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Abstract: Inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) is the most
prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during
endoplasmic reticulum functional upset (ER stress). A IRE1α signal pathway arbitrates yin and
yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular
physiology as well as in several pathological conditions such as diabetes, obesity, inflammation,
cancer, neurodegeneration, and in many other diseases. Thus, further understanding of its molecular
structure and mechanism of action during different cell insults helps in designing and developing
better therapeutic strategies for the above-mentioned chronic diseases. In this review, recent insights
into structure and mechanism of activation of IRE1α along with its complex regulating network were
discussed in relation to their basic cellular physiological function. Addressing different binding
partners that can modulate IRE1α function, UPRosome triggers different downstream pathways
depending on the cellular backdrop. Furthermore, IRE1α are in normal cell activities outside the
dominion of ER stress and activities under the weather of inflammation, diabetes, and obesity-related
metaflammation. Thus, IRE1 as an ER stress sensor needs to be understood from a wider perspective
for comprehensive functional meaning, which facilitates us with assembling future needs and
therapeutic benefits.

Keywords: endoplasmic reticulum stress; IRE1α; insulin resistance; calcium; ROS; type 2 diabetes;
obesity; metaflammation

1. Introduction

IRE1/ERN1 (Inositol-Requiring Enzyme 1/Endoplasmic Reticulum to Nucleus 1) is the most
evolutionarily conserved endoplasmic reticulum membrane resident protein. It is involved in multiple
cellular processes and regulates both cell survival and cell death. IRE1, a transmembrane protein
kinase gene, was first detected in yeasts while exploring genes involved in the metabolism of inositol
phospholipids to complement exogenous inositol for the growth of yeast mutants in which the
disruption of the IRE1 locus triggered myo-inositol auxotrophy [1]. Following Peter Walter and Mori
K’s benchmark study, IRE1 was identified as a UPR molecule on the screen of yeast genes involved
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in signal transduction from the endoplasmic reticulum (ER) to nucleus during misfolded protein
accumulation/ER stress [2,3]. In yeasts, IRE1 is the sole UPR sensor which governs the response to ER
stress [4]. In metazoans, IRE1 is one of the three distinct UPR sensors, and it exists in two isoforms
IRE1α/ERN1 and IRE1β/ERN2. IRE1α is ubiquitously present, whereas IRE1β’s presence is restricted
to intestinal epithelial cells [5] and airway mucous cells [6]. IRE1α and IRE1β differ in luminal domain
amino acid sequences that are not conserved, especially in association with binding immunoglobulin
protein (BiP) [7]. Both are functionally different in substrate specificity by their RNase domain [8].
Therefore, this clearly indicates that sensing and activation of IRE1α and IRE1β are different from each
other. Moreover, unlike IRE1α, the IRE1β activity is more similar to yeast IRE1 homologue. The amino
acid sequence of the human IRE1α and IRE1β sensor, kinase, and RNase domains has 48%, 80%, and
61% identity, respectively [9]. IRE1α activates the X-box binding protein 1 (XBP1) transcription factor
through an unconventional splicing event while IRE1β partially reduces the site-specific 28sRNA
cleavage translation [9] and also cleaves XBP1 [10].

This difference in the nature of activity would contribute to their different downstream effects.
However, the question is how this functional difference is relevant in physiological conditions and
why these sensors act differently. The answer could be the tissue environment, intrinsic molecular
factors, or the nature of stress. Another point is that, in tissues like the gastrointestinal tract and airway
mucous layer, where both isoforms are expressed, the physiological requirement of both the isoforms in
these tissues needs to be understood. Both isoforms might function competitively or complimentarily
to each other during the UPR induction. It would be interesting to understand the x-factor, which
influences the IRE1β expression or repression.

IRE1 functional dimensions are very diverse; however, it has been majorly implicated in ER stress.
The tissue, pathological attributes, stress intensity, and the UProsome molecules association/dissociation
decide the nature of IRE1 activity. This versatile ER membrane molecule controls various cellular
functions, including cell morphogenesis, signal transduction, secretion, and regulation of many
chronic diseases. IRE1 expression in cells must be stringently regulated because overexpression
and prolonged activation of mammalian IRE1α and IRE1β induce apoptosis [11]. Therefore, during
adaptable disturbances, it gets transiently activated and then gets inactivated, whereas in severe stress,
its activity is for longer periods, which triggers the apoptosis inducing molecule and results in cell
death. The mechanisms of differential regulation of IRE1α in physiological conditions and in different
stress levels are still vague. However, this diverse activity is coordinated by a number of molecules
from the ER lumen, cytoplasm, and ER membrane, which form the UPRosome. Orchestrating this
molecule, cells can be directed towards survival or death. This difference in the nature of activity
contributes to their different downstream effects.

ER performs various cellular functions, such as protein folding, post- translational modifications,
fatty acid and sterol biosynthesis, xenobiotic detoxification, and intracellular calcium storage [12].
The rough endoplasmic reticulum on its external surface is lined with ribosomes and is involved in
processing and sorting of proteins. If the ribosomes translate the mRNA, a synthesized peptide is
inserted into the ER according to the signal sequence. Then, the signal sequence is cleaved, and the
protein is released into the lumen of the ER. The protein released into the ER may stay in the ER or move
through the Golgi to the lysosome or plasma membrane or may be secreted. However, regardless of its
final destination, the protein can undergo different processes in the ER lumen. These involve folding,
assembling into multisubunit complexes, formation of disulfide bonds, glycosylation, and glycolipid
additions. About one-third of total cellular proteins contains secretory proteins, and transmembrane
proteins are matured in the ER. Its functions require the environment in the ER to be oxidative and
rich in calcium and other protein folding machinery. The protein folding requirement and amount of
secretory protein synthesis vary depending on the cell types. Cells which are meant for the secretory
functions are rich in ER to meet the demand. Secretory proteins, helped by chaperones and other
movements, fold precisely to their native configuration as they pass through the ER. However, cells
can encounter conditions in which demand for ER protein folding activities exceeds the efficiency.
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Subsequently, ER protein folding functions will get a hit by different perturbations like viral infections,
cancers, neurodegenerative diseases, diabetes, inflammation, protein-folding diseases, and other
aberrations at a cellular level. This results in the accumulation of unfolded proteins in the endoplasmic
reticulum, referred to as ER stress. However, the cell has evolved a mechanism to detect these changes
and to restore homeostasis by activating signal transducing pathways, known as the UPR, and this
process is conserved from yeast to human. Initially, the UPR system attempts to restore homeostasis
by inducing transcription of folding enzymes, chaperones, oxidoreductases, and decreasing protein
translation, autophagy, lipid biogenesis, vesicular trafficking, and also by degrading ER-associated
mRNA, which helps to minimize translation in the initial adaptive phase. However, in the event of
failure of this adaptive process due to prolonged stress, UPR triggers cellular apoptotic pathways to
remove ER-stressed cells as a physiological process, but unrestricted apoptosis becomes pathological,
which in turn leads to loss of cells in essential organs [13]. Thus, the UPR is an essential fundamental
process in the quality control of proteins not only during ER stress, but also in normal growth
conditions [14].

This review is focused primarily on recent insights/developments in structure, mode of activation,
dimer/tetramer/oligomerization, phosphorylation status, partners/regulators, and nuclease activity
of human IRE1α. Furthermore, it includes IRE1α involvement in cellular signaling, UPR-dependent,
and independent mechanisms as well as its biological meaning in diseases.

2. IRE1α: Structure and Mode of Activation

Human IRE1α is a 977 amino acid protein of ~110 kDa. It is located on the ER membrane and
consists of an ER luminal domain, a type I transmembrane domain, and a dual enzymatic, hydrophilic,
cytosolic C-kinase, and endoribonuclease function domain [4]. The luminal domain comprises 441
amino acids. The important structural and functional necessary amino acids are Cys 109, Cys 148,
and Cys 332. Among these, Cys 109 and Cys 148 are conserved, and N-linked glycosylation site exists
at Asp-176. The core human IRE1α luminal domain exists between S24-V390 amino acids, where ER
chaperone BiP binds [15,16]. However, neither the N-linked glycosylation sites nor the cysteines appear
to influence IRE1α activity [17]. The cytoplasmic portion of IRE1α consists of about 512 amino acids,
and it has been subdivided into linker, kinase, and ribonuclease based on the function. The amino
acid region between 551–832 is further separated into smaller parts containing diverse functional
motifs, including AA 551–650 for the adenosine triphosphate (ATP) binding pocket, AA 651–750 for
both the catalytic loop and activation loop, and AA 701–750 for the activation loop. The 551–650
part contains a few preserved residues that are specifically included in an IRE1α kinase domain
dimer interface interaction basic for the IRE1α autophosphorylation [18] and essential kinase activity
residue K547. The IRE1α cytosolic region has six phosphorylation sites; two at linker region (S551,
S562), three at kinase activation loop region (S724, S726, S729), and one at RNase domain region
(T973). Phosphorylation is a necessary step for the IRE1α to get enzymatic function. Among the six
sites, sites at the activation loop play a very important and necessary role. Mutations of S551, S562,
and T973 did not affect the splicing activity. This suggests that these sites may not contribute greatly,
but phosphorylation of activation loop residues ser724, ser726, and ser729 contribute, with the greatest
contribution from ser724 and ser726. Thus, the activation loop mutant reduced XBP1 splicing and
regulated IRE1-dependent decay (RIDD) activity [19]. The kinase phosphorylation responds to the
activation state of the RNase, proposing that phosphorylation of the activation loop is a vital step in
IRE1α -mediated UPR activation, and this indicates that, by regulating, phosphorylation can control
the different enzymatic functions, and it may be possible to differentiate RIDD and XBP1 splicing
based on the phosphorylation status. The extent of phosphorylation may decide the IRE1α dimer or
oligomer formation or vice-versa so that IRE1α can be guided to distinct downstream activity leading
to cell death or survival or phosphorylation may trigger the IRE1α to dimerize or oligomerize in
the ER membrane plane by binding unfolded proteins to its UPR sensor domain or by discharging
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oligomerization-repressive chaperones or both, to permit the trans-autophosphorylation of juxtaposed
kinase domains [20–22].

