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The competitive demand for attention is present in our daily lives, and the identification
of neural processes in the EEG signals associated with the demand for specific attention
can be useful to the individual’s interactions in virtual environments. Since EEG-based
devices can be portable, non-invasive, and present high temporal resolution technology
for recording neural signal, the interpretations of virtual systems user’s attention, fatigue
and cognitive load based on parameters extracted from the EEG signal are relevant for
several purposes, such as games, rehabilitation, and therapies. However, despite the
large amount of studies on this subject, different methodological forms are highlighted
and suggested in this work, relating virtual environments, demand of attention, workload
and fatigue applications. In our summarization, we discuss controversies, current
research gaps and future directions together with the background and final sections.
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INTRODUCTION

The study of EEG signals associated with the application in different technologies is a great interest
in neuroscience, for example, in assistive technology/rehabilitation tools, as it is a non-invasive
recorded physiological signal, with information on the individual’s conscious and unconscious
states in reaction to external and internal stimuli. The external stimulus can be a virtual reality
system (VR), composed of sound and, mainly, image, being a means of communication that allows
the user to feel physically present from the virtual experience. VR systems can present different
levels of immersion of the user in the virtual environment, the more immersive, the greater the
feeling of belonging of the user and, the more consonant with the information generated in the EEG
signal it will be. In this case, an encouraging, personalized interface with a reliable replication of a
real environment is favorable. This allows the brain EEG signal to be extracted from an individual
with exposure to a controlled scenario, similar to the real one but limited to the stimuli that reach
their perception.

In virtual environments, the user is exposed to punctual and constant stimuli, some with greater
intensity than others. Thus, levels of attention and engagement can change and when monitored
with the help of equipment that records non-invasive electrophysiological neural signals (EEG), it
is possible to infer the individual’s dedicated attention, modulated by intrinsic and extrinsic factors.
There is a great current interest in detecting attention and engagement based on EEG signals, which
are responses to the efficiency of an application with intense virtual stimulation, as we will exemplify
throughout this work. Even in situations where competing stimuli are absent, consistent attention
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to the virtual system is a challenge. Therefore, the modulation
of neural responses by states of attention has been widely
explored, and this aspect, extrapolated from the EEG signal,
is important to relate to the applied immersion system
and understand the effectiveness of the EEG-based virtual
system application.

This review aims, therefore, to present an updated overview
of the approaches associated with the level of attention
detected employing features extracted from the EEG signal with
techniques applied in neuroscience (Table 1 and Supplementary
Table 1), and how they currently relate to virtual reality systems.
Future directions are extrapolated and presented in such a
way that attention carries with it different mechanisms to
dynamically adapt the extrinsic and intrinsic cognitive load to
the human being; this characteristic, therefore, is capital in
neuroscientific systems, which involve parallel processing of data,
very common today.

BACKGROUND

Attention Allocation and Fatigue
In the study field of attention, several definitions are needed
in order to interpret the results presented in scientific findings.
William James once wrote in the principles of psychology
that “Everyone knows what attention is” (James, 1891), but,
paradoxically, attention is one of the most researched terms
in neuroscience, biology and psychology, sciences that seek
to classify objectively the mechanisms of attention and how
it dynamically adapts to internal and external information
flows. Thus, it is more convenient to describe that “Nobody
knows what attention is,” as the authors explore more recently
(Hommel et al., 2019; Lindsay, 2020). In a new and more
current approach, authors such as Chun and Cho (Chun et al.,
2011; Cho et al., 2015) have explored the concept of attention
and its role in artificial neural networks, in the context of
machine learning. Attention, therefore, is far from having a clear
and unified conceptualization, but it can be understood in a
general way as selective capacity to control limited resources of
cognitive load processes.

