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A B S T R A C T

We review some of the latest approaches to analysing cardiac electrophysiology data using machine learning and
predictive modelling. Cardiac arrhythmias, particularly atrial fibrillation, are a major global healthcare chal-
lenge. Treatment is often through catheter ablation, which involves the targeted localised destruction of regions
of the myocardium responsible for initiating or perpetuating the arrhythmia. Ablation targets are either ana-
tomically defined, or identified based on their functional properties as determined through the analysis of
contact intracardiac electrograms acquired with increasing spatial density by modern electroanatomic mapping
systems. While numerous quantitative approaches have been investigated over the past decades for identifying
these critical curative sites, few have provided a reliable and reproducible advance in success rates. Machine
learning techniques, including recent deep-learning approaches, offer a potential route to gaining new insight
from this wealth of highly complex spatio-temporal information that existing methods struggle to analyse.
Coupled with predictive modelling, these techniques offer exciting opportunities to advance the field and pro-
duce more accurate diagnoses and robust personalised treatment. We outline some of these methods and il-
lustrate their use in making predictions from the contact electrogram and augmenting predictive modelling
tools, both by more rapidly predicting future states of the system and by inferring the parameters of these models
from experimental observations.

1. Introduction

Cardiac arrhythmias, particularly atrial fibrillation (AF), are a major
global healthcare challenge in the developed world. Arrhythmias de-
scribe the abnormal and self-perpetuating propagation of action po-
tentials (AP) within the myocardium. Their initiation and maintenance
are incompletely understood and this has hindered the development of
effective and reliable therapy. Treatment for AF is often through ca-
theter ablation, where the regions of myocardium determined to be
responsible for initiating or perpetuating the disturbance are targeted
and made electrically inactive through the localised application of
radio-frequency energy or freezing. For paroxysmal AF, catheter abla-
tion delivers relatively good outcomes, with success rates in the region
of 80–90 percent [1]. However, outcomes of catheter ablation in pa-
tients with persistent AF remain disappointing, and is effective in only

approximately 50 percent of patients, despite all forms of adjunctive
ablation strategies [2].

Identifying the critical sites responsible for abnormal AF main-
tenance has been a major focus of research, with a number of driving
mechanisms, including rotors [3], multiple wavelets [4] and epi-endo
disassociation [5], being proposed. Recent clinical studies, such as the
CONFIRM study [6], have tested the new approaches of catheter ab-
lation by targeting the foci of rotational drivers, with initially promising
results showing that 86% of 101 cases achieved AF termination or
slowing. However, subsequent studies suggest more moderate outcomes
with Steinberg et al. [7] reporting only 4.7% of 47 cases achieved AF
termination, while 60% documented recurrence within 12 months. The
efficacy of this technique may be in part due to the poor spatial re-
solution of the global mapping catheter used [8]. Techniques involving
the targeting of complex fractionated atrial electrograms (CFAE) [9],
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high dominant frequency (DF) [10] and singularities identified during
phase mapping [11] have each been used as strategies for terminating
arrhythmias. However, none of these adjunctive ablation strategies
have been shown to add any value to the conventional approach of
electrically isolating the pulmonary veins [2]. Part of the reason for this
may be that they each discard a large proportion of the information
content of the acquired electrogram signals or their spatio-temporal
association during analysis. Additionally, not all identified sites may be
critical to the perpetuation of the arrhythmia, leading to excessive ab-
lation. The complexity of the underlying electro-architecture of myo-
cardium therefore requires a more sophisticated, personalised and
multi-faceted approach to address the challenge of treating AF.

The principle data modality used clinically for the treatment of AF is
the contact electrogram, which arises from the superposition of electric
fields induced by charged ions moving across cell membranes in the
myocardium. It is the electrical signature of action potential propaga-
tion through tissue which implicitly encodes the functional and struc-
tural characteristics of the local substrate. The electrogram therefore
provides a wealth of information which is rarely fully utilised in current
clinical practice. Electrograms are normally only broadly categorised by
binary descriptors – such as simple or complex, early or late [12,13],
fractionated or non-fractionated – with much of the signal content ef-
fectively discarded. Despite a number of studies based on interpreting
clinical electrogram data [14,15], these do not investigate how elec-
trogram morphology is influenced by individual electro-architectural
factors. Our knowledge about the direct effects of electrical remodelling
on electrogram morphology is consequently poor, considering the
number of these abnormalities related to cardiac diseases [16]. Lever-
aging the electrogram to infer electroarchitectural properties of the
myocardium may therefore provide new direct insight in locating cri-
tical sites for ablation.

Multiple concurrently recorded electrograms may be combined to
evaluate the spatio-temporal propagation patterns occurring in the
tissue. This activity can also be inferred from the surface of the body
[17]. More recently, predictive modelling of action potential propaga-
tion is emerging as a potential tool for personalised testing and opti-
misation of interventions [18], but this technology is heavily dependent
on the accuracy of the underlying calibration of parameters. This can
only be achieved by fully leveraging the huge wealth of information
now available clinically. The data science revolution in the form of
sophisticated machine learning algorithms and increasing availability
of computing power, opens up possibilities to manage this data over-
load, both in terms of learning from the data, inferring model para-
meters and consequently making increasingly accurate predictions.

1.1. Machine learning in cardiac electrophysiology

Machine learning describes a class of algorithms which learn model
parameters from a set of training data (for which outcomes may, or may
not, be known) with the purpose of accurately predicting outcomes for
previously unseen data. Training data that includes associated outcome
labels can be used for supervised learning in which the algorithm uses
this knowledge to directly improve its prediction. In contrast, un-
supervised learning seeks patterns in the data with more limited gui-
dance, of which clustering is a common example. Although there is
considerable overlap, machine learning methods are considered to
differ from more conventional statistical modelling, such as regression,
in that they are more concerned with the predictive accuracy of the
resulting model rather than the ability to explain the reasoning behind
its parameters and determining concrete relationships between the
data. The high accuracy of some of the more recent machine learning
methods – which are virtually impossible to analyse analytically – has
justified this lack of transparency.

All machine learning algorithms seek some form of mapping that
models the relationship between input data and outcome. In an abstract
context, we suppose that we have a model f, governed by one or more

parameters , which maps an input x to some output y , under the re-
lation

=x yf ( , ) . (1)

The form and dimensions of x and y in Equation (1) are a function
of the particular problem under consideration. For example, x may be a
large one-dimensional vector (time-series) in the case of a music-clas-
sification problem, or a two-dimensional image in the case of object
recognition. For regressions, the output y may be a prediction of the
dependent quantity, while for classification problems, y is usually a
label which assigns the corresponding input to a single class. The size of
depends on both the problem and also on the chosen model. For ex-

ample, for a linear regression between two variables would consist of
only two values (namely the slope and intercept), while for a many-
layered deep neural network with high-dimensional input data, the size
of may be of (10 )6O or more.