An RNase domain activation by kinase domain is also influenced by the pre-binding of cofactors.
This association governs the subsequent conformational rearrangement of the RNase domain depending
on the chemical properties of bound cofactors. Chemical perturbations of cofactors can repress the
conformational phase. The oligomerization of the receptor is affected by the cofactor-induced
conformational transition. [23,24], and phosphorylation regulates oligomerization [25].

IRE1α can exist in three physiological forms, an inactive monomeric form bound with BiP at the
amino-terminal luminal domain (NLD), and an active dimeric or multimeric form. To understand
IRE1α comprehensively, many researchers have been trying to elucidate the structure and mode
of activation using both yeast and metazoan IRE1 forms. Even though there are distinct opinions
and theories, these studies have shed light on this biologically important molecule. The dumpy
ER environment during pathological conditions and also at a low level, the regular physiological
conditions lead to the activation of IRE1α [20].

The activation models proposed for human and yeast IRE1 are slightly different. It stays as an
inactive monomer during unstressed state due to the binding of ER chaperone glucose-regulated
protein 78 (GRP78)/BiP. By modulating the sensitivity and dynamics of IRE1α activity, BiP provides
a buffer for inactive IRE1α molecules, which ensures sufficient action to maintain homeostasis in
protein folding [26]. As soon as misfolded proteins start accumulating in the ER lumen, in the
first step, due to its high affinity towards misfolded proteins, BiP dissociates and frees the IRE1α.
In the second step, direct interaction of misfolded proteins with core stress-sensing region (CSSR) of
IRE1α (which is prevented during normal state) makes, by conformational change, luminal domain
homodimerize or oligomerize depending on the stress intensity [27]. In the third step, dimerized
protein autophoshorylates at the cytosolic kinase domain, leading to a conformational change in the
C-terminal RNase domain and gaining the endoribonuclease function [7,28–30]. Four ligands; ADP,
quercetin, SR2+, and Mg2+, are involved in stabilizing the active conformation of IRE1α when BiP is
dissociated [31,32].

In yeasts, IRE1 activation is regulated through direct interaction with misfolded proteins, but,
later, it is complemented by the BiP dissociation [22,27]. This was evidenced by a study where
UPR was attenuated in the BiP overexpression system [33,34]. However, the UPR attenuation in the
BiP overexpression system could be due to the increased folding activity, which decreased the ER
stress rather than directly inhibiting IRE1α activation [35]. Furthermore, Oikawa et al. added that
self-association of core luminal region and BiP dissociation are not sufficient for activation of the IRE1α;
thus, another unknown change on the luminal side is crucial for IRE1α activation [36]. Membrane
lipid aberrancies are also sensed by IRE1α, but maybe in a different manner [37].

An alternative “BiP-independent” model of UPR activation has been suggested in yeast, which
points to a direct role for unfolded proteins in UPR activation. At the dimerization interface, the crystal
structure of the IRE1 core luminal domain (residues 114449) enters groove, which looks like the
peptide-binding domains of major histocompatibility complexes (MHCs) [38]. Interestingly, misfolded
proteins can interact directly in MHC as a grove, and it is a critical driving force for the clustering
of IRE1 luminal domains, and this will lead to the closure of cytoplasmic domains, resulting in
autophosphorylation and conformational change leading to RNase domain activation and further
downstream signaling pathways [22,27,39]. Furthermore, IRE1 does not require any specific consensus
sequence, but rather binds to peptides containing basic and hydrophobic residues, usually located in
the core of folded proteins, but become exposed in misfolded proteins [22].

In contrast, in humans, BiP-dependent activation exists because this groove is too narrow for
peptide binding in IRE1α and also peptide binding to this groove is not required for dimerization [40].
However, a recent study from Karagaz et al. delineated the activation mechanism of IRE1 in both
yeasts and mammals. They suggested that the IRE1α can also bind to the unfolded proteins similar to
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yeasts, based on the amino acid in the peptide, then induce allosteric conformation change, which
results in the oligomerization at a conserved region [41].

Once IRE1 luminal domains get activated and dimerized, which bring the cytosolic portion closer,
trans- autophosphorylation takes place at kinase domains of the two molecules through the binding of
nucleotide. Trans-autophosphorylation results in the conformation change in the kinase domain which
further allosterically regulate the positioning of the RNase domain [25] for further oligomerization and
its activation. IRE1α oligomerization state and RNase domain activity are affected by the conformation
of helix-αC in the kinase domain.

The cytosolic domain is important for clustering of both IRE1α and IRE1β, forming foci upon ER
stress. The difference between the two molecules is at the signal transition from monomer to oligomer
or vice-versa. IRE1α activation seems quick and transient and attenuates soon after adaptation [9,20,42].
However, the activation of IRE1β is slow and continual to elicit apoptotic cell death [9], as observed in
the case of sustained repression of microsomal triglyceride transfer protein (MTP) mRNA [43] and
chronic change in intestinal lipid absorption [44,45]. These differences in the nature of activity in IRE1α
and IRE1β contribute to their different downstream effects.

3. Activation Mechanism of IRE1α during Physiological Stress

Since prolonged activation of IRE1α causes cell death, activation and inactivation of IRE1α must
be properly regulated in the cell. Therefore, during adaptable disturbances, it is transiently activated
and then gets inactivated, whereas, in severe stress, its activity is endured for a longer period, triggering
apoptosis-inducing molecules, resulting in cell death. The mechanism by which IRE1α is differently
regulated in physiological and pathological conditions still needs to be understood.

Unlike yeast IRE1, IRE1α luminal domain is sensitive and is easily triggered by minute changes
in the ER lumen. Since IRE1α does not have an intrinsically disordered intramolecularly antagonizing
subdomain, Subregion I, like in yeast, which tightly represses the yeast IRE1 activity under conditions
of no stress or weak stress [46], and mutation at this site results in constant activation and disturbs
the yeast growth. Yeast IRE1 has several homomeric interfaces in its lumen and forms polymer
oligomers [38]. On the contrary, IRE1α’s luminal domain has a single interface and forms dimers or
small oligomers [16]. In metazoans, activation of PRKR-like endoplasmic reticulum kinase (PERK) is
tightly controlled because it carries similar subdomains like in yeast IRE1. This could be the reason
that, in metazoans, IRE1α is the first UPR sensor to get activated before PERK.

Furthermore, an alternative mechanism of IRE1α exists, where BiP still binds to activated IRE1α,
especially in physiological stress, such as inositol depletion for a prolonged time. Under these
conditions, IRE1α may be activated as a homodimer. In physiological and in some persistent low-level
ER stress conditions, IRE1α is weakly activated, but it is continuous. This low-level activation may
not require cluster formation or dissociation of BiP. Like in yeast IRE1, mutant W426A aborted cluster
formation, but formed dimer and it still showed considerable activity, and even some chemical
ER stress inducers like dithiothreitol (DTT) showed similar activity [47]. This indicates that, upon
physiological stress or in some persistent diseases, IRE1α activity may be controlled in dimer state by
its associated molecules, which would disrupt the cluster formation to strive for the cell adaptation
rather than apoptosis.

However, this diverse activity is coordinated by the number of molecules from ER lumen,
cytoplasm, and ER membrane, which forms the UPRosome. The tissue, pathological attributes, stress
intensity, and the UPRosome molecules association or dissociation decide the nature of the IRE1 activity.

4. IRE1α in ER Stress and Its Crosstalk with Other UPR Signal Transducers

UPR is mediated by three ER membrane localized sensors IRE1α, PERK, and activating
transcription factor 6 (ATF6), which induce different interconnected downstream signaling cascades
to influence the life–death decision. However, these transducers are negatively regulated in normal
conditions by the ER chaperone BiP/GRP78, but, during ER stress, BiP dissociates and binds to the
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misfolded proteins. UPR transducers that are free of BiP get activated and trigger downstream signaling
pathways that try to reestablish the normal ER function.