Some of the taxonomies that involve the concept of attention
need to be defined in the context of this work: covert and overt
attention; bottom-up and top-down attention; feature and spatial
attention. Covert and overt attention can be differentiated in
relation to the observation of objects around, the first without
specific visual focus by the individual, and the other detected
in the observation of target objects, respectively. Bottom-up
and top-down attention are different forms of classification of
attention, in the first case an abrupt/spontaneous/involuntary
stimulus (e.g., objects with strong color contrasts) draws
attention from the external environment vs. a dedicated attention
in the second case, one that was planned and voluntary (e.g.,
solving arithmetic calculations). Corbetta and Shulman (2002)
define as goal-directed and stimulus-driven the top-down and
bottom-up attention elements, respectively. Feature and spatial
attention are differentiated as the name suggests, the first looking
for specific characteristics (e.g., look for all yellow things) and the

second for specific objects with specific qualities (e.g., looking for
a yellow flower).

Above all, feature and spatial attention are associated with
visual stimulation. In spatial attention, the saccade movement
stands out in overt attention: rapid movement of the eyes between
two fixation points. For the shift of the gaze focus to occur, the
individual’s attention-calling stimulus will be easily identified by
the result it causes in the final action: saccade. Although the
external stimulus may have caused this abrupt change in the
focus of the individual’s gaze, it is understood that the saccade
movement corroborates a directed spatial visual attention, with a
specific target object, being, therefore, an example of execution of
overt attention. In covert attention, on the other hand, attention
is oriented to a specific location, in which visual stimuli external
to that fixation location must be identified by the individual, as a
task, but must not cause a change of look or saccade movement.
Covert and overt attention, then, can be understood by means of
visual behavior.

Attention is strongly affected by sensory inputs such as vision
and hearing, but there is a natural tendency in attention studies
to emphasize results obtained from visual stimuli as discussed by
Hutmacher (2019). This author considers that vision is socially
and culturally dominant over other senses, which gives us room
to reflect on technological approaches and the predominance
of visual input stimuli in the orientation of the individual’s
attention, as in the case of virtual reality systems. In a more
recent approach, “free-viewing” experiments emerged in real and
virtual environments, where the individual is not directed to any
specific task, he is only inserted in the context of interest, reacting
to the scenario in a contemplative way. Everyday tasks, such as
watching children play in the pool, is a free-viewing fashion,
which can provoke neural patterns detected in EEG cognitive
processes with low mental effort. More recently, the attention
state that has no specific focus, in a free-viewing fashion, was
explored between two determined tasks and, as result, authors (Li
et al., 2020a) found that this period of “mind wondering” possibly
was influenced by the directions given for the task execution and
by the stimuli of the task itself, even in a moment of a lack of task.
Others known approaches are explored next.

Petersen and Posner (2012) present in their work three
functionally independent brain networks that are affected
by attention: alertness/vigilance/arousal, orientation (processes
stimuli from the external environment, there is a dorsal and a
ventral network in the human body) and execution (complex
and oriented tasks). Orienting and execution networks can be
described according to Chun’s taxonomy (Chun et al., 2011)
for external and internal attention, respectively. The dorsal
network (DAN) is reflected in relation to involuntary attention
in the superior parietal, occipital and frontal cortex electrodes.
The ventral network (VAN) comprises the control of attention
focus, voluntary attention, by releasing norepinephrine in various
parts of the brain, including non-cortical regions, such as
the anterior insula and temporoparietal junction, and cortical
regions, such as the anterior cingulate cortex and pre-fronts.
These two networks complement each other in the operation of
oriented (internal) attention with external stimuli that provoke
attentional reorientation (Proskovec et al., 2018). Figure 1 shows
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TABLE 1 | Brain waves and corresponding authors bands variations.

Brain wave Frequency band (Hz)

Delta (δ ) 0.5–3.5 Hz (Cowley and Ravaja, 2014); 0–3.9 Hz (Hazarika et al., 2018); 0.1–3 Hz (Coenen et al.,
2020); 0–5 Hz (Mathewson et al., 2012); 1–3 Hz (Wang Y. K. et al., 2015); 1–4 Hz (Wang Y. et al.,
2020); 2–4 Hz (Heyselaar et al., 2018)

Theta (θ ) 3–8 Hz (Jaquess et al., 2017); 3.5–8 Hz (Cowley and Ravaja, 2014); 3.9–7.8 Hz (Hazarika et al.,
2018); 4–8 Hz (Wang Q. et al., 2011; Matthews et al., 2015; Vortmann et al., 2019); 3–10 Hz
(Savage et al., 2013); 4–7 Hz (Clemente et al., 2014; Jagannath and Balasubramanian, 2014; Wang
Y. K. et al., 2015; Wang Y. et al., 2020; Fuentes-García et al., 2019; Coenen et al., 2020; Li et al.,
2020b); 5–8 Hz (Heyselaar et al., 2018)