Broadly speaking, the process of training a supervised machine
learning algorithm is the notion of seeking such that, for some set of
training input data x{ } with corresponding outcomes y{ }, a given loss
function is minimised. While there are a number of loss functions, each
with their own properties [19], a simple loss function might be the 1L

loss function which computes the differences between the predicted
outputs and the actual outputs and is given by

=
=
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i i
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If sufficient (and suitable) training data are used with an appro-
priate model, the expectation is that the model will then correctly
predict the outcomes for other inputs which did not form part of these
data.

Supervised machine learning is increasingly being used in medicine
[20]. One area of cardiac electrophysiology in which machine learning
has become particularly prevalent to date is the analysis of the Elec-
trocardiogram (ECG), in part due to its wide availability and its po-
tential to conveniently provide important information about cardiac
function without intervention. There now exists a substantial body of
literature on the application of machine learning tools to classify ECGs.
A review of some of the earlier work is given by Ref. [21]. The recent
PhysioNet challenge to classify single-lead ECG segments into four ca-
tegories (sinus rhythm, AF, other rhythm or too noisy) has catalysed
developments in this area [22]. Most approaches require some form of
preprocessing of the signal, including de-noising and correcting for
baseline wander. While convolutional neural networks [23–30] and
recurrent neural networks [23,31] are gaining popularity, many studies
still achieved accurate classification results using other algorithms such
as ensembles of decision trees (random forests) [32,33], multi-level
binary classifiers [34] and least-squares support vector machine clas-
sifiers [35]. The use of these approaches in combination also provides
accurate classification [24,31]. Recently, online real-time feature ex-
traction and classification of ECGs using machine learning is being
explored [36] and similar approaches are being used to diagnose more
specific cardiac abnormalities [37].

In contrast, relatively little attention has been given to applying
machine learning to make predictions from the contact intracardiac
electrogram, or to predict the spatio-temporal patterns of activation in
myocardium. Recently, there have been studies to characterise AF using
in silico or clinical contact electrograms [14,15], as well as for the au-
tomated location of in silico re-entrant drivers using electrograms [38].

1.2. Predictive numerical modelling

Numerical modelling assumes the system under observation obeys
particular physical laws, known a priori and often represented in the
form of partial differential equations, which are used to predict the
future state of the system given an initial state. These equations often
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contain a number of parameters, which are estimated from experi-
mental observations or experience.

While predictive modelling has advanced significantly in the field of
cardiac electrophysiology for the past decade, only recently have the
numerical methods and clinical imaging technologies improved suffi-
ciently to allow viable predictions to be made on anatomically accurate
geometries [39,40]. However, challenges still remain in how to accu-
rately personalise and validate these models, as well as how to safely
incorporate them into clinical practice.

1.3. Outline

In this review, we describe some of the opportunities machine
learning can provide in the field of cardiac electrophysiology. We il-
lustrate these through examples as well as discuss their potential impact
on arrhythmia management. We begin with the contact electrogram the
data modality on which much of modern clinical electrophysiology is
based. We introduce machine learning approaches to analysing and
classifying these signals, contrasting both feature-based methods and
deep neural networks, and show how they can be used to potentially
elucidate a wealth of electro-architectural information about the myo-
cardial substrate. We then discuss recent advances by our group in
modelling action potential propagation and how machine learning
might supplement and extend these methods to improve our ability to
create personalised models which can be used on clinically relevant
timescales.

2. Feature-based classifiers

Features describe characteristics of a process being observed. They
are often represented in a numerical form and together form a feature
vector. A feature-based machine learning algorithm then uses these
feature vectors as input during both training and prediction. The se-
lection of informative features is critical to the effectiveness of a ma-
chine learning algorithm to predict the correct output label. When a
large number of features are available algorithms may struggle to
generalise due to redundancy of information between features. Feature
selection algorithms can alleviate this issue by selecting a subset of
features which promote learning and improve the ability of the algo-
rithm to make accurate predictions. The identification of which features
are important in specific situations may also generate hypotheses to
motivate further investigation of mechanistic links.

When the output label is one of a finite set of possible discrete va-
lues, the algorithm is termed a classifier. In the simplest case of binary
classification, the accuracy of a learning algorithm may be char-
acterised by a number of statistical measures. Sensitivity describes the
percentage of positive outcomes that are predicted as positive, while
specificity captures the proportion of negative outcomes predicted as
negative. Positive (and negative) predictive value instead captures the
proportion of positive (and negative) predictions, which are truly po-
sitive (and negative).

A broad range of feature-based classifiers for supervised machine
learning exist, and we refer the reader to previously published com-
prehensive reviews for specific details [41,42]. Both linear and non-
linear classifiers map the input features to a set of classes d using a
weighted sum,

=d f wx x( ) ( ( ))
i

i i

with the weights, wi learnt during training. In the linear case =x x( ) .
The function f maps the result of the sum onto the different classes and
may be a simple threshold function in the case of a binary classification,
or probability densities more generally. While in general not as accurate
as non-linear classifiers, linear classifiers are typically faster and so may
be more effective in time-critical applications [43].

Several approaches may be used to determine the weights of linear
classifiers. Linear discriminant analysis [44] seeks weights which best
separate inputs x of different classes. Support vector machines (SVMs)
[45] instead seek to maximise the margin between a hyperplane and
the two data classes it separates. The k-nearest neighbour classifier is a
non-linear classifier which uses the classes of the nearest training
samples to predict the classification for unseen samples [46]. Decision
trees [42] approach the classification problem feature-by-feature with
branches in the tree representing different values a feature can assume.
The leaves of the tree denote the final classification.

The performance of the above predictors can often be improved
using the method of bootstrap aggregation, or bagging [47]. Rather than
training a single predictor on a training dataset, a number of training
datasets are generated by drawing observations at random but with
replacement and predictors are trained on each of these bootstrap da-
tasets. When making a prediction, the results of these predictors are
aggregated – usually by voting when performing classification – to form
the final predictor. Random forests [48] extend the bootstrap ag-
gregation of decision trees by additionally selecting random subsets of
features when deciding how to split at each node. These approaches
help to overcome the problem of over-fitting often present with deci-
sion trees where they fail to generalise.