The PERK/EIF2AK3 pathway restores the homeostatic condition by reducing the new protein
load by attenuating the protein translation. Activated PERK dimerizes and is autophosphorylated
and then forms large clusters [28] which phosphorylate eIf2α (eukaryotic translation initiation factor 2
alpha) [48] on Ser51 and inactivate its activity, which results in attenuation of protein synthesis. However,
phosphorylated eIf2α can selectively allow the mRNAs with internal entry sites/mRNAs containing
short open reading frame (ORF) in their 5’ UTR (µORF) like Activated transcription factor 4(ATF4) [49].
This transcription factor activates both prosurvival genes involved in protein folding, redox metabolism,
autophagy along with endoplasmic-reticulum-associated protein degradation (ERAD), and also initiates
the expression of apoptotic gene C/EBP homologous protein (CHOP)/GADD153. Furthermore, CHOP
induces GADD34 which restores the protein synthesis by dephosphorylating eif2α through interacting
with protein phosphatase 1C(PP1C) [50]. A short-time halt in protein translation is advantageous for
cell survival, but chronic ER stress PERK signaling upregulates transcription factor ATF4 and CHOP,
which enhances protein synthesis and contributes to cell death due to ROS production through ERO1
and ATP depletion [51]. PERK also induces cell death by triggering caspase 8 through death receptor 5
(DR5) [52].

However, the interlink activity with other ER stress transducers is not well established.
PERK-mediated phosphorylation of eif2α increased the stability of XBP1s mRNA through translation
inhibition [53]. This results in increased XBP1 protein levels and its target genes during the UPR.
The hepatocyte-specific deletion of IRE1α in mice resulted in the activation of the UPR–PERK
pathway [54,55]. Deprivation of IRE1-XBP1s in acinar cells leads to a sustained activation of
PERK/EIF2α/ATF4/CHOP pathway and development of pancreatic pathology [56]. The PERK and
IRE1α pathway have the control on DR5 expression but exert opposing effects depending on the stress
intensity. IRE1α plays an antiapoptotic role by degrading DR5 mRNA during the initial adaptive
process, whereas PERK-mediated CHOP increases the DR5 expression in unmitigated stress [52].
Recently, it was reported that PERK regulates the miRNA cluster formation, which in turn regulates
the ATF6 activity and also influences the RIDD activity of IRE1α [57]. IRE1α expression is regulated by
the PERK/ATF4 pathway during ER stress [58]. Additionally, IRE1α also suppresses protein synthesis
by enhancing the phosphorylation of eif2α through its RIDD activity on CReP/Ppp1r15b mRNA,
an eif2α phosphatase, and decreases the stress level in the cell [59]. This interconnection between the
UPR molecules show their dependency and complementation in maintaining homeostasis in various
diseased conditions and also may contribute in decision-making towards survival or death.

ATF6 is a type II transmembrane protein with two subtypes ATF6α and ATF6β, which upon
activation by BiP dissociation translocate to the Golgi compartment where it gets cleaved into N-terminal
cytosolic domain P50 (50kDa) by two proteases: serine protease site 1(S1P) and metalloprotease site-2
protease (S2P). The cleaved P50 translocates to the nucleus and binds at CRE and ERSE-1 elements
and induces the prosurvival genes BiP, GRP94, XBP1, and also prodeath transcription factor CHOP.
However, the contribution of ATF6 in ER homeostasis maintenance is relatively minor as it was
demonstrated in ATF6 KO mice, which showed no apparent defects, and its function might be
compensated by XBP1[31].

IRE1-mediated splicing can activate the translation of a protease, which subsequently cleaves
ATF6 [60]. In support of this hypothesis, Wang et al. demonstrated that the kinase-defective mutant
hIRE1α K599A blocks ER-stress-induced activation of ATF6 in mammalian cells, indicating that
ATF6 cleavage is downstream of IRE1α signaling [61]. ATF6 and IRE1α synergistically control gene
expression of endogenous XBP1s in osteoarthritic cartilage [62]. However, the IRE1α-dependent
induction of UPR transcription majorly depends on the ATF6 produced XBP1 [31,63]. This indicates
that the interdependency of these molecules is evolutionarily developed to maintain homeostasis.

Upon sensing ER stress, IRE1α, molecules form dimers or oligomers on the ER membrane
and subsequently the trans-autophosphorylate [22], which results in the allosteric changes in its
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conformation and the c-terminal RNase domain, will gain the function [4]. Upon activation,
IRE1α cleaves introns from specific mRNA by the unconventional method in the cytoplasm in a
spliceosome-independent manner, leading to frameshift and introduction of a new termination codon
in coding sequence [64], but it requires the existence of a pair of characteristic stem–loop structures and
conserved consensus sequence CNCNNGN (N is any base) sequence in mRNA [10,65]. The specific
mRNA targeted in yeasts is the HAC1 and removes a 252-nucleotide intron [66]. In mammalians,
XBP1 is targeted and removes a 26-nucleotide intron [67], and in plant (Arabidopsis), bZIP60 mRNA
is targeted and removes 23 nucleotides [68]. This cleavage generates a 2′3′-cyclic phosphate at the
3′end of the 5′ exon and a 5′-OH at the 5′ end of the 3′exon. Furthermore, these ends are ligated
by tRNA ligases, Rlg1p (cyclic phosphodiesterase, polynucleotide kinase, and RNA ligase) in yeast
results in spliced HAC1 (HAC1s) transcript [69]. In metazoans, RNA ligation is mediated by RtcB,
generating a stable transcription factor that is spliced XBP1 (XBP1s) [70]. In plants, RLG1 generates
spliced bZIP60 [71]. RtcB ligation is cooperated by archease [72,73] in GTP and Mn2+ dependent
manner [74,75]. Generated XBP1s induce multiple cell survival factors. Additionally, IRE1 activation
causes, other than generating a stable spliced transcription factor like XBP1s, cleavage of other
ER-localized mRNAs, leading to their degradation in a process named as Regulated Ire1-Dependent
Decay (RIDD) [76]. Virus-induced RIDD activity in neuroblastoma cells (Neuro2a) degraded the host
RNA, and helped in viral amplification [77]. In addition, IRE1α-dependent decay of the pro-apoptotic
microRNA miR-125a leads to the corresponding increase in the amounts of antiapoptotic Bcl-2 family
proteins, inhibiting the cell apoptosis in viral infection [78].

IRE1α induces cell death pathway through various routes by activating different
apoptosis-inducing molecules. However, this action of IRE1α is very much controlled or restricted
depending on the level of stress or type of stress and also on the type of tissue. IRE1α activity
is necessary for the normal life of the cell and also in the stress adaptive process, but when the
threshold breakpoint crosses the balance of survival and death signals, IRE1α may start cell downfall
signals, and this could be regulated by regulating partner molecules. IRE1α triggers cell death by
promoting the intrinsic apoptosis pathway by interacting with a hub of diverse molecules through
TNF receptor-associated factor 2 (TRAF2). TRAF2 and apoptosis signaling kinase 1 (Ask1) interact
and phosphorylate the c-Jun N-terminal kinase (JNK). Sustained JNK activation by controlling the
activity of members of the Bcl-2 family is known to cause apoptosis. Interestingly, IRE1 activation
of JNK is also confirmed by receptor-interacting serine/threonine protein kinase 1 (RIPK1) via
TNF-independent TNFR1 interaction at the ER membrane [79,80]. RIPK1 and IRE1 association may
also promote death receptor-independent caspase-8 activation; consequently, caspase-9 and caspase-3
get activated inducing cell death. Additionally, the IRE1–TRAF2 interaction also promotes NF-κB
in TNFR1-dependent manner and is dependent on the autocrine production of TNFα. IRE1 induces
apoptosis of hepatocyte in ER stress dependent manner by inhibiting AKT through increasing pleckstrin
homology-like domain family A, member 3 (PHLDA3) expression [81]. Phosphorylated JNK stimulates
the cytochrome c-mediated apoptotic pathway by phosphorylating different members of Bcl-2 family
of proteins [82,83]. IRE1α activates multiple signals via its endonuclease and kinase domains to
respond to ER stress. The endonuclease domain of IRE1α promotes splicing of the X-box binding
protein 1 (XBP1), encoding mRNA, and regulates the IRE1α-dependent decay of mRNAs, including
the DR5 encoding [52]. Mammalian target of rapamycin complex 1 (MTORC1) induces apoptosis
under ER stress conditions by suppressing Akt and thereby activating the IRE1-JNK pathway [84].
IRE1α regulates certain cell cycle regulatory gene like cyclin A. It involved proliferation with tight
control of a cell cycle in an XBP1 dependent manner [85].