Alpha (α ) 7–12 Hz (Mathewson et al., 2012); 7.8–15.6 Hz (Hazarika et al., 2018); 8–12 Hz (Clemente et al.,
2014; Jagannath and Balasubramanian, 2014; Berger and Davelaar, 2018; Coenen et al., 2020;
Wang Y. et al., 2020); 8–13 Hz (Cowley and Ravaja, 2014; Wang Y. K. et al., 2015; Jaquess et al.,
2017; Li et al., 2020b); 9–13 Hz (Matthews et al., 2015); 8–14 Hz (Heyselaar et al., 2018; Vortmann
et al., 2019)

Beta (β ) 12–30 Hz (Wang Q. et al., 2011); 13–25 Hz (Coenen et al., 2020); 13–30 Hz (Cowley and Ravaja,
2014; Jagannath and Balasubramanian, 2014; Jaquess et al., 2017; Li et al., 2020b; Wang Y. et al.,
2020); 13–32 Hz (Yin and Zhang, 2014); 14–30 Hz (Matthews et al., 2015; Vortmann et al., 2019);
15–20 Hz (Heyselaar et al., 2018); 15.6–31.25 Hz (Hazarika et al., 2018)

Gamma (γ ) 25–50 Hz (Coenen et al., 2020); 31.25–62.5 Hz (Hazarika et al., 2018); 30–45 Hz (Cowley and
Ravaja, 2014; Vortmann et al., 2019); 33–40 Hz (Yin and Zhang, 2014); 30–120 Hz (Wang Y. et al.,
2020)

Brain waves frequency bands are indicated in bold.

FIGURE 1 | Attention taxonomy merging traditional definitions. Attention allocation can be detected from different approaches, the internal or external triggers may
characterize attention in immersive or cognitive load state. Upper box: the arrows point to the subject’s head – the elements that make up the stimulus path come
from the external environment into the individual – so the attention allocation is guided by the stimulus – ‘stimulus- driven’ – prevailing in higher immersion states (due
to screen or virtual environment stimuli). ‘Arousal’ – first box and first reflex of the stimulus perception. Lower box: elements that involve internal attention allocation,
‘executive’ relates the first cognitive reflex of the content selection for oriented attention. ‘Goal-directed’ – attention oriented from an internal stimulus – prevailing in
higher cognitive load states –, but, the goal-directed mechanism also occurs when external stimulus-oriented attention reaches its target, so the goal-directed
arrows cross both stimuli directions showing the two boxes interaction. Schematic overview inspired on (Chun et al., 2011) work.

the different conceptualizations discussed, illustrating how they
are complementary, sometimes overlapped.

The level of attention, level of alertness and awake state are
confused in scientific research, referring to the same individual
engagement skill in relation to a given context or artifact. Awake
state, in turn, concerns how much this engagement can be

sustained. Although the level of arousal is important in assessing
the individual’s performance when performing tasks, it cannot
be very high, causing unwanted results, as illustrated by the
well-known Yerkes-Dodson curve, better discussed in section
B. The level of attention/arousal was associated as far back in
1929 with records of oscillations in the alpha band (Berger, 1929).
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The decay in the alpha band and, consequently, its power
associated with an increase in the delta band are very known
indications of attentional engagement in individuals (Klimesch
et al., 1998). Until today, the main findings of new studies when
assessing the individual’s attention and relating it to the ability of
cognitive control are associated with alpha waves, although with
controversial results, as we will see at the end of this section.