2.1. Application to electrogram classification

We explore the use of supervised machine learning to classify in-
dividual electrograms based on the presence of cellular abnormalities.
For initial proof of concept we use signals acquired from cell mono-
layers in culture. While distinctive from clinical electrograms, they
enable us to assess the capabilities of these algorithms in a controlled
context and ensure signals can be labelled accurately. We investigated
the hypothesis that controlled functional modulations of the mono-
layers can be accurately and precisely predicted from the recorded
unipolar electrogram morphology using supervised machine learning
methods. In particular, we sought the classification of electrical signals
according to pharmacological gap junction uncoupling.

2.1.1. Data acquisition and pre-processing
Electrogram recordings were acquired as previously described [49].

In brief, cell monolayers of neonatal rat ventricular myocytes (NRVMs)
were seeded onto five microelectrode arrays (MEA), each consisting of
60 electrodes (MultiChannel Systems, Reutlingen, Germany). Ten-
second recordings were made at a sampling frequency of 25 kHz while
pacing from one edge, before and after administration of 40 μM car-
benoxolone (CBX) to increase gap junction uncoupling. No signal fil-
tering was applied during data acquisition. All animal procedures were
conducted according to the standards set by the EU Directive 2010/63/
EU.

Pacing artefacts were removed by approximating the exponentially
decaying stimulus deflection with a rational polynomial and sub-
tracting it from the recorded signals. The dataset was further curated to
remove recordings from electrodes where no further deflections were
present. This resulted in 485 control electrograms and 471 electrograms
after treatment with CBX. The dataset was partitioned into a training
dataset and a testing dataset. The testing dataset consisted of all elec-
trograms recorded from one plate (90 control and 104 CBX electro-
grams). The training dataset consisted of the remaining four plates (395
control and 367 CBX electrograms). Examples of electrograms from the
control and CBX classes are shown in Fig. 1.

2.1.2. Feature extraction
The high sampling rate of the electrograms would result in very

high-dimensional input data if used directly. We mapped each signal
onto a pre-defined feature space of much lower dimension. Each elec-
trogram recording was represented by a fixed set of 27 time-, fre-
quency- and morphological-based features, extracted from the signal
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using a custom-written algorithm (Matlab R2017b). Details of these
features are provided in the Supplementary Material. Sequential
Forward Selection (SFS) [50] was used to select a subset of these fea-
tures which were sufficient to differentiate the control and CBX classes.
In brief, SFS is a bottom-up approach to choosing discriminatory fea-
tures. Starting with an empty feature set, the algorithm sequentially
adds features from the candidate set of features which maximises a
given objective function, until the addition of further features provides
no improvement. Classification accuracy is used as the objective func-
tion. Feature selection indicated that only three of the 27 features
considered were sufficient to distinguish the control and CBX classes:
electrogram amplitude, standard deviation of the autocorrelation function
and the scale with minimum energy in the continuous wavelet transform
of the signal. The set of values from the selected electrogram char-
acteristics form the feature vector for that electrogram. These feature
vectors were subsequently used to train the classifier.

The bootstrap aggregating (or bagging) ensemble tree method [47]
was applied during both feature selection and classification training.

2.1.3. Results
Fig. 2 shows the distribution of all electrogram feature vectors from

the training dataset in the corresponding three-dimensional feature
space. It is evident that no single feature alone effectively discriminates
between the two classes.

Validation was performed on the training data using ten-fold cross-
validation. A total of 30 decision trees, with a leaf size of one, were used
for the bagging ensemble method. The performance characteristics of
the trained model are given in Table 1. A specificity of 98.1% was
achieved on the training data when using only the three features chosen
by SFS. This is illustrated by the confusion matrix shown in Fig. 3, which
compares predicted class against true class. This indicates the model
was capable of accurately distinguishing the classes. The model per-
formance was then measured using the unseen test dataset of 194

electrograms. It achieved a 96.7% sensitivity, 84.4% specificity, 83.8%
positive predictive value and 96.8% negative predictive value, in-
dicating the model has generalised successfully.

The computational time of the training process was also measured.
Calculation of the electrogram features was the dominant cost, at 18.84
± 5.2 seconds per electrogram. The time taken for the bagging en-
semble method to train a model using the feature vectors was 3.25 ±
0.13 seconds.

3. Convolutional neural networks

One of the limitations of conventional machine-learning techniques

Fig. 1. Examples of 20ms segments of electrogram recordings from the Control
and CBX groups, after removal of the stimulus artefact.

Fig. 2. 3D scatter plot of the most relevant features, normalised in the interval
[0,1], as determined by SFS. No single feature clearly discriminates between the
control and carbenoxolone classes.

Table 1
Performance of classification training using the Bagging Ensemble method and
evaluation of the subsequent prediction model on the test dataset.

Classification training (734
EGMs)

Prediction model testing
(194 EGMs)

Sensitivity 98.1% 96.7%
Specificity 98.3% 84.4%
Positive predictive

value
98.4% 83.8%

Negative predictive
value

97.7% 96.8%

Error rate 1.9% 10%

Fig. 3. Confusion matrix comparing the predictability of classes using the
training dataset. Diagonal cells (green) show the percentage of electrograms
that were correctly classified.
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is their inability to be applied directly to high-dimensional data, ne-
cessitating a transformation into a suitable feature-space representation
that captures characteristics of the data relevant for discrimination,
while remaining invariant to irrelevant aspects. As illustrated in Section
2.1.2, extracting these features often requires significant domain-spe-
cific knowledge and expertise in order to hand-engineer suitable algo-
rithms, and thus produce an informative representation that supports
discrimination. This process can, however, be circumvented if the fea-
ture-extraction step is automated.

Representation learning [51] encompasses a set of techniques
within the field of machine learning which enable a model to auto-
matically learn and discover for itself discriminating features directly
from the raw observational data. Among the most popular of current
techniques are layered artificial neural networks, which take inspira-
tion from neuroscience. They are composed of artificial neurons (sim-
plified versions of biological neurons) arranged in layers, where the
neurons in one layer are connected to many, if not all, of the neurons in
the subsequent layer. The artificial neuron is a non-linear mapping from
an input value to an output value. The output values from all the
neurons in one layer are each multiplied by adjustable parameters,
called weights, to form a weighted sum as input to one individual
neuron in the subsequent layer. A neural network is, therefore, a
complex system of weighted non-linear functions nested within each
other and it is these weights that must be learnt in order for the network
to accurately map raw input data to a desired output.