RIDD activity has been also reported as a beneficial process during the initial stage of ER stress.
This contributes to the cell adaptive process further by reducing the ER load and helping in recovery.
However, under unresolved ER stress, the RIDD process may extend its degradative activity to other
essential mRNAs, which creates an imbalance in the anti-apoptotic and pro-apoptotic niche, resulting
in cell death. Further degradation of mRNA fragments can induce inflammation [86]. It has also been
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stated that RIDD contributes to the BID-dependent activation of the mitochondrial apoptotic pathway
by degrading miRNA to repress caspase-2 expression and activation [87,88].

5. IRE1α in Cellular Physiological Function

The diversity among cell types like secretory cells, differentiating cells, metabolizing cells, and their
functionality necessitates regular adjustment of their ER capacity. Therefore, UPR signaling is almost
certainly used even during normal physiology to adjust the ER function in response to fluctuating
demands [89]. During cell differentiation, cells require and produce a large amount of secretory
proteins. Thus, cells must therefore increase their secretory machinery to handle the high demand.
These physiological processes must be handled optimally to progress in the proper development of
tissue. Table 1 describes different functions of IRE1α in cellular physiology.

Being a core molecule in UPR, IRE1α is involved in many basic cellular functions other than its
involvement in ER stress signal transduction. Its absence has led to the dysfunction of many cellular
signals. It has been majorly implicated in cell differentiation, lipid synthesis, membrane integration,
secretion, and metabolic activities. IRE1α knockdown results in the embryonic lethality itself due to a
reduction in vascular endothelial growth factor-A, labyrinth dysfunction in the placenta, and fetal liver
hypoplasia [90], thus showing it is an essential molecule in the cell. However, conditional knockout or
knockdown studies have helped to understand this molecule’s important role in cell physiology.

Table 1. Different functions of IRE1α in cellular physiology.

Physiological Role Mechanism Model/Tissue Region References

Tissue growth Inducing XBP1s dependent function. Liver [91]

Lipogenesis
Regulates lipogenic gene expression

involved in serum cholesterol triglyceride
and free fatty acid synthesis.

Liver [92]

Secretory function IRE1 deletion impaired the insulin, saliva,
and antibody secretion.

Exocrine glands,
plasma cell, pancreatic

acinar and β cells,
salivary serous tissues

[93–95]

Lipid metabolism IRE1β-mediated RIDD activity on MTP and
reduce dyslipidemia. Mice/Liver [96,97]

Lipid, glucose, and bile
acid metabolism

Deletion of hepatic XBP1 disables the bile
acid metabolism in mice. Liver [94,98]

Organelle biogenesis and
homeostasis

IRE1/XBP1 increases the synthesis of
membrane phospholipids, especially in
secretory cells and fibroblasts to carry

out their huge task to meet the
physiological demand.

Endoplasmic reticulum [99–101]

B cell differentiation XBP1s dependent function, deletion
impaired differentiation. Lymphoid tissue [102]

Eosinophil
differentiation

XBP1s dependent function, deletion
impaired differentiation.

myeloid tissue
granulocyte [103]

Embryogenesis IRE1α, IRE1β function in mesoderm
development, XBP1 dependent pathway.

Human/Xenopus laevis.
Mesoderm, gut [104–106]

Osteoclastogenesis
IRE1α/XBP1-mediated osteoblast and

osteoclast differentiation, induction of bone
morphogenetic protein-2 and PTHR.

Osteoblast, Osteoclast [107–109]
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Table 1. Cont.

Physiological Role Mechanism Model/Tissue Region References

Immune cell
development

IRE1α/XBP1 functions, deletion impaired
antigen presentation to T cells, proliferation,
and differentiation. Loss of RIDD and XBP1

causes the cDC1 cell death.

Dendritic cells,
Lung and small intestine [110]

Cell cycle regulation

IRE1α /XBP1 drives cells from G1 to
S-phase through regulation of cyclin A1

and D1, promote compensatory
proliferation of β-cells.

Pancreatic β cells [111,112]

Photoreceptor
differentiation

IRE1α /RIDD level and increased the
delivery of rhodopsin-1 to the rhabdomere.
Loss of IRE1α disrupted the rhabdomere

morphogenesis and the ER anatomy.

Drosophila compound
eye R cells [113,114]

Chondrocyte
differentiation

IRE1α negatively regulates chondrocyte
differentiation through inhibition of

granulin-epithelin precursor (GEP) and by
upregulating parathyroid hormone-related

peptide (PTHrP).

Chondrocyte [109,115]

Dendrite morphogenesis Perturbation of the IRE1 pathway causes
loss of dendritic branches.

Caenorhabditis
elegans/neurons [116,117]

Enterocytes

IRE1β inhibited the differentiation of
Caco-2 cells into enterocyte-like cells by

suppressing microsomal triglyceride
transfer protein (MTP).

Intestine [43]

Mucous secretion

IRE1β knockout mice are viable, but are
more susceptible to colitis.

IRE1β is needed to maintain normal
transcription rates of mucin genes and
genes associated with the development

of mucins.

Intestine goblet cells,
gut epithelium, airway

epithelium
[5,6,118]

Metabolic
transformation of cells

IRE1/XBP1 pathway contributes to
lipogenic gene expression during locational

metabolism and lipid metabolism by
controlling liver hormone; fibroblast

growth factor 21(FGF21).

Mammary gland, Liver,
adipocytes [119–121]

Tissue regeneration IRE1/XBP1 through direct regulation of
transcription factor STAT3. Mice/hepatocyte [122]

Hematopoietic cells IRE1/XBP1 pathway plays a role in cell
cycle, differentiation of hematopoietic cell. Hematopoietic tissue [123]

6. Modulation of IRE1α Downstream Activities toward Divergent Cell Fate

Under physiological and pathological conditions, different magnitudes of IRE1α activity indicate
that its selection of downstream substrates, XBP1, other mRNA, miRNA, or JNK. Interestingly,
the structure–activity relationship studies demonstrated an allosteric relationship between the
kinase and RNase domains of IRE1α, which provided an opportunity to modulate its downstream
activities [124–126]. Many small chemical molecules have been reported to modulate the RNase activity
as kinase inhibitors/ATP-competitive molecules, and type 1 kinase inhibitors like 1NM-PP1, APY29,
staurosporine, and sunitinib which inhibit autophosphorylation, but induce an active conformational
change in both kinase and RNase activity, and type II kinase inhibitors are Kinase-Inhibiting RNase
Attenuators (KIRAs) that allosterically inhibit IRE1α’s RNase activity by breaking oligomers [127].
IRE1α activity can be modulated through inhibition or activation to yield diverse clinical benefits
depending on the type and condition of the disease since IRE1α serves both adaptive, pro-survival,
and pro-apoptotic activity. Numerous studies have been reported about the application of small
chemical modulators in other diseases such as cancer or other diseases [128–130]. Under ER stress,
optimized application of KIRA, KIRA6 and inhibition of IRE1α promoted cell survival and protected
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photoreceptor cells while maintaining pancreatic β cells and reducing hyperglycemia in Akita diabetic
mice in vivo [25]. Information about different chemical modulators was updated elsewhere [131].

Depending on therapeutic purpose, IRE1α modulators specific to either XBP1 splicing or RIDD
behavior may be clinically useful. Autophosphorylation and dimer state for RIDD activity [125],
which causes decay of many mRNAs, including those encoding chaperones, result in apoptosis. This
is bypassed using chemical modulators to activate the RNase by an alternate mode that enforces
XBP1 splicing and averts mRNA decay and apoptosis. Therefore, by controlling kinase domain
conformation, IRE1α can be directed towards divergent cell fates during ER stress [125]. Additionally,
phosphorylation of the IRE1α proportionately increases the oligomeric state of kinase/RNase subunits,
reaching a hyperactive state, and its biological roles switch from adaption to destruction [25]. However,
oligomerization can be allosterically forced without phosphorylation [132].

7. Intrinsic Modulation of IRE1α by Its Binding Partner and Functional Implication

IRE1α interacts with many other molecules, both in physiological condition or stress condition.
Collectively, IREα, with its partner’s complex, is termed as UPRosome. In this complex, some of
the partners involved enhanced its functions, and stability and some others reduced them (Table 2).
The nature of the interaction between IREα and its partners in the complex is dynamically regulated
based on the tissue specificity or on the type of insults [133,134]. IRE1α activation is regulated and
fine-tuned by its regulatory partners both from the ER lumen and cytoplasmic side. In this section,
considering IREα as the center molecule, we have discussed its partners and their role in different
signaling events and how these can be mechanistically modified to orient cell towards death and
survival. Apoptosis activation in response to ER stress may not be due to the preferential activation of
a single UPR branch or by a switch from one branch to the other; rather, it could be due to the relative
timing of IRE1, and PERK signaling determines the shift from cell survival to apoptosis [135].

Table 2. Partners in regulating IREα endoribonuclease activity.