It is common to study the sources that influence attention
and not the multiple brain processing systems that can be
affected by attention. Simultaneously, the human brain can
involve two distinct processing areas, such as the auditory task
and the visual task, sharing the individual’s attention (Posner
et al., 1989; Petersen and Posner, 2012). More recently studies
have highlighted the multiple simultaneous brain processing
systems affected by concurrent attention (Long and Kuhl, 2018;
Itthipuripat et al., 2019), as well as investigated how diverse media
that require user multitasking affects attention and, consequently,
cognitive load processes (Uncapher et al., 2017). We will deal
more with the workload state related to multitasking in section B,
but it is known that in multitasking scenarios, which require more
attention, there is a change in neural activity, causing a higher
firing rate of neurons, typically 20–30% more (Mitchell et al.,
2007), which can be identified by the EEG signal with increasing
brainwave bands.

Regarding brainwave bands, the increase in α – alpha waves
(low alpha 8–11 Hz and high alpha 11.1–13 Hz) has been
the main physiological indicator of low anxiety state, especially
high alpha (Li et al., 2020c) which indicates also cognitive
idleness, being a marker of external stimuli suppression capable
of reorienting the individual’s attention (Vortmann et al., 2019).
In this sense, there is an indicator of the alpha wave on the
top-down attention direction, a restorative process that reduces
anxiety and fatigue. As alpha, theta and delta waves increase
proportionally in relation to beta and gamma waves, the level
of alertness decreases (Trejo et al., 2015). The individual’s
immersion in environments that encourage contact with nature,
with the intention of transmitting tranquility, relaxation and
increased meditation activity, increases the power of alpha waves
(Grassini et al., 2019).

Several experiments have explored the condition of
individuals in relaxing environments and its reflection on
the EEG. In laboratory conditions, findings were reported with
stimulation to natural environments that promote tranquility,
increased alpha activity, relaxation, increased meditation
power, among others (Grassini et al., 2019). In uncontrolled
environments, with physical and natural exposure to nature,
with the use of portable EEG systems, results corroborate those
found with the use of artificial environments (Aspinall et al.,
2015; Chen et al., 2016): greater engagement and arousal, less
frustration and greater meditation. The attention restoration
theory (ART) deals with the properties of natural environments
that unintentionally attract the individual’s attention, eradicating
anxiety and mental fatigue, expanding the performance capacity
of the cognitive focus (Kaplan and Kaplan, 1989).

The qualities of natural environments are relevant and
are treated by Kaplan (2001), according to ART. Four key
components are decisive in natural environments: 1- the

individual’s ability to be psychologically disconnected, as
portrayed by the Psychological Recovery Theory (PRT), of
present concerns and demands, is called “being away”; 2 – the
ability to capture the individual’s attention with involuntary
factors (bottom-up), generating the minimum of disturbances
that drain voluntary attention (top-down), is called “soft
fascination”; 3 – the level of immersion that the individual
feels, being able to distinguish cognitive maps, and what is the
engagement generated with this sensation, is called “extent”;
4 – the intrinsic motivation of the individual to remain in a
certain environment, to feel part of or want to do what he
wants, is called “compatibility.” The fascination state is very
explored in literature.

Kaplan (1995) determines two definitions to distinguish
fascination. The first is “hard fascination” and the second is
“soft fascination,” the first covers abrupt and high stimuli so
that the individual must act quickly, without reflecting on the
stimulus, which can generate stress and mental fatigue. In the
second, the individual is surrounded by a visually pleasing aspect,
such as natural environments, allowing him to reflect on the
event that calls his attention, promoting attention restoration.
In the first, we can associate the definition of overt attention, in
which attention is directed to the stimulus focus, from a quick
movement of the eyes, for example, saccade. In the second, covert
attention predominates, encompassing the aspect of free-viewing
and natural contemplation of the elements around the individual.

In this context, the individual’s state of engagement,
comprising the qualities pointed out by ART, is highlighted (Ohly
et al., 2016), in order to enable benefits based on the dedication
of their attention for some time in the contemplation of natural
environments. How this occurs, and how the method can be
replicated, based on quantitative EEG results, remains unclear.
None of the studies cited on ART in a recent review (Ohly et al.,
2016) reported neural data related to the attention restoration
process. After the aforementioned review article, the authors
Chung and Li (Chung et al., 2018; Li et al., 2020d) present in
their work studies exploring ART and EEG neural signals. Both
found variations in the evoked potential P3 in exposures to
virtual environments with simulation of nature, in 5 and 30 min,
respectively, for the cited studies. The states of relaxation and
attention restoration involve a low level of arousal and alertness,
however, they differ from the state of mental fatigue, which also
presents these characteristics.