Neural networks learn their own weights during training: initially
the weight values are randomly selected and thus when a model is given
input it is initially highly unlikely to predict the correct output label.
During training, the model is shown raw input data and the associated
label or output value. For each input example the model makes a pre-
diction based on the current weight values, and the error between the
prediction and the true desired output is measured. The weights are
then modified in order to minimise this error via a process called back-
propagation, the details of which are provided in Ref. [52]. An epoch is
defined as a complete pass over the training data. Unlike the dis-
criminant classifier of Section 2.1 which only needs one pass, neural
networks benefit from multiple passes over the training data. With
sufficient training data and sufficient iterations (epochs) over all the
data the weights converge onto values that enable the model to make
accurate predictions for the training dataset. The trained model is
subsequently tested on a validation dataset it has never before seen in
order to measure its predictive power.

The weights of a neural network can be seen as the features of the
learnt representation, automatically discovered without the need for
manually-designed feature detectors. When the network contains sev-
eral layers in between the input layer and the final output layer –
known as hidden layers – it is referred to as a deep network, from which
the term deep-learning arises. These models are therefore representa-
tion-learning methods with multiple non-linear layers, each trans-
forming the representation, beginning with the raw input, into in-
creasingly more discriminative representations.

Today, deep-learning techniques provide state-of-the-art solutions
in the fields of object recognition [53,54] and detection [55], speech
recognition [56] and natural language processing [57,58], and are in-
creasingly being used in other domains such as genomics [59] and
challenging segmentation problems required for geometric reconstruc-
tion in biomedical imaging [60]. Recently, studies have applied deep
neural networks to the ECG signal [23–30]. These studies have all made
use of convolutional neural networks (or convnets).

Fully-connected neural networks treat neighbouring data points
identically to those spaced far apart. In the case of time-series data, they
do not account for the temporal structure and autocorrelation that may
be present in the raw input data. As such, they may fail to recognise, for
example, a QRS complex in an ECG if it had been shifted in time by half
a beat compared to the training data examples. Convnets are deep-
learning architectures that cater to this need for translation-invariance.

They exploit compositional hierarchies – whereby higher-level features
are generated by accumulating a set of lower-level features – often
exhibited in datasets derived from the natural world.

3.1. Application to classifying electrograms

We demonstrate the application of convolutional neural networks,
using the same data as described in Section 2.1.1, to perform the
classification directly from the labelled time-series data. The network is
composed of four repeated blocks, each itself consisting of a convolu-
tional layer, a batch normalisation layer [61], a non-linear ReLU layer
[62] and a max pooling layer [63]. Batch normalisation adjusts the
inputs to a layer to have mean zero and standard deviation of one, and
is a technique for improving the stability of the network. The ReLU
layer is a form of activation function, while max pooling layers are used
to down-sample the input as it progresses through the network. The last
block is followed by one fully-connected layer to the two output classes.
A schematic of the architecture is shown in Fig. 4.

3.1.1. Training
During training, a randomly selected one-second segment (thereby

guaranteed to contain one deflection) was taken from the full ten-
second recording and down-sampled to 5 kHz. Training was carried out
for 250 epochs using the Adam optimiser [64] with a variable learning
rate starting at 0.0001 and a weight-decay of zero. The error was
evaluated using the cross-entropy loss function [19], and training was
repeated five times each with different random initial weights to
evaluate the performance (averages and standard deviations), giving a
measure of the robustness of the architecture and optimisation process.
This was carried out using the PyTorch framework [65] on an GTX
1080ti GPU (NVIDIA Corporation, USA).

Cross-validation was carried out to measure the robustness of the
prediction model as well as to aid tuning of the parameters of the
learning algorithms and design choices of the architecture (e.g. number
of layers). Once these hyper-parameters were sufficiently tuned, the
validation and training data were combined (four plates) and the model
retrained. It was then evaluated using the test data (one plate). Trained
models were evaluated by splitting the ten-second recordings from the
test or validation datasets into ten segments corresponding to the ten
deflections and classifying each segment. If six or more deflections were
classified correctly, the recording was considered successfully classified
and the uncertainty of this positive classification was computed using
the binary entropy function. In practice, there was little variation be-
tween the ten deflections within a signal, resulting in consistent clas-
sification of each recording.

3.1.2. Results
Table 2 shows the classification accuracy using four-fold cross-

Fig. 4. Schematic of the convolutional neural network.
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validation after all design choices were made. The average accuracy
across the folds was 96.2% with a standard deviation of 1.5%, in-
dicating a reliably robust model, and in general the entropy values
remained low at approximately 0.05, indicating that each ten-second
segment was consistently classified correctly or incorrectly. The stan-
dard deviation of the five repeats for each fold showed the models were
converging to a similar optimum state regardless of the initial weight
values. The final evaluation of the model on the test data resulted in an
overall accuracy of 96.3 ± 0.7%, with results of 96.7 ± 1.1% sensi-
tivity, 95.8 ± 0.9% specificity, 96.4 ± 0.7% positive prediction value
and 96.2 ± 1.2% negative predictive value. The confusion matrix for
this binary classification problem is shown in Fig. 5.

4. Numerical modelling

Numerical modelling predicts the future behaviour of a dynamical
system from a known state under an a priori belief in the physical laws
governing the system. In particular, it can allow observations to be
extrapolated forward in time to help better understand the likely be-
haviour of a physical system and, by modulating the parameters and
initial condition of the system appropriately, allow hypothetical sce-
narios to be explored in silico. This makes it a potentially invaluable tool
for both improving our understanding of the mechanisms driving ar-
rhythmogenesis and as a direct clinical tool for aiding diagnosis and
planning intervention.

4.1. Tissue-scale continuum modelling

The physical processes responsible for the cardiac action potential
in a cardiac myocyte are a complex choreography of ion movements
across the cell membrane. Mathematically, these are often described by
systems of ordinary differential equations (ODEs) which range in
complexity from two equations to more than twenty [66]. The para-
meters of these equations have been chosen based on fitting the in-
dividual equations to experimental measurements. Cells are electrically

coupled through gap junctions, which can be mathematically modelled
as resistors. However, modelling the whole heart at a cellular scale is
computationally intractable. Consequently, homogenisation of the dis-
crete cell model leads to a bi-domain continuum model in the form of
two partial differential equations (PDEs),

+ = +v v C v
t

I( ) ( ) ,i i e m ion (3)

+ + =v v( ) (( ) ) 0,i i e e (4)

supplemented with appropriate boundary conditions [67]. Here v is the
transmembrane potential, ve is the extracellular potential, Cm is the
membrane capacitance per unit area, χ is the cellular surface-to-volume
ratio and Iion is the transmembrane current density from the coupled
action potential ODE model. Anisotropy and heterogeneity of the
myocardium is captured in the intracellular conductivity tensor i and
extracellular conductivity tensor e. With the further assumption of
equal anisotropy ratios in these spaces, such that =i e, this system of
equations can be further reduced to a single PDE, again with appro-
priate boundary conditions, known as the monodomain model,

+
= +v C v

t
I

1
( )i m ion (5)

A comprehensive review of the mathematical models used in the
cardiac electrophysiology domain is given by Clayton et al. [67]. The
monodomain model belongs to the class of reaction-diffusion PDEs. The
diffusion component can be considered to relate to the biophysical
process of ion propagation through gap junctions between cells, while
the reaction component is the cumulative result of the action potential
model describing the opening and closing of ion channels in the
membrane (gating variables) and related ion movements into, or out of,
the cell.