IRE1α Binding Partner Function of IRE1α
Binding Partner Functional Implication References

NMIIB (Non muscle
myosin IIB)

A Cytoskeleton
myosin protein

Interacts with IRE1α and regulates its
oligomerization and activation. In addition,

recruits other regulatory molecules to
oligomerized foci.

[136]

AIP1 Apoptotic signaling
transducer

AIP1-IRE1α association enhances IRE1
dimerization and its downstream

JNK/XBP1 activation.
[137]

PDIA6
Chaperonic protein of ER
that inhibits aggregation

of misfolded proteins

PDIA6 attenuates the activity of IRE1α.
PDIA6, an ER resident protein disulfide

isomerase. Negatively regulates IRE1α by
binding to its luminal domain at cysteine

148, if it is oxidized, IRE1α will be activated.
PDIA6-deficient cells hyperrespond to ER
stress with sustained autophosphorylation

of IRE1α and increased XBP1s, pJNK.

[138]

PTP-1B Protein-tyrosine
phosphatase 1B

In the absence of PTP-1B, ER stress-induced
IRE1α downstream activities were

impaired, especially XBP1 splicing and
JNK activation.

[139]
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Table 2. Cont.

IRE1α Binding Partner Function of IRE1α
Binding Partner Functional Implication References

UbD Ubiquitin-like modifier
family member

UbD regulates IRE1α/c-Jun N-terminal
kinase signaling pathway. It provides a
negative feedback on cytokine-induced

activation of the IRE1α/JNK pro-apoptotic
pathway in cytokine-exposed beta cells, but

did not change cytokine-induced
XBP1 splicing.

[140]

TMBIM6

ER localized
antiapoptotic protein,

also known as Bax
inhibitor-1 (BI-1)

This has been implicated in the negative
modulation of XBP1 splicing activity

through interacting with a cytosolic region
of IRE1α.

[141]

Hsp47 Heat shock protein

Hsp47 binds directly to the IRE1 ER luminal
domain with high affinity, eliminating BiP

from the complex to allow IRE1α
oligomerization for optimal signaling.

[142]

HSP72 Heat shock protein

Overexpression of HSP72, survival effect of
HSP72 under ER stress is mediated by

enhanced XBP1splicing and its target genes.
Regulation of UPR by HSP72 is by

formation of stable protein complex
with IRE1α.

[143]

HSP90 Heat shock protein

HSP90 stabilizes IRE1α by preventing the
proteasomal degradation, and treatment of

HSP90 inhibitor decreases IRE1α
protein stability.

[144]

JIK c-Jun N-terminal
inhibitory kinase

IRE1α and TRAF2 complex induce
apoptotic signal through c-Jun N-terminal

kinase pathway and activation
of caspase-12.

[145]

JAB1
Jun activation

domain-binding
protein-1

Mutant JAB1 down-regulates the UPR
signaling pathway through tight binding

with IRE1alpha.
[146]

RACK1 Receptor for activated
C-kinase 1

Interacts with IRE1α and plays a role in
dephosphorylation of IRE1α by protein

phosphatase (PP2A). Furthermore, IRE1α
and RACK1 association may contribute in

this process of antiapoptosis by
phosphorylating AMPK and Bcl-2 through

enhancing autophagy.

[147,148]

Nck SH2/SH3 adaptor protein

Nck and IRE1α association in immune T
cells have a critical role in ER-stressed

activation of MAPK pathway and
cell survival.

[149]

RNF13 RING finger protein

RNF13 knockdown cells showed resistance
to apoptosis and JNK activation triggered

by ER stress. Conversely, overexpression of
RNF13 induces JNK activation and

caspase-dependent apoptosis.

[150]

PARP16/ARTD15
Poly ADP-ribose

polymerases/ADP-ribosyl
transferase D proteins

PARP16 is an upstream regulator, and
modification increases its kinase and the

endonuclease activity of IRE1α.
[151]

BAX/BAK Pro-apoptotic protein
BAX and BAK directly interact at cytosolic
domain of IRE1α during stress condition

and promote the stabilized IRE1α activity.
[152]
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Table 2. Cont.

IRE1α Binding Partner Function of IRE1α
Binding Partner Functional Implication References

BIM/PUMA Pro-apoptotic protein

BIM and PUMA have also been linked to
IRE1α regulation by direct binding with

IRE1α via their BH3 domain in
stress-dependent manner. Cells deficient in

both BIM and PUMA exhibited reduced
splicing of XBP-1 and RIDD.

[153]

NMI N-Myc interactor

Interacts and modulates IRE1α especially in
pancreatic beta cell. It negatively regulates

the IRE1α-mediated JNK activation and
further the cell death.

[154]

DCR2 Dose-dependent
cell-cycle regulator 2

Physically interacts with phosphorylated
IRE1α and causes dephosphorylation and

IRE1 deactivation.
[155]

Cab45S A member of the
CREC family

Negatively regulates RNAse activity of
IRE1α and prevents more spliced forms of
X-box-binding protein 1 mRNA at the early
stage of stress and further phosphorylation

of c-Jun N-terminal kinase
induced apoptosis.

[156]

SYVN1
Functions in

ER-associated
degradation process

Coexpression of IRE1 and SYVN1 increased
IRE1 degradation and ubiquitination. [157]

DDRGK1
DDRGK

domain-containing
protein 1

Interaction of DDRGK1 with IRE1α
counteracts ubiquitination and

subsequently inhibits the ERAD-mediated
degradation of IRE1α.

[55]

PRKCSH Protein kinase C
substrate 80K-H

In ER stress condition, PRKCH steps up ER
stress-mediated autophosphorylation and
oligomerization of IRE1 through mutual

interaction followed by XBP1 splicing and
MAPK activation which contribute

to tumorigenesis.

[158]

Sigma-1 receptor
Unique ligand-regulated
molecular chaperone in

the ER.

Under ER stress conditions, interacts with
and stabilizes IRE1α and enhances cell

survival through prolonged activation of
the IRE1α-XBP1 pathway, especially in

cancer cell survival.

[159]

Sec61 Channel-forming
translocon complex

Forms a hetero-oligomeric complex with
IRE1α upon ER stress. It recruits XBP1u
and aids in splicing. The Sec61-IRE1α

complex defines the extent of IRE1α activity
and may determine cell fate decisions

during ER stress conditions.

[160,161]

Fortilin Pro-survival molecule

Interacts with the cytoplasmic domain of
IRE1α, inhibits both kinase and RNase

activities, and protects cells from apoptotic
cell death.

[162]

Filamin A

Actin crosslinking factor
involved in the
remodeling of
cytoskeletons

Through a novel domain located at the
distal C-terminal region, monomeric IRE1α

interacts physically with Filamine A. A
pro-migratory stimulus causes dimerization
of IRE1α, increasing Filamin A binding and

PKCα recruitment. Phosphorylation of
Filamine A by PKCα at S2152 improves
actin cytoskeleton remodeling and cell
migration in different animal species

[163]

ABL kinase Tyrosine-protein kinase
ABL kinase interaction enhances IRE1α

RNase activity and potentiates its apoptosis
signaling pathway.

[164]
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8. IRE1α in Cellular Signaling: Calcium, ROS

The intracellular calcium ions regulate many cellular processes like exocytosis, transcription,
cell proliferation, and apoptosis [165]. Usually, intracellular calcium levels are tightly regulated by
multiple calcium channels, pumps, and binding proteins. Calcium released from intracellular stores
of endoplasmic reticulum, mitochondria, lysosome, and nucleus eventually moves across the cell
membrane to maintain the intracellular calcium concentration. Among these, ER is the most important.
It can store calcium thousands of time higher the cytoplasmic calcium level [166].

Two calcium-release channels in the ER membrane are inositol 1,4,5-triphosphate receptors (IP3Rs)
and ryanodine receptors (RyRs) [167,168], and the Ca2+ inlet channel consisting of sarco-endoplasmic
reticulum Ca2+-ATPases (SERCAs) allows Ca2+ movements across the ER membrane [169]. In spite of
tight regulation of Ca2+ release from the ER, several stress stimuli result in depletion of ER calcium and
an overload of cytosolic calcium. The increased cytoplasmic calcium can trigger apoptosis through
abnormal activation of calpain or phosphatase calcineurin in the cytoplasm [170,171], and activation of
ER-resident caspases or mitochondrial dysfunction [172].

UPR sensor IRE1α has been shown to be involved in the regulation of calcium release through
IP3R not by direct interaction, but with other adapter molecule apoptosis signal-regulating kinase
1 (ASK1). Usually, calcium and integrin binding protein 1 (CIB1) binds to IP3R and inhibits Ca2+

release from IP3R [173] and In addition, it is assumed that CIB1 calcium regulation is modulated by
ASK1 interaction [174]. In SHSY5Y cells, knockdown of IRE1α results in more cytoplasmic calcium
due to enhanced interaction of CIB1-ASK1 and free the IP3R from CIB1 inhibition. IRE1α regulates
Ca2+ homeostasis of the ER by trapping ASK1 and reduces the binding of ASK1 and CIB1, and also
reduces cell death due to the calcium-mediated ROS accumulation. IRE1α plays a role in ER calcium
homeostasis in physiological and pathological conditions [175]. However, it is well known that the
IRE1α-ASK1 pathway mediates cell death under pathological conditions [14]. Activation of IRE1α due
to ER stress leads to dimer/oligomer, then depending on the stress level, IRE1α binds to TRAF2 and
ASK1. In normal conditions, IRE1α mostly exists as a monomer, so interaction with TRAF2/ASK1 is
questionable. Further studies are required to clarify how it will be different in normal/stress condition,
whether it is in monomer/dimer state.