Mental fatigue is a mental state after an operation for a
long period of high mental effort, when there is cognitive
demand, tiredness sensation, sleep deprivation, unwillingness to
new mental efforts and, mainly, compromise of the individual’s
performance in tasks. Indicators of mental fatigue can be
subjective and objective. In the subjective assessment, indicators
such as headache, tiredness, inability to concentrate, among
others, can be assessed via an individual questionnaire and
exposed to a subjective bias. In the objective evaluation, through
the EEG signal, a shift of EEG power toward low-frequency
bands (δ,θ, and α) has been widely reported in the past (Wascher
et al., 2014), and the increase of low alpha (8–11 Hz) waves
is currently accepted associated with increased level of fatigue
(Zou et al., 2015; Li et al., 2020c), but the opposite has been
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widely reported in the past (Jap et al., 2009). These oscillations are
more identified in frontal, frontotemporal and over visual regions
(Lamti et al., 2016), with high frequencies (beta, gamma) typically
decaying in amplitude (Grassini et al., 2019). A decrease in the
level of arousal, as well as a reduction in goal-directed attention,
a reduction in effective selective attention and an increase in
the difficulty of dividing attention into multitasking are aspects
found as a result of mental fatigue states (Trejo et al., 2015;
Lamti et al., 2016).

The main investigations to identify mental fatigue from the
EEG signal are associated with driver monitoring when driving
vehicles (real or virtual), by the direct implication of the results
(Jagannath and Balasubramanian, 2014; Touryan et al., 2016). It is
known that most car accidents are due to human errors and that
they can be related to mental fatigue or lack of attention by the
vehicle driver. Virtual wheelchair driving was assessed in relation
to mental fatigue, by EEG signals, in the work of Lamti (Lamti
et al., 2016). Detection of mental fatigue in the neurophysiological
processes is widely reported through the EEG feature extraction
(Li et al., 2020c), such as the delta and theta ratio with alpha and
beta bands. However, few studies investigate the differences of
mental fatigue in the processes of attention allocation, through
the EEG activity, with virtual environment stimuli.

To contemplate the state of attention restoration, the lack
of attention factor, associated or not with mental fatigue, must
be previously identified. This affects individuals in their daily
life, due to the feeling of tiredness, compromising the tasks
performance that require mental effort. In section B, we will bring
more details about what task performance is, how the workload,
working memory and learning processes can be identified and
can culminate in mental fatigue.

Attentional Orientation and Cognitive
Workload
The learning process and mental load measurement can be
investigated on several fronts, such as attention, response time
and task development (time on-task), expertise, self-regulation,
and multimedia learning. The high workload information
associated with the study of attention may be relevant to
understand the impacts of brain signal variation in face of
changes in engagement, mood and task difficulty. Successful
of within task difficulty level classification has been happening
for some years, but it remains unclear and challenging the
classification of cross-talk (unwanted co-recorded EEG signal
from multiple electrodes) (Nelson et al., 2017). There is also
great interest in monitoring the mental workload of individuals
in everyday situations, especially in cases where the high demand
for mental workload can compromise attention, such as driving
(Sumwalt et al., 2019). There is no consensus among the
works mentioned above for the definition of mental workload,
as several nomenclatures [mental workload (MWL), working
memory load (WML), cognitive learning, mental load, task load
and cognitive workload] surround aspects of cognitive load, but
it can be understood in general as the task demand and the
individual’s ability to perform in front of that task within a
context (Young et al., 2015).

In the context of cognitive neuroscience, attention is one of
the three cognitive control abilities (the other two are working
memory and goal management) (Gazzaley and Rosen, 2016).
The variables that characterize mental load are evaluated after
long periods of the individual’s practical exposure to cognitive
load stimuli, with attention control, which consists of not only
successfully perform selected tasks, but also free practices to
acquire experience, with enthusiasm (engagement in the face
of stimuli that generate cognitive demand), top-down attention
and perseverance for long-term goals, with no immediate result.
A multitasking practice is always related, in research, to the
amount of time needed to develop a certain skill, as discussed
by Chase and Simon (1973) in their seminal article, but also to
the engagement and arousal that the individual demonstrates
in activity, which can commonly be measured by the response
time (RT) of cognitive processing to the stimulus (Li et al.,
2020b,d).