4.2. Numerical methods for action potential propagation

To solve equation (5) in all but the most trivial of scenarios requires
the use of numerical approximations. The continuous PDE is trans-
formed into a system of algebraic equations which are more amenable
to solution on a computer. This transformation may use one of several
discretisation techniques, such as finite difference, finite element or
spectral approximations and with sufficient spatial and temporal re-
solution can provide very accurate approximations to the true solution
of the PDE. However, the wide range of time-scales on which the dif-
ferent physical processes in the model occur makes the numerical so-
lution of this system challenging and may lead to long simulation times
even with considerable computational resources.

One technique being explored within our group for modelling
electrophysiology is the spectral/hp element method [68]. This ap-
proach combines the flexibility of the finite element method to model,
for example, the complex geometry of the heart chambers, with the
numerical benefit of spectral methods, by enriching the polynomial
space of each element with higher-order basis functions. In particular,
this allows an approximation of comparable accuracy to a conventional
finite element discretisation to be achieved with a smaller algebraic
system of equations, resulting in faster simulations and ultimately a
shorter time to solution. We have also explored the simulation of action
potential propagation in the left atrium using a surface representation
of the chamber wall [69], further reducing the size of the numerical
problem to solve.

Even with these advancements, the computational cost of using
numerical methods to accurately perform predictive modelling is still
substantial, with the time-to-solution being orders of magnitude higher
than what might be required for an interactive clinical tool.
Furthermore, the inference of model parameters is highly challenging
and even more computationally costly. In Section 5 and Section 6 we
consider opportunities for machine learning techniques to complement

Table 2
Total classification accuracy results from the 4-fold cross-validation and final
testing. For each model, the convolutional neural network was trained a total of
five times to ensure the model was robust to differences in random initialisa-
tions. Averages and standard deviations of the classification accuracy are pre-
sented.

Fold Classification accuracy (%)

Cross-validation 1 96.7 ± 0.8
2 97.2 ± 0.6
3 96.7 ± 1.0
4 94.0 ± 0.7

Testing 96.3 ± 0.7

Fig. 5. Confusion matrix from the binary classification of electrograms before
and after administration of carbenoxolone to monolayers of cultured myocytes.
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modelling and help address these difficulties.

5. Recurrent neural networks

Deep neural networks can be trained to predict the future behaviour
of a dynamical system [70–72], and subsequently their internal re-
presentation can be used to estimate the latent parameters of the
system. Neural networks have been shown to be faster (at inference
time) than commonly used numerical simulation approaches [70,71].
Indeed, while they require large amounts of data to train, once the
optimal network weights have been found, obtaining predictions from
unseen inputs requires only a fraction of the time and computational
resources in comparison to conventional numerical methods. Despite
the drawback of generating only approximate solutions, leveraging the
fast prediction performance of neural networks may enable large
numbers of what-if scenarios to be rapidly explored in a fraction of the
time of conventional numerical modelling. Clinically, this might allow
the viability of potential therapeutic strategies to be quickly tested and
accelerate the calibration of more precise numerical modelling which
can be used to further optimise the treatment.

Recurrent neural networks differ from purely feed-forward neural
networks, such as the convolution neural networks considered in
Section 3, in that they are designed for processing sequences of inputs.
They incorporate a feedback loop where the output of each step in the
sequence is added to the input of the next step [63]. These types of
networks are therefore well suited to dealing with data sequences. This
allows information to be propagated along the sequence: each output
will then be conditioned not only by the current input in the sequence,
but also by all previous inputs. However, in practice, vanilla recurrent
neural networks can only store information for a short number of steps.
Long short-term memory (LSTMs) networks are a particular variation of
recurrent neural networks developed to alleviate this problem and
allow the learning of longer term dependencies [63].

5.1. Application to predicting two-dimensional diffusion

Here, we present a proof of principle study where we apply this
approach to a two-dimensional diffusion problem with a spatially het-
erogeneous and anisotropic diffusion tensor. Diffusion is a key com-
ponent of models of excitable media, such as cardiac tissues [67]. Our
system is governed by the following equations:

= ×v x y t
t

x y v x y t x y t TD( , , ) ( ( , ) ( , , )), ( , , ) [0, ], (6)

=v x y v x y x y( , , 0) ( , ), ( , ) ,0 (7)

= ×v x y t x y t T( , , ) 0, ( , , ) [0, ]. (8)

Here, D is a diagonal 2× 2 matrix with non-zero diagonal elements d0
and d1, governing diffusion on the horizontal and vertical axis, re-
spectively. The computational domain = [ 2,2]2.

5.1.1. Training data generation
Numerical simulations were performed using a regular mesh of

×80 80 square elements, using a modified Legendre polynomial basis
with polynomials up to order =P 5. The solution over time was sub-
sequently sampled on a regular ×64 64 grid for input into the neural
network. A total of 1600 numerical simulations were performed using
Nektar++ [68] with initial condition and diffusion fields drawn at
random from a predefined distribution. The initial condition consisted
of spatially smoothed noise. This was created by first generating a
random spatial frequency spectrum in the Fourier domain. This had a

two-dimensional frequency profile drop-off as + +f f fx y c
2 2

/2

, with

alpha randomly chosen to be either 1 or 2 and =f 3c . The quan-
tities fx and fy are measured in terms of cycles per domain length.

Furthermore, there is a sharp cut-off at + <f f fx y o
2 2 2, with =f 8,120 or

16 which is randomly drawn independently for each simulation. The
spatial frequency profile was multiplied by standard Gaussian noise and
phases were drawn from a uniform distribution between 0 and 2π. Fi-
nally, a symmetric version of the spectrum is inverted to obtain the
initial condition in the spatial domain and then normalised to achieve a
certain level of contrast. All initial conditions are gradually smoothed to
zero when approaching the boundary of the domain. Moreover, they
were first generated at a resolution of 128× 128 pixels and then in-
terpolated onto the mesh used for the simulation.