Furthermore, it is known that phosphorylation of Bcl-2 affects ER calcium homeostasis and
also its antiapoptotic activity [176]. When Bcl-2 is phosphorylated, calcium discharge from the ER
is increased with a secondary increase in mitochondrial calcium uptake. Low-level ER stress or
preconditioning, surprisingly, increased the phosphorylation of Bcl-2 by IRE1α at Ser70, which exerts
hepatoprotection through increased autophagy [148]. However, in another study, phosphorylated Bcl-2
showed decreased antiapoptotic activity due to decreased interaction with pro-apoptotic proteins [177].
In addition, the downstream target of IRE1α molecule JNK can phosphorylate Bcl-2 at Thr69, Ser70,
and Ser87 within the unstructured loop [178,179]. Therefore, phosphorylation of Bcl-2 either directly
by IRE1 or through JNK may have an impact on ER calcium homeostasis. These studies showed
the significance of IRE1α in calcium homeostasis and cell survival during ER stress and revealed a
previously unknown calcium-mediated cell death signal between the ER IRE1α-InsP3R pathway and
the mitochondrial redox-dependent apoptotic pathway. In addition, the IRE1α/XBP1 pathway exhibits
endoplasmic reticulum calcium store expansion and amplified calcium-mediated inflammation [180].

IRE1α is predominantly located in mitochondria-associated membranes (MAMs). The ER supplies
calcium directly to mitochondria via IP3Rs at MAM [159]. Sig-1R interacting molecule with IRE1α
translocates under chronic ER stress to MAM and influences IP3R [181], and stabilizes IRE1α to
increase the prolonged activation of the IRE1α-XBP1 pathway, thus facilitating cell survival [182].
Therefore, the IRE1-Sig1R-IP3R complex may possibly have a role in the regulation of ER-mitochondrial
interorganellar Ca2+ signaling and cell survival. The uptake of calcium in the mitochondrial matrix
enhances oxidative phosphorylation as a cofactor of several TCA cycle metabolic enzymes [183].
A recent study shows that IRE1α’s contribution to preserving the structure and role of MAM in
fine-tuning of mitochondrial respiration. The decrease in the rate of mitochondrial calcium uptake
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recorded here in IRE1α KO MEFs could translate into a drop in ATP levels, involving adaptive
mechanisms to maintain cell survival, including the AMPK energy sensor, and catabolic processes such
as autophagy induction [184]. Overall, this study indicates that, in the absence of ER stress, IRE1α has
a household function in mediating ER-to-mitochondrion contact.

Reactive oxygen species (ROS) is the most prominent molecule involved in cell signaling. Imbalance
in the ROS dynamics triggers cell death. This is produced usually through the electron transport chain
and the oxidative protein folding in mitochondria and ER, respectively [185,186]. Additionally, ROS
may also be generated as the primary function of NADPH oxidase (Nox) family enzymes [187]. It is
well known that increased ROS in the cell results in the ER stress and UPR activation, but it is required
to know that any downstream activities of the UPR signal transducers generate ROS. Here, we focused
on activated IRE1α’s possible involvement in ROS generation. Increased cytosolic concentration of
Ca2+induces mitochondrial ROS production [188]. IRE1α-deficient cells showed more ROS release
from the mitochondria due to dysregulated calcium release from the ER, which results in increased
calcium influx to mitochondria. IRE1α may be indirectly involved in the ROS generation through
Ca2+- mediated signaling between the IRE1α-InsP3R pathway in the ER and the redox-dependent
apoptotic pathway in the mitochondrion.

IRE1-dependent activation of CHOP through XBP1s and ASK1/p38 MAPK activation contributes
to ROS generation [189,190]. Interconnected signals between ER and mitochondria are the main source
of ROS. IRE1α triggered sustained activation of JNK, mediated the mitochondrial damage by binding
to the outer mitochondrial membrane protein Sab (SH3 homology associated BTK binding protein)
and subsequent inhibition of mitochondrial respiration [191], further leading to upstream activation of
the mitogen-activated protein (MAP) kinase cascade and induce the cell death [192]. This could be
very important in disease progression like in cardiovascular diseases like ischemia/reperfusion injury,
neurodegenerative diseases, and inflammatory diseases.

IRE1-instigated ROS mediated by JNK may also influence the stem cell proliferation and
also regulates intestinal stem cell (ISC) function and regenerative homeostasis in the intestinal
epithelium [193]. IRE1α being a UPR molecule and able to interact with PDI, an oxidoreductase
catalyzed disulfide bond formation and subsequent ROS [194]; thus, IRE1α and PDI interaction may
have a role in ROS generation. RIDD activity of IRE1α generates ROS and oxidoreductase imbalance by
increasing the thioredoxin interacting protein (TXNIP) through degrading TXNIP repressor microRNA
miR-17, further inducing cell death [195]. ER stress is generated during a bacterial infection as a body
defense mechanism. Though immune-secretory function is well established, the IRE1 pathway of
ER stress can kill the bacterial pathogen by sustaining ROS generation through an NOX2-dependent
manner [196].

ROS, such as hydroxyl radicals (OH), hydrogen peroxide (H2O2), and superoxide anion (O2-),
are chemically reactive to various biological objectives [197]. Dynamic protein cysteine thiols oxidation
by H2O2 leads to cysteine sulfenylation (SOH), sulfinylation (SO2H), and sulfonylation (SO3H).
Among these, oxidation to SO3H is irreversible. S-sulfydration (also called persulfidation) can happen
after responses between subsidiaries of hydrogen sulfide (H2S) and thiols [198]. Reactive nitrogen
species (RNS) like nitric oxide (NO) react with some cysteines causing S-nitrosylation/nitrosation [199].
Developing evidence proposes that numerous proteins perhaps directed through cysteine adjustment.
Previous observations appeared in C. elegans, and human cells that incorporated IRE1 have an
unmistakable redox-regulated work in cytoplasmic homeostasis. ROS that are produced at the ER
or by mitochondria sulfenylate, a cysteine inside the IRE1 kinase activation loop. This restrains the
IRE1-mediated UPR ER and starts the p38/SKN-1(Nrf2) antioxidant reaction, thus expanding stress
resistance and life expectancy [200]. In addition, in our in-vivo and in-vitro studies under chalcone
(a natural anticancer agent) treated conditions, it was observed that ER-localized ROS sulfonate at a
cysteine residue of IRE1α, by decreasing XBP1 splicing and increasing RIDD axis, thereby increasing
cell death (unpublished).
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9. Potential Role of IRE1α in Chronic Metabolic Diseases and Its Influence on Metaflammation

ER stress-mediated IRE1 signaling can generate a key inflammatory signaling pathway via
JNK activation or other pathways, which can activate many inflammatory genes [14], which
may lead to disrupting some metabolic function. Chronic low-grade metabolic inflammation or
metaflammation [201] is a critical factor for type 2 diabetes and obesity-induced insulin resistance.
Here, we describe about potential role of IRE1 in type 2 diabetes and obesity-induced insulin resistance
influencing metaflammation.

9.1. Type 2 Diabetes

Diabetes is the major cause of morbidity and mortality in the modern era and has decreased both
quality of life and life expectancy. Diabetes is a condition of abnormal blood glucose levels. Metabolic
glucose uptake by the tissues is mainly dependent on the insulin and glucagon levels, which are
majorly secreted from the pancreatic β-cells. Pancreatic beta cell’s endoplasmic reticulum has a huge
task in terms of secretory protein folding in relation to the blood glucose level and plays a pivotal role
in blood glucose homeostasis. Diabetes can be type 1 diabetes with an insufficient insulin level or it
can be type 2 diabetes where tissues have insensitivity to insulin (insulin resistance). Type 1 diabetes is
the result of loss of pancreatic beta cells due to the autoimmune destruction, and type 2 is defective in
insulin-sensing cells as well as beta cell death. However, both conditions have been linked to the ER
stress [202].

The onset of type 2 diabetes seems to be UPR activation. High blood glucose level induces beta
cells to synthesize insulin. If persisting, this overwhelms the ER capacity and leads to the accumulation
of misfolded protein. This disturbed ER environment induces beta cell impairment and consequently
affects other cellular processes. In type 1 diabetes, the direct involvement of UPR is a little skeptical.
However, recent studies reported the involvement of UPR in the destruction of beta cells.