As well as relating the levels of arousal and cognitive
performance in the most accepted and widespread theory of
the Yerkes-Dodson law bell curve, it is observed that with the
increase in the level of arousal, anxiety is generated and impairs
the performance potential in the resolution of multiple activities
or difficult activities. The weakest the individual’s performance
is, the lowest is arousal in attention identification. A higher
arousal can cause low performance in the presence of fatigue
in the task. There is an optimal phase in the medium arousal
and maximal performance, when engagement and attentional
orientation are at its best. In the simulation of a complex
task, such as flying an airplane, the high mental workload
demanded impairs the ability of language processing, as well as
the individual’s performance in the task (Causse et al., 2016).
Analogous to the reasoning proposed in the curve, the increase
in stress due to a high cognitive load or difficulty of a task
follows the same pattern, generating cognitive impairment due
to fatigue. The authors McKendrick et al. (2019) called the Stress-
Strain curve the capacity model analogous to the Yerkes-Dodson
curve, to demonstrate the behavior of the application of mental
load in the states of individual capacities. The authors Li et al.
(2020c) suggest, in the case of overload, an increase in the low
alpha band (8–11 Hz), while the authors Gevins and Smith (2003)
and Borghini et al. (2012) found that theta-band spectral power
increased in the frontal midline and attenuation of the alpha band
in general, perceived in the EEG signal.

Electrophysiological factors, such as the brain signal recorded
through the EEG, can be measured objectively and quantitatively,
and are associated with the learning rate of individuals in game
manipulation. Complex video games have long been recognized
as useful investigative techniques for cognitive neuroscience as
well as potential cognitive training tools (Donchin, 1989). The
authors Maclin and Mathewson (Maclin et al., 2011; Mathewson
et al., 2012) have already reported the modulation of event related
spectral perturbation (ERSP), detected by the EEG signal, in
games without immersion as increasing the sources of attention
for events of secondary tasks. Specifically, the ERSPs in the α

(7–12 Hz) and δ (0–5 Hz) bands in a range of games were
identified with change as learning increased. The increase in P300
amplitude in secondary tasks was shown to indicate that sources
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of attention were released as game manipulation became more
automated. As described by Chang and Lin (2011), this occurs
because the user’s expectation decreases the stimulus perception
threshold, reducing the recorded potential latency.

Event-related potentials (ERPs) are brain electrical potentials,
perceived in the EEG (such as the ERSP and P300 mentioned
above), associated with the individual’s internal and external
cognitive stimuli. Therefore, they can be the result of top-down
or bottom-up attention, in terms of attentional orientation. ERPs
can be the result of cognitive processes, but are also easily affected
by mood and emotion, and are analyzed with a focus on time-
domain monitoring of the EEG signal at a specific interval after
the source stimulus. The trigger for the primary stimulus is
a crucial factor in understanding these potentials, which are
validated in terms of their amplitude and latency measures,
and may be an intra- or inter-individual assessment. In general,
scientific research fails to demonstrate the ERPs validation.

A variety of spectral characteristics/dynamic variables can
be extracted from the EEG signal as indicative of cognitive
variation, which provide satisfactory measures and classification
of cognitive workload. The EEG signal features found in the
investigated articles will be shown in the results of this work
and most investigations of mental load are by means of the
maximum or average power spectral density (PSD) (Yin and
Zhang, 2014; Matthews et al., 2015; Yu et al., 2015; Magosso
et al., 2019), entropy-based features such as the wavelet packet
also show up (Stam et al., 2002; Zarjam et al., 2013). Other
approaches refer to spectral characteristics coherence and Phase
Locking Value (PLV), these synchronization events are of interest
due to the brain firing state necessary for conducting many
cognitive functions.