The diffusion field was characterised by six parameters. A line with
random orientation (θ) and location (β) is chosen to partition the do-
main, with one part denoted as healthy and the other as scarred tissue.
The former is given a higher diffusion coefficient with respect to the
latter. Diffusivity in the domain is therefore characterised by four dif-
ferent diffusion parameters: d0, d1, d scar0, , d scar1, , which are chosen to
satisfy the conditions,

=d d
d d

d d
d d

max( , )
min( , )

max( , )
min( , )

,scar scar

scar scar

0 1

0 1

0, 1,

0, 1, (9)
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d

d
d

.
scar scar

0

0,

1

1, (10)

Here, the anisotropy ratio γ and heterogeneity ratio λ are randomly
drawn from a uniform distribution on the intervals [1,3] and [2,7],
respectively. Finally, for each simulation we randomly selected which
of d0 and d1 was assigned to have the highest magnitude. This conse-
quently determines the direction along which diffusion is fastest. The
direction of fastest diffusion was assigned a value drawn from the in-
terval [3.2, 3.8].

5.1.2. Network architecture
To predict the future behaviour of the system, we built a fully

convolutional neural network consisting of three main blocks, similar to
the architecture used by Ehrhardt et al. [72]. First, a three-layer en-
coding network extracts relevant features from the input frames, while
performing dimensionality reduction. By compressing the information
that passes through the layers, this encoder network thus acts as a
bottleneck that encourages the network to only extract a useful re-
presentation of the system. While Ehrhardt et al. [72] used a portion of
a pre-trained VGG network [73], here we train the network end-to-end
to tailor the features extracted to the specific physical system under
consideration. Next, a convolutional LSTM layer [74] progresses the
features in time for as many steps as necessary. After the recurrent
layer, the structure of our predictive network is completed by a three-
layer decoder network that transforms the output of the LSTM back into
frames in the spatial domain. Transposed convolutions are used with a
stride of two [75] to return to the original resolution. Batch normal-
isation [61] and ReLU non-linearities [63] were used after each con-
volutional layer in both the encoder and the decoder. A schematic of the
neural network can be found in Fig. 6, while Table 3 has a summary of
the key network parameters. The hyper-parameters of the network were
chosen manually, after a brief exploration of the hyper-parameter
space. Therefore, it is possible that a more thorough search would
further improve prediction accuracy.

5.1.3. Network training
The network received as input 2 or 3 sequential frames and was

trained to predict the next 11 frames, while only a smaller number of
target frames (variable between 1 and 7) was used to back-propagate
the prediction error, and thereby constituting useful information for the
network training process. All networks considered in this study were
able to extrapolate for more time steps than that used during training.
We used Mean Squared Error (MSE) – the average of the squared dif-
ference between targets and predictions – as the loss function, and
trained the network for 1000 epochs using Adam update schemes [76],
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weight decay [61] and a batch size of 64. The learning rate started at
0.0005 and was decreased by a factor of ten after 700 epochs. The si-
mulations were split into training and testing using a 5-fold cross-va-
lidation scheme. In addition, 20% of the training dataset was set aside
for validation, since the final model was chosen as that which exhibited
best performance across epochs on this validation dataset. The training
was carried out using the PyTorch framework [65] and required be-
tween 40 minutes and 60 minutes per network on a GTX 960 GPU
(NVIDIA Corporation, USA), depending on the number of back-propa-
gated frames.

5.1.4. Results
Our aim was to investigate the changes in prediction accuracy with

varying amounts of training data, quantified as the number of frames
given as the input (Kb) and as the target (Kt) to the network. The former
determines how much information the network can use to make pre-
dictions while the latter, which corresponds to the number of back-
propagated target frames, is used to calculate the error which informs
the update of the network weights. The more frames that are used for
back-propagation, the more future time steps can be aggregated to
build the error signal that guides the network learning process. The
disadvantage is that longer simulations are required to train the net-
work and there is an increased risk of over-fitting.

Prediction errors on the test dataset are shown in Fig. 7, for

networks trained with different numbers of input and target frames.
The solid lines correspond to the MSE averaged over the test dataset
and over the five-fold cross-validation, with the error bars extending
from the minimum to the maximum accuracy achieved across the five
folds. The MSE is plotted against the number of back-propagated target
frames, but is computed as an average across the prediction of 11 future
frames, for all networks shown. The dashed lines represent the “last
input” level, computed as the error that would be achieved if the last
input frames were used as the predictions. This control test provides a
baseline against which to judge the generalisation capability of the
network. Fig. 8 shows the full “last input” level distribution against the
performance achieved by one of the trained networks ( =K 3b , =K 5t ).
It can be observed that the network is making effective use of the in-
formation it receives as input, since the accuracy achieved is better than
that obtained with no physical knowledge for each individual simula-
tion in the test dataset.

To assess statistical significance, we compared the two distributions
using a Wilcoxon signed rank test: we obtained a p-value smaller than
10 4 against the null hypothesis of equality of medians, as shown in
Fig. 8. Such a null hypothesis can be interpreted as the situation in
which the neural network makes advantageous use of its inputs, but has
not learned the physics behind it. Furthermore, the plot in Fig. 7 sug-
gests that the learning capabilities of the network saturate after a cer-
tain number of back-propagated target frames (potentially from

=K 4t ). From that point onwards, the network is able to maintain si-
milar error levels when extrapolating the predictions further ahead in
time. This could be indicative of the network having better assimilated
the mechanics of diffusion. The benefit of using a smaller number of
back-propagated frames would be evident when there is a limited time
available to run the simulations necessary to build the training dataset:
in this case, being able to train effectively with shorter, rather than
longer, simulations is advantageous.

It is possible, however, that the gain in prediction accuracy shown
in Fig. 7 is influenced by the progressive decrease over time of the

p

Fig. 6. The architecture of the network used to predict the future behaviour of the 2D diffusion system.

Table 3
Details of the architecture for the prediction network. The number of channels
in the last layer of the decoder is variable because it depends on how many
frames are requested as output (K).