IRE1 as a major UPR molecule plays a critical part in beta cell survival and function, and it
has been involved in the homeostatic direction of pancreatic islet β-cells. Usually, pancreatic beta
cells always experience ER stress to meet the insulin demand, but it will be physiological adaptive
stress. However, in pathologic situations, ER stress exacerbates UPR sensor activation and then
leads to abnormal cellular functions. The small variation between the physiological input of insulin
translates into the ER and the folding capacity of the ER and disturbs the homeostasis of β cells,
leading to ER stress [95]. Insulin biosynthesis is a key point in glucose metabolism. IRE1α plays a
major role in insulin biosynthesis and in signaling through XBP1s and also maintains the oxidative
balance in beta cells through RIDD activity [203]. IRE1α conditional knockout mice exhibited mild
hypo-insulinemia, hyperglycemia, and a low-weight trend [93]. Furthermore, pancreatic-β-cell-specific
IRE1α-conditional KO (cKO) mice and IRE1α-cKO insulinoma cell lines showed the requirement of
IRE1α for the upregulation of insulin-folding enzymes to balance with insulin requirements [204].

Both transient and chronic high-glucose exposure of islets, INS1 cells, and mice activated the
IRE1α. Glucose concentration normally fluctuated between 4 and 10 mM in the physiological state
and treatment of islets with 5 and 10 mM glucose for 1 h increased IRE1α phosphorylation in a
concentration dependent manner [95]. The high glucose-induced activation of IRE1 in an acute and
chronic condition, showing a distinct downstream signaling mechanism of IRE1α. IRE1 does not
have XBP1s, and BiP dissociation is phosphorylated in acute treatment in INS1 cells [95], but chronic
hyperglycemia induces normal ER stress accompanied with XBP1s and BiP dissociation. However,
some questions need to be cleared here, such as how IRE1 is phopshorylated without BiP dissociation,
and if splicing of XBP1 does not occur, then it may be possible that IRE1α is activated, but it may be in
dimer form since it was reported that dimer form induces RIDD rather than XBP1s. In addition, it may
be possible to activate BiP-associated IRE1 under conditions of mild ER stress [38], a physiological
regulatory mechanism by which the selective regulation of IRE1α kinase activity participates in a
specific cellular function, which in this case is insulin biosynthesis. Additionally, severe high glucose
stimulates interaction of receptor for activated C kinase 1 (RACK1) and protein phosphatase 2A
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(PP2A) to promote dephosphorylation of IRE1α, resulting in the attenuation of IRE1alpha activity and
reduced insulin production [147]. In contrast, hyperactivated IRE1α degrades insulin mRNA and then
suppresses insulin production [95]. Interestingly, IRE1α deletion in β cells increased the expression of
inflammation and oxidative stress-related mRNA [203].

β-cell-specific XBP1 mutant mice caused hyperglycemia and glucose intolerance due to decreased
insulin secretion from β-cells due to hyperactivated IRE1α which degraded a subset of mRNAs
encoding proinsulin-processing enzymes and insulin mRNA through RIDD, contributing to the
reduction of proinsulin biosynthesis and further β-cell death [205]. It suggests that IRE1α has dual and
opposite roles in the function of β-cells and that a precisely controlled feedback circuit involving IRE1α
and its product XBP1s is needed to achieve optimal insulin secretion and glucose regulation. IRE1/XBP1
contributes to adaptive response in beta cells that are exposed to high glucose conditions [206] and also
promotes the compensatory proliferation of beta cells in the face of insulin resistance [111]. Furthermore,
IRE1α facilitates diabetic wound healing by improving angiogenesis through degradation of angiogenic
factors repressing miRNAs, miR-466, and miR-200 family members [207].

IRE1α looks essential for insulin biosynthesis after glucose stimulation in pancreatic beta cells in
both XBP1-dependent and -independent manner (Figure 1). However, under chronic metabolic stress,
IRE1α is implicated in the progression of diabetes and its related complications like cardiomyopathy,
retinopathy, nephropathy, and neuropathy. It is interesting to know whether IRE1α activation results
in diabetes or diabetic condition activates IRE1α. The precise role of IRE1α in integrating metabolic ER
stress signals to regulate β-cell functions still needs to be investigated. Mice fed with a high-fructose
diet developed hepatic insulin resistance due to inhibition of insulin-mediated Akt phosphorylation by
IRE1-JNK pathway and diet-impaired hepatic insulin signaling (Figure 1B) [208].

Figure 1. Possible mechanism of IRE1 in involvement of insulin signaling during acute and chronic
Endoplasmic reticulum stress. (A) IRE1 α-XBP1s branch can generate cellular survival through
increased insulin sensitivity during an acute or short-term ER stress condition. (B) However, over a long
or chronic period of time, endoplasmic reticulum (ER) stress-, serine/threonine-kinase/endoribonuclease
IRE1 α -binds to TNF receptor-factor 2 (TRAF2), apoptosis signaling kinase1 (ASK1), and
receptor-serine/threonine protein kinase 1 (RIPK1), resulting in c-N-kinase phosphorylation this
eventually triggers insulin receptor ablation and results in insulin resistance. C-Jun then interacts with
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c-Fos forms the active transcription factorAP-1, and increases IL-6 and TNFαproduction. In addition, the
IRE1α/TRAF2/ASK1 complex activates the inhibitory kappa B kinase (IKK), which phosphorylates kappa
B (IκB) inhibitor, leading to the release and translocation into the nucleus where cytokine expression is
induced. Proteasomes then degrade the dissociated IκB. The IRE1α–TRAF2 complex increases IL-6
production through the combination of the nucleotide-oligomerization domain (NOD)-containing
proteins 1 and 2 (NOD1 and NOD2) and serine/threonine-kinase 2 (RIPK2) receptor-complex. IRE1α
produces splices via its RNase function—X-box-binding protein 1 (XBP1s) transcription factor induces
several pro-inflammatory cytokine expression. However, XBP1s improves nuclear translocation
by mediating the degradation of FoxO1, an NFκB inhibitor. In addition, the activation of IRE1α
differentially controls the expression of the pro-inflammatory cytokine IL-1β gene by glycogen synthase
kinase-3β activation. The controlled IRE1α-dependent decay (RIDD) degrades miR-17, resulting in
increased expression of the protein that interacts with thioredoxin. This triggers the nucleotide-binding
domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activity, leading
to procaspase-1 cleavage, which subsequently activates IL-1β and IL-18. Production of this all
pro-inflammatory cytokines and inflammatory response through IRE1 either directly or indirectly leads
to insulin resistance by the inhibition of insulin signaling and the activation of gluconeogenic enzymes.
In addition, it may be possible to reduce the development of insulin resistance by inhibiting either
small chemical molecules such as KIRA6/KIRA8, STF-083010, MKC3946, MKC8866, MKC9989, B-I09,
A-I06, 4µ8C Sunitinib, Imatinib, Fortilin.

Recent evidence indicates that both saturated fats and inflammatory mediators such as cytokines
trigger UPR in pancreatic beta cells. IRE1/XBP1 pathway potentiates the activation of nuclear factor κB,
a key regulator of inflammation, exposes the beta cells to the proinflammatory effects of cytokines.
This can contribute to the upregulation of local inflammatory mechanisms and aggravation of insulitis.
The dialogue between the UPR and inflammation may provide an explanation for the parallel increase
in the prevalence of childhood obesity and type 1 diabetes.

Especially in obesity-induced high blood glucose due to insulin resistance, XBP1s upregulate
the cyclin D1, which is required to drive cells from G1 into the S-phase of the cell cycle [112] and to
promote the compensatory proliferation of β-cells (Figure 1A). Furthermore, persistence excessive ER
stress disrupts the IRE1α-XBP1s-cyclin D1 pathway, which results in beta cell death [111]. IRE1 activity
should be optimally regulated in situations of metabolic stress due to the overproduction of XBP1s that
is deleterious to β-cell functions through inhibition of insulin, Pdx1, and Mafa expression, eventually
leading to beta-cell apoptosis [209]. A recent study showed that IRE1 reduces glucose metabolism as
part of an adaptive response [210].

IRE1α may exacerbate diabetic retinopathy because it is known to get hyperactivated during the
hyperglycemic condition and may degrade the miRNAs and increase the stability of a pro-oxidant
and pro-apoptotic TXNIP [195]. TXNIP has been associated with ROS/RNS stress, mitochondrial
dysfunction, inflammation, and premature cell death in diabetic retinopathy (Figure 1B) [211]. In a
high-glucose state, the expression of miR-17 is triggered and suppressed by IRE1, which leads to an
increase in its target gene TXNIP (thioredoxin-interacting protein). High glucose-TXNIP increased
its binding to the inhibitor ASK1, thioredoxin (Trx), and thus sequestered Trx from the Trx-complex.
Glucose caused high activation of ASK1 and consequent apoptosis [212].