Event-Related Synchronization and Desynchronization (ERS
and ERD, respectively) will be dependent on each task demand
or stimulus type, and may be recognized in alpha power increase
and decrease, respectively. ERD is associated with increased
excitability of cortical neurons during cognitive neural processes,
motor and sensory control (Neuper and Pfurtscheller, 2001),
while ERS surrounds focal ERD, assisting in by increasing and
synchronizing the neighboring cortical areas, where potentially
interfering cues and distractors may occur (Pfurtscheller, 2003;
Foxe and Snyder, 2011). However, the standardization and
precision of mental workload measures in identifying different
levels of difficulty are still unclear.

As more cognitive tasks are applied, the brain load decreases
with the increase in cognitive inefficiency, consequently the
power ratio of alpha and beta waves in the EEG signal (indicative
of engagement) decreases in each brain region. The cognitive
load of each individual will be perceived as adequate, high
or low (adequate load, overload or underload) depending on
their capacity. Three ways to measure cognitive load are: self-
report (qualitative), behavioral secondary tasks and physiological
measures (quantitative) (McKendrick et al., 2019). Cognitive load
levels are usually modulated with arithmetic tasks or simulation
tasks for some scenarios, such as driving simulation, air traffic
control and games with avatars. In the latter case, the aid of
scenario simulation requires great engagement, demands visual
and spatial attention, bottom-up and top-down attention, and

can be compared to the stimulus of real complex scenarios, which
can also culminate in visual fatigue of the 3D environment.

In order to assess levels of cognitive load across a range of
load situations in a qualitative and subjective way, the NASA
Task Load Index Scale (NASA TLX) is the most widely used set
to measure the workload through six sub-scales, each of which
associated to a source of workload (mental demand, physical
demand, temporal demand, performance, effort and frustration)
(Morrison et al., 2014) and has become synonymous with the
concept of mental workload (de Winter, 2014). Combining
those sub-scales results in an overall score which the physical
and cognitive load of the subject, can be helpful to separate
between emotion and mental fatigue income. However, this
assessment is subjective and is hostage to memory lapses as
well as imprecision bias. This subjective investigation is often
accompanied by an investigation of behavioral secondary tasks.
Quantitative investigation via electrophysiological signals such
as EEG is less susceptible to subjectivity bias and abrupt
change in response.

Electrophysiological Signals and
Neuroscience
The EEG signal extracted from the scalp surface can be divided
into frequency bands, which have stochastic characteristics
of similar amplitude and frequency. The different bands
of brain frequencies carry information about the states of
individuals, as we present examples in sections A, B, and
C. The amplitude of the EEG signal through the cerebral
scalp is normally between 10 and 100 µV, the divisions in
frequencies are: δ – delta band (less than 4 Hz), θ – theta
band (4–8 Hz), α – alpha band (low alpha 8–11 Hz and
high alpha 11–13 Hz) and β – beta band (13–30 Hz), are
respectively associated with commonly recognized individual
states: deep sleep, state of relaxation and meditation, state
of awareness and relaxation and, finally, active thinking and
higher cognitive load. These bands are the most applied in
the analysis of EEG signals of low frequency, which may vary
some Hertz among different authors, as shown in Table 1,
with another possibility being the exploration of high frequency
oscillations in the EEG signal (γ – gamma band, greater
than 30 Hz), which are generally associated with some mental
illnesses diagnosis.

The use of EEG-based devices has become popular with
the advancement of EEG headsets, as it lowers the cost of
capturing EEG signals and allows its use in uncontrolled
environments, as well as in non-medical environments, with
the most popular being the Neurosky R© and Emotiv R©, which
generate measurements of the ratios of the frequency bands
of brain waves. BCIs or BMIs, by definition, are interfaces
that use brain signals to control close-loop systems in real
time. The variability of the inter- and intrapersonal EEG signal
has generated, over several decades, discomfort for scientific
purposes. Only in the last decade, with the advancement of
technology and the advent of low-cost portable EEG headsets,
has it been possible to popularize the capture of the EEG signal
in various non-laboratory contexts and generate comparative
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patterns between experiments from pre-defined levels and scales
by these equipments.