Nb. of channels Filter size down-/up-sampling

Encoder (64,32,32) (5,5,5) Max-pooling (2× 2)
LSTM 32 5 n.a.
Decoder (32,64,K) (4,4,4) Stride= 2

Fig. 7. Accuracy of next steps prediction versus number of input (Kb) and back-
propagated (Kt) frames. Mean Squared Error (MSE), averaged over the test
dataset, first, and the 5 cross-validation folds, then, against Kt and for =K 2,3b .
Error bars extend to the minimum and maximum MSE among the 5 folds.
Dashed lines represent the last input level.

Fig. 8. Comparison between the full MSE distribution across the test dataset for
the predictions of a single trained network, compared with that given by using
the last input frame as the prediction. The asterisks represent statistical sig-
nificance with p-value <10 4 (Wilcoxon signed rank test).
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overall energy of the system, caused by the diffusion dynamics. To
control for this, we computed the normalised mean squared error
(NMSE) – the MSE between predicted and target frames divided by the
L2 -norm of the target frames at each individual time point. Such a
measure is similar to the fraction of variance explained by a regression
algorithm, and allows us to directly compare performance at different
time steps. Fig. 9 shows the logarithm of NMSE as a function of time for
networks trained with =K 3b and different values of Kt , averaged over
the test dataset and the cross-validation folds. It can be noted that, at
each time step, the NMSE is inversely proportional to the number of
back-propagated frames, suggesting that networks with a higher Kt are
able to explain a larger proportion of the variability of all future frames.

Once trained, each prediction from the neural network took less
than one second to calculate, compared to 40 seconds required by nu-
merical modelling. Extending this to models of cardiac electro-
physiology, such a gain in computational speed would allow for a
quicker exploration of multiple scenarios of interest, such as the al-
teration of functional and structural characteristics of different areas of
the myocardium when planning intervention.

5.2. Application to estimating diffusion parameters

Robustly and accurately estimating the parameters for models is
critical for them to be useful in prediction. In this section we consider
an example of how machine learning can meet this need. Extending the
next-step prediction of Section 5.1, we explored how accurately the
parameters of the diffusion model can be estimated from one of the
networks trained for predictions. We specifically considered the net-
work with =K 3b and =K 4t , as shown in Fig. 8.

We first extracted the internal representation of the network for all
11 predicted future frames. Specifically, this is the activity of the LSTM
units. This multidimensional vector was used as the input to a second
neural network with two convolutional, and one fully connected, layers
which was trained to predict the six parameters d0, d1, d scar0, and d scar1, ,
as well as the orientation (θ) and location (β) of the boundary between
healthy and scarred tissue. Details of this network are given in Table 4.

5.2.1. Results
Results are shown in Fig. 10. The correlation coefficients between

target and predicted parameter values are 0.84, 0.80, 0.80, 0.70, 0.95,
and 0.87 for d0, d1, d scar0, , d scar1, , θ and β, respectively. Despite there
being potential for improvements, the achieved accuracy indicates that
the internal representation learnt by the network does contain in-
formation about physically relevant quantities. This suggests that our

deep learning model is able to assimilate at least some of the me-
chanisms intrinsic to the physical system under consideration.

6. Approximate Bayesian Computation (ABC)

Approximate Bayesian Computation (ABC) is a statistical inference
technique that can be applied as a parameter fitting method to in-
corporate uncertainty estimates into the fitting process [77–79]. The
algorithm interrogates the range of outputs of a numerical model by
drawing different parameter choices from a defined prior probability
space, running the simulation, and comparing the output to experi-
mental data. This probability space is then sequentially refined based
on a distance function which measures the closeness of the simulated
output to the experimental output. After multiple iterations (or
reaching a chosen error threshold), the algorithm produces a discrete
approximation to the true posterior probability distribution of model
parameters given the observed experimental data. The distributions
give more information to a modeller on the ability of the experimental
data to constrain the parameter choice and the resulting credibility of
the full model.

6.1. Application to inferring cell model parameters

Tissue-scale cardiac electrophysiology simulations are built on
models of the action potential of single myocytes. These cell models are
solved by calculating the opening and closing kinetics of transmem-
brane and internal ion currents, and their effect on the membrane po-
tential of the cell. Each parameter in ion current sub-models is chosen
specific to the particular cell type. The parameter values are based on
data from patch-clamp experiments which interrogate the dynamics of
specific ion currents in isolated myocytes at a range of prescribed vol-
tages [80].

The standard approach is to fit ion channel parameters to these data
using a traditional method such as least squares regression. These
methods produce point estimates and thus do not take into account
uncertainties introduced through the fitting process itself when mul-
tiple parameter choices can result in similar values of the fitting loss
criterion. This has led to discrepancies between cell models which

Fig. 9. The logarithm of the Normalised Mean Squared Error (NMSE) against
the prediction time for networks trained with various Kt (and =K 3b ). The
black dots represent the Kt corresponding to each line.

Table 4
Details of the architecture for the parameters estimation network.

Channels/units Filter size down-/up-sampling

Convolutional (128,64) (6,6) Stride= 2
Fully connected (6) n.a. n.a.

Fig. 10. Accuracy of parameter inference from the internal representation of
the prediction network with =K 4t and =K 3b for (a) boundary angle θ, (b)
boundary position β and (c–d) scar parameters d0, d1, d scar0, and d scar1, . The
predicted parameter values are plotted against the target values for a subset of
the test dataset.
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purport to represent the same cell type [81].
Daly et al. previously investigated the use of ABC on parameters

chosen in the original Hodgkin-Huxley action potential model [78,82].
They found that parameters were generally well constrained by the
experimental data. These data were average current traces which in-
form both voltaic and temporal behaviour of a channel. Modern ex-
perimental studies predominantly report steady-state behaviour of
channels in response to voltage steps.

6.1.1. Neonatal rat ventricular sodium channel
We investigate the ability of modern patch-clamp data, which may

contain less information, to constrain parameters of a physiological
model for neonatal rat ventricular myocytes (NRVMs) [83]. We present
the result of fitting the fast sodium channel of the NRVM model using
ABC. The fast sodium channel plays a crucial role in the generation of a
cellular action potential and the propagation of an electrical signal
through cardiac tissue; consequently, it is critical to have confidence in
any in silico model of the channel. We use the ABC Sequential Monte
Carlo (ABCSMC) algorithm with a population adaptation strategy from
the pyabc python library (http://pyabc.readthedocs.io/en/latest/) [79]
and the myokit python library (http://myokit.org) for running simula-
tions [84]. The equations for the fast sodium channel [83] include three
gates: activation, fast inactivation, and slow inactivation, and are given
by,

=I G m hj V E( )Na Na Na
3 (11)

= + +m p V p{1 exp[( )/ ]}1 2
1 (12)

