitude, thus completely
invalidating any quantitative aspect of the classical approach.

There are several interesting opportunities and open questions
arising from this work. First, our approach can be readily
extended to other prominent light–matter interaction processes,
such as near-field radiative heat transfer69, electron energy loss
spectroscopy42,45, or van der Waals70 and Casimir–Polder
interactions71. Second, the d-parameter framework is agnostic of
the model employed to calculate the d-parameters. Here, we have
employed jellium TDDFT, but other models, such as hydro-
dynamic response (within the hydrodynamical model (HDM),
the d-parameters of a homogeneous electron gas adjacent to
vacuum are dHDM

? ðωÞ ¼ �β=ðω2
p � ω2Þ1=2 and dHDM

k ðωÞ ¼ 0,
with β2 ¼ 3v2F=5)

16, can be readily treated by d-parameters as
well. Similarly, the jellium approximation can be relaxed in
atomic TDDFT, posing new, fundamental questions—particularly
pertinent in noble metals—on the role of atomic structure and
valence-band bound screening. Third, recent experiments have
demonstrated that the d-parameters can be directly inferred from
far-field optical measurements36: comparison between measure-
ments of plasmon-enhanced light–matter interaction at the
nanoscale and theoretical predictions, such as those detailed here,
could open a complementary avenue for experimental char-
acterization of d-parameters. We emphasize that the nanometer-
scale emitter–surface separations that lead to substantial quantum
corrections in light–matter interactions are well-within the reach
of current experimental capabilities3,19,36,72. Indeed, several ear-
lier experiments18,73 have probed the requisite parameter
regimes; their observations of deviations from classical predic-
tions may already suggest evidence of the corrections described
here. Fourth, the formalism presented here can be readily applied
in arbitrary geometries via d-parameter-modified mesoscopic
boundary conditions (Supplementary Note 2)36. Fifth and lastly,
while we have restricted our focus to quantum corrections due to
the plasmonic surface-response, a separate class of corrections
exist with origin in the emitter, emerging beyond the point-
emitter approximation74–77. Our framework can be readily
adapted to include these emitter-centric corrections (Supple-
mentary Note 8); that prospect is particularly interesting in
“large” emitters, such as quantum dots or molecules, where their
magnitude can be substantial.

Realizing the promise of plasmon-enhanced light–matter
interactions inevitably involves multiscale plasmonic archi-
tectures, combining both wavelength- and nanoscale features in
synergy. The development of the next generation of nanoscale
optical devices consequently requires new theoretical tools that
incorporate the salient features of both the classical and quantum
domains in a tractable manner: the mesoscopic framework
developed here constitutes such a tool.

Methods
Feibelman d-parameters. The complex-valued Feibelman d-parameters, d? and
dk , can be defined from the quantum mechanical induced charge density,
ρðrÞ � ρðzÞeiqx , and associated induced current density, JðrÞ � JðzÞeiqx (frequency-
dependence suppressed, but implicit)16,17,33:

d? ¼
R1
�1 zρðzÞ dzR1
�1 ρðzÞ dz and dk ¼

R1
�1 z∂z JxðzÞ dzR1
�1∂zJxðzÞ dz

; ð11Þ

here, for an interface spanning the xy-plane at z ¼ 0. It is apparent from Eq. (11)
that d? corresponds to the centroid of the induced charge density (cf. Fig. 1), while

dk corresponds to the centroid of the normal derivative of the tangential current
(which is identically zero for charge-neutral interfaces)33. Unlike the bulk per-
mittivity that characterizes a single material, the d-parameters are surface response
functions that depend on the two materials that make up the interface (including,
in principle, their surface terminations). Here, we restricted our focus to the
vacuum–jellium interface.

In short, the essential appeal of d-parameters is their facilitation of a practical
introduction of the important electronic length scales associated with the dynamics
of the electron gas at an interface (Supplementary Note 1).

LDOS calculations. The LDOS experienced by a point-like dipole emitter
embedded in a dielectric medium with dielectric constant ϵd and located at a
distance h above a metal half-space is given by (see also Supplementary Note 7)50

ρE?
ρE0

¼ 1þ 3
2
Re

Z 1

0

u3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p rTMe2ikdh
ffiffiffiffiffiffiffiffi
1�u2

p
du; ð12aÞ

ρEk
ρE0

¼ 1þ 3
4
Re

Z 1

0

uffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p rTE � �
1� u2

�
rTM

	 

e2ikdh

ffiffiffiffiffiffiffiffi
1�u2

p
du; ð12bÞ

for an emitter with its dipole moment oriented perpendicular (?) or parallel (k),
respectively, to the dielectric–metal interface (here, the z ¼ 0 plane). The per-
pendicularly oriented dipole only couples to TM modes, whereas the dipole in the
parallel configuration couples to both TM and TE modes. At short emitter–metal
separations, however, the TM contribution dominates, regardless of orientation.
Moreover, since plasmonic excitations are TM polarized, the TM contribution is
the main quantity of interest for plasmon-enhanced LDOS.

For an emitter at a distance h from the surface of a metallic sphere of radius R,
the LDOS can be evaluated via (Supplementary Note 7)37,78

ρE?
ρE0

¼ 1þ 3
2
1
y2

X1
l¼1

ð2l þ 1Þlðl þ 1ÞRe
n
�aTMl ½hð1Þl ðyÞ�2

o
; ð13aÞ

ρEk
ρE0

¼ 1þ 3
4
1
y2

X1
l¼1

ð2l þ 1ÞRe
n
�aTMl ξ0lðyÞ

	 
2 � aTEl ξ lðyÞ½ �2
o
; ð13bÞ

for an emitter with its dipole oriented along the radial (?) or tangential (k)
directions, respectively. In addition, we have introduced the dimensionless radial
emitter position y � kdðRþ hÞ for brevity of notation.

The above expressions also highlight a key feature exploited in all our
calculations: conveniently, in order to calculate the quantum mechanically
corrected LDOS within the d-parameters framework one only needs to replace the
standard Mie coefficients by their generalized nonclassical counterparts, Eqs. (4a)
and (4b). The same also holds for the standard Fresnel reflection coefficients and
their nonclassical counterparts, Eqs. (1a) and (1b).

Data availability
The data that underlie the findings of this study are available from the corresponding
authors upon reasonable request.
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