IRE1α may also contribute to maternal diabetes-induced ER stress in the developing embryo and
cause embryopathy through ASK1-mediated JNK activation [213]. Downregulation of XBP1s and
phosphorylation of IRE1α by Moutan Cortex reduce diabetic nephropathy and also showed decreased
inflammatory molecules IL-6, MCP-1, and ICAM-1 expressions [214]. Expression of spliced XBP-1
varied in different experiment conditions [215,216]. However, sXBP-1 promotes cell survival, but
prolonged stress attenuates the IRE1α/XBP-1 arm of the UPR, sensitizing cells to apoptosis [42]. Thus,
regulation of IRE1α/XBP-1 pathway may slow or prevent the progression of diabetic complications.
IRE1α-mediated CHOP and JNK activation induce apoptosis of beta cells in type 1 and type 2
diabetes [206]. Diabetic cardiomyopathy: IRE1α triggered JNK is also involved in the progression of
cardiovascular diseases associated with obesity and diabetes [217].
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9.2. IRE1α Contribution in Obesity-Induced Insulin Resistance and Metaflammation

Obesity is a major complication in the modern world. Excess accumulation of fat in different
tissues integrates the metabolism and inflammation, causes chronic low-grade inflammation or
metaflammation majorly in metabolic tissue, and then causes problems in multiple sites [218].
Generally, this interaction tries to bring metabolic homeostasis, but the disturbance in this association
due to mediators produced from the interface leads to a progression of immunometabolic disease
and premature cell death. Obesity is usually characterized by pro-inflammatory cytokines, free fatty
acids, and high blood glucose [219]. It has been linked to many disorders including cardiovascular
diseases, insulin resistance, type 2 diabetes, inflammatory disease, and many more. An important
primer for metaflammation is chronic overloading of the endoplasmic reticulum (ER) and consequent
stress. Obesity induces the ER stress in adipocytes, hepatocytes, macrophages, pancreatic beta cells,
and neurons. However, ER stress-mediated obesity-related complications may vary depending on the
tissue environment.

One of the mechanisms which related to different complications is ER stress-mediated UPR
activation. Among the UPR molecules, IRE1α contributes considerably to the progression of these
diseases. In both genetic and diet-induced models of obesity, IRE1α is prominently activated [220].
The IRE1α/XBP1 pathway contributes significantly in lipogenesis through the transcriptional induction
of lysogenic genes. Xbp1+/−mice exhibit increased ER stress coupled with impaired glucose and insulin
tolerance in the high fat diet (HFD)-induced obesity [221], but in pathological manifestations, activated
IRE1αmodulates many downstream molecules which consequently result in disease progression. IRE1α
in chronic stress phosphorylates JNK, and the phosphorylated JNK affects the glucose uptake in the cells
through phosphorylating insulin receptor “known to inactivate the function” (Figure 1B). The absence
of JNK reduced adiposity, substantially enhanced insulin sensitivity, and increased signaling ability of
insulin receptors in mice [222,223]. This insulin resistance results in a hyperglycemic condition, which
increases the burden on pancreatic beta cells to produce more insulin and consequently, ER stress
develops, leading to the development of type 2 diabetes due to beta cell loss [186]. Furthermore, obesity
induces chronic low-grade inflammation, which also negatively impacts insulin sensitivity [224,225].

IRE1α is one of the key UPR transducers in the pathogenesis of obesity-related inflammation
by activating cytokine transcription factor AP-1 through JNK and by increasing the NF-κB nuclear
translocation through promoting degradation of IκB by IKK-mediated phosphorylation [226,227].
Additionally, phosphorylation of JNK and IκK is known to impair insulin action and glucose
homeostasis [228,229]. Insulin resistance also reduces XBPs nuclear translocation by interfering with
PI3K dimer disruption, then worsens the ER stress [230], but, contrastingly, disrupted PI3K can also
potentiate the JNK-mediated insulin resistance (Figure 1B) [231]. Increased JNK and NF-κB signaling
influences pro-inflammatory cytokine synthesis and In addition, NF-κB activation itself activates ER
stress by a feed-forward loop, thereby maintaining an inflammatory state [232]. Furthermore, NF-κB
activation produces inflammatory cytokine TNF-α, which impairs IRE1α-deficient mouse embryonic
fibroblasts (MEFs) [227], but overexpression of XBP1 subsequently blocks the IRE1α/IKK/NF-κB
pathway [233].

Generally, XBP1s are important for metabolic homeostasis, and the liver of ob/ob mice showed
increased nuclear XBP1s protein levels [234]. However, interestingly, XBP1 absence in the liver protected
against insulin resistance [235]; in contrast, another study documented that XBP1s functions as an
anti-lipogenic factor through suppression of genes involved in the synthesis of hepatic triglyceride
and diacylglycerol in livers of diet-induced obese and insulin-resistant ob/ob mice and also by
enhancing lipolysis [236]. Additionally, in metabolic disorders, IRE1α also activates the GSK-3β,
a major regulator of peripheral inflammatory responses, mediates the pro-inflammatory cytokines
IL-1β and TNF-α through downstream molecules and XBP. In contrast, the activation of GSK-3b
inhibited the splicing of XBP-1, resulting in the downregulation of TNF-α production (Figure 1B) [237].
Furthermore, obesity-mediated iNOS and nitric oxide cause insulin resistance by s-nitrosylating the
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IRE1α, which affects the ER homeostasis role by inhibiting the XBP1 splicing, but maintaining the IRE1α
phosphorylation and c-Jun N-terminal kinase (JNK) activation and its mediated inflammation [238].

IRE1α in adipose tissue-recruited macrophages (ATMs) distinctly contributed to the
obesity-associated inflammation. M1 macrophages are hallmarks of obesity-associated inflammation
within white fat. Macrophage-specific deletion of IRE1α reduced the high-fat diet-induced hepatic
steatosis, insulin resistance, and also pro-inflammatory cytokines IL-1β or TNF [239]. It is also possible
that excess fatty acid-activated Toll-like receptors (TLR) can induce the IRE1α/XBP1 inflammatory
cytokine production in macrophages [240]. For example, in pseudomonas bacterial infection, the
TLR-induced IRE1α–XBP1 cascade mediated by ROS produced the pro-inflammatory cytokines IL-6
and TNFα required for host defense [241].

High-fat-diet/obesity-mediated ER stress triggers the pattern recognition receptors NOD1/2
mediated inflammation, which contributes to the development of type 2 diabetes [242,243]. A recent
study reported that thapsigargin and dithiothreitol-induced ER stress trigger the production of the
pro-inflammatory cytokine IL-6 in an IRE1α/RIP2/NOD1/2-dependent fashion. IRE1α kinase inhibitor
application attenuated the NOD1 and NOD2 mediated pro-inflammatory responses [244]. Two small
inhibitor molecules, STF-083010 and 4µ8C, which selectively inhibit the RNase function of IRE1α, in an
application study in atherosclerosis, which is the best example of metaflammation disorder. These
IRE1α inhibitors decreased hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper
type-1 immune responses, and reduced atherosclerotic plaque size [130], although the above evidence
showed a great deal of variation on the experimental system used. Obesity-mediated IRE1α contributes
in the low-grade inflammation, metaflammation, in metabolically critical organs and leads to insulin
resistance and subsequent type 2 diabetes. Optimized targeting like neither constitutive activation
nor complete inhibition of RNase/kinase activity of IRE1α itself or disruption of its downstream
molecule interaction will be a possible therapeutic option in controlling chronic disease. IL-1β is a
significant contributor to the inflammation, insulin resistance caused by obesity, pancreatic β-cell
dysfunction, and type 2 diabetes. IRE1 also contributes to the lipid-induced activation of NLR
family pyrin domain containing 3 (NLRP3) inflammasome, a multicomponent complex that contains
caspase-1 and induces the caspase-1–dependent secretion of the pro-inflammatory cytokines IL-1β and
IL-18 [245,246]. Furthermore, inhibition of NLRP3 inflammasome protected the pancreatic β-cells from
cell death during obesity and progression of type 2 diabetes [247]. IRE1α/XBP1 activation can also
inhibit the IRS1/2 signaling through inducing P300 acetyltransferase involved in glucose production,
then promoting the insulin resistance in obese mice [248,249].

10. Conclusions

Collectively, available information through recent investigations suggested that the IRE1 plays
a significant role in cellular fate in various physiological and pathological conditions. During
physiological processes such as divergent cell fate and metabolism, understanding the structure and its
mode of activation enables us to describe its potential influence on the homeostatic balance/maintenance,
a core of physiologic process. Under the pathological conditions such as nutrient dysmetabolism and
disease-designated diabetes, the modulation of IRE1α activity is suggested to be a therapeutic strategy
to control the pathologic state. Therefore, its applicability needs to be widened for therapeutic benefits.
Being an ER stress sensor, IRE1 needs to be understood from a wider perspective, not restricting to
structure or mode of action. Thus, it is necessary to apply the understanding of IRE1 to elucidate its
biological meaning and assemble the future needs with regard to pathological conditions arising from
UPR activation and ER stress.
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