= = + +j h q V q{1 exp[( )/ ]}1 2
1 (13)

=
+

+
+

p V p
p V p

p V p
( )

1 exp[ ( )]
exp( / )m

3 4

5 4
6 7

1

(14)

where the parameters p1 - p7 and q q,1 2 are determined from experi-
mental data, the original published values of which are given in the
second column of Table 5. The gates govern the proportion of open
channels in the cells and thus affect the maximum current that is able to
flow across the membrane. These equations were adapted for NRVMs
from earlier cell models of different species by varying only the channel
conductance [83]. We therefore use only the directly applicable data for
observations in the ABCSMC algorithm. These data are from patch
clamp experiments on adult rat ventricular cells [85,86]. They include
five patch clamp protocols testing activation, inactivation and recovery
characteristics of the channel. The protocols do not explicitly test
temporal characteristics of the current, and thus we retain the temporal
parameters of the fast and slow inactivation processes to reduce the
dimensionality of the problem. For each of the nine parameters that we
constrain using ABCSMC, initial priors were set to uniform distributions
roughly an order of magnitude larger than the parameter setting in the
original model.

6.1.2. Results
Table 5 also shows the prior distribution ranges and statistics of the

posterior distributions. Seven of the nine parameters appear well con-
strained by the data, of which four (p1, p2, q1, q2) are relatively close to
the original values. These parameters govern the steady-state activation
and inactivation (both fast and slow) of the current, confirming that the
patch clamp protocols predominantly test the steady-state character-
istics of this current.

Fig. 11(a) shows how the distributions of the two steady-state
parameters of activation are sequentially constrained through the
iterations of ABCSMC. Fig. 11(b) shows the data used to fit the current,
along with simulation results using original parameters, 100 prior dis-
tribution samples and 100 posterior distribution samples. The output
for the posterior distribution is close to both the original settings and
the experimental data. In some aspects, particularly the upper half of
inactivation behaviour in exp=2, the ABCSMC fit is a noticeable im-
provement over the original parameter choices. However, in other areas
such as the start of activation (seen in exp= 0 and exp=1), the
ABCSMC fit is further from the observed data than the original settings.
For exp=3 which tests the normalised peak current of a regular train
of voltage pulses, the equations of the model appear unable to capture
both the initial exponential and then linear decay of the observed data,
shown by the fact that both the ABC posterior and original parameter
choices end in a constant relationship after the initial decay portion.

Despite the large variation present in two of the parameters, the
posterior results in Fig. 11(b) show little variation. This indicates that
the current patch-clamp protocols may not sufficiently interrogate
temporal aspects of the channel, as both unconstrained parameters (p5
and p7) govern this aspect of the model equations. This highlights the
value of the ABC approach; using traditional fitting methods, we would
not be aware of the unidentifiability in these parameters. More complex
patch-clamp protocols could be investigated in an attempt to improve
the ability of the data to constrain the model.

7. Discussion

In this review we have shown the potential benefits of a number of
machine learning approaches and how they can enable us to extract
more information from the data we collect. The electrogram is the
ubiquitous data modality of the cardiac electrophysiology catheter la-
boratory and yet the relative information content extracted from these
complex signals is currently poor. We have demonstrated that by
quantifying and combining a range of features in the signal, some of
which are already used in isolation, and applying machine learning
algorithms to them we can learn more about the properties of the un-
derlying myocardium and the substrate that sustains arrhythmias. Deep
learning allows us to further automate this process, removing the in-
herent bias of manually choosing potentially sub-optimal features, and
allowing the neural network to extract latent representations which
best discriminate between classes directly from the signal.

Numerical modelling is becoming increasingly established within
the cardiac electrophysiology field, due to the increased availability of
computational power, and improved resolution of clinical imaging
technologies. However, the numerical resolution requirements for ac-
tion potential propagation and complexity of ion channel kinetics still
necessitates high computational cost. Furthermore, the number of
parameters and difficulties associated with deriving appropriate values
experimentally or clinically means that great care is needed when in-
corporating these into predictive modelling. We have shown how ma-
chine learning can help in both inferring appropriate parameter values
from data as well as quantifying how certain we can be in those para-
meter values and therefore how confident we can be in the model
output.

Table 5
Results of ABCSMC inference for the parameters of the fast sodium channel.

orig. prior posterior

mean min max

p1 45 (0, 100) 43.4 43.2 43.6
p2 −6.5 (-50, 0) −11.6 −11.6 −11.5
p3 0.235 (0, 1) 0.0717 0.0707 0.0726
p4 47.1 (0, 100) 79.7 79.3 79.9
p5 −0.1 (-50, 0) −36.2 −50.0 −12.2
p6 0.0588 (0, 1) 0.00345 0.00302 0.00373
p7 11.0 (0, 1000) 682 325 998
q1 76.1 (0, 100) 72.5 72.9 73.1
q2 6.07 (0, 50) 9.54 8.82 10.0

C.D. Cantwell et al. Computers in Biology and Medicine 104 (2019) 339–351

348

http://pyabc.readthedocs.io/en/latest/
http://myokit.org


7.1. Limitations

In analysing the micro-electrode array electrogram data in Section 2
the large-amplitude stimulus artefact, created by pacing of the culture,
was first removed. This was required for the feature-detection algo-
rithms to reliably measure the electrogram characteristics used to form
the feature vector. Since the stimulus artefact dominates the signal, it
was also a necessary pre-processing step for the convolutional neural
network approach. Without its removal the network was unable to
distinguish specific morphological features of the response signal.

For the robust training of deep neural networks, used in both
Section 3 and Section 5, the volume of data and computational cost of
training is high. While data augmentation techniques are used to im-
prove the generalisation of models, additional recorded data would
further improve the quality of the predictions made by these methods.

Graphics Processing Units (GPUs) are particularly effective at un-
dertaking the learning process for deep neural networks and their use is
essential to produce trained models in tractable timescales. In this
context, feature-based classifiers provide a performance advantage in
situations where appropriate features are known and can be defined a
priori to distinguish the classes. However, the computational time for
prediction using the trained models is negligible for both feature-based
and deep-learning based methods.

8. Conclusions

Cardiac arrhythmias are a major global healthcare problem and
there is significant scope for improving their diagnosis and treatment.
Improvements will be achieved from better understanding of the me-
chanisms sustaining fibrillation, as well as increasingly personalised
treatment. Modern machine learning techniques and numerical mod-
elling, when applied appropriately, both have great potential to help
fulfil this role and their combination, in particular, offers a powerful
approach to achieving personalisation of care.
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