The largest global technology companies, Facebook and
Tesla, have already shown recent interest in research with
neural signals. Facebook wants to provide disabled people’s
ability to communicate by capturing cortical neural signals
in high spatial resolution to read their thoughts, decoding
perceived and produced speech of up to 100 words per
minute in real time (Moses et al., 2019). Tesla and SpaceX
intend to generate superfine structures, which make it possible
to connect thousands of flexible electrodes placed in the
brain in arrays and threads, better recognizing neural activity
with a spatial resolution much higher than that of the EEG
(Musk, 2019).

A recent survey draw attention to the complexity of
integrating the elements, as well as pointing to the future
direction of research with neural signals. The work by the
company Neurable is noteworthy, featuring a game controlled
solely by a neural signal, captured via the company’s own
headset, which combines HMD with Virtual reality (HMD-
VR) and EEG headset in a single device. The company has
received a recent multi-million dollar investment, and intends
to take the lead in producing EEG headsets for everyday use
in the context of the Internet of Things (IoT) (The Lancet,
2019). EEG headsets normally work with one to eight electrodes
on the scalp surface to record EEG signal, however, the 10–
20 standardization, so named for distancing 10 or 20% of the
longitudinal and latitudinal measurements from the head surface.
In systems with higher resolution, the modified combinatorial
nomenclature (MCN) originates, filling spaces between the
traditional electrode arrangement by the 10–10 pattern, with
64 electrodes or a little more, covering brain areas: F –
Frontal and combinations (Fp, Fc, AF, FT), P – Parietal (also
PO), T – Temporal (also TP), C – Central (also CP), O –
Occipital.

The next subsection, we attempt to cover the main
methods proposed in literature for artifact removal, feature
extraction and classification on EEG. We firstly review
the characteristic of EEG signal and the types of artifacts
existed. Then, we present the widely applied techniques,
their advantage and drawbacks regarding the characteristic
of EEG signal. We believe that the knowledge provided
in this review can help to determine an computational
technique, which satisfies the necessary requirements for a
particular application.

Electrophysiological-Based Analytical Methods
The main detections on the EEG signal are related to changes in
the natural neural signal due to external stimuli, these changes are
detected by patterns of signal alteration, called paradigms. The
main EEG signal detection paradigms are event-related potentials
(ERPs), Sensory Evoked Potentials (SEPs) and synchronization
or desynchronization event-related potentials (ERS/ERD). The
extraction of these rhythms, and special potentials related to
events, are of great importance in the research and application
of the brain signal detected via EEG. However, several artifacts
are found in this signal, such as the electrocardiographic

(ECG), electrooculographic (EOG), and electromyographic
(EMG) signals, common interference, baseline drift and
other various random noises. In the analysis of these non-
stationary, non-linear and stochastic electrophysiological
signals, it is necessary to correctly manipulate the EEG signal
in the removal of artifacts (to have a good signal-to-noise
ratio – SNR), extraction of characteristics and classification
of the neural signals obtained through the application of
analytical methods.

The feature extraction from the recorded EEG is challenging,
as subjective experimental and individual characteristics can
influence the source artifacts, contaminating the EEG signal and
making it difficult to accurately extract brain waves. First, a visual
inspection to remove artifacts must be done, which requires the
operator’s visual acuity. Several forms of automatic detection of
artifacts are explored (examples are shown in Supplementary
Table 1), in order to reduce the subjectivity of the operator
in the detection of artifacts, such as Independent Component
Analysis (ICA), fast independent component analysis (FastICA),
regression analysis (RA), adaptive filters (AF), machine learning
techniques – such as autoregressive models – and feature scaling,
such as discrete waveform transform (DWT). However, they
are methods and models that, for the most part, require great
computational cost and are not applicable to EEG headsets or
devices with one channel. The downsampling alternative is one
of the first strategies applied in this context.

The computational analysis of the EEG signal cannot be
detached from any step of signal processing, even if this
requires great computational effort. Recent computational tools
of analytical methods are related to spectral (frequency) analysis.
The frequency bands of the EEG signal (α, β, δ, θ, γ) are distinct
and analyzed by statistical tools, in relation to their spectrum
amplitude, coherence, latency, etc. Automatic classification
(recognition) of EEG is the inevitable direction in analyzing
these signals, however, quality criteria of the signal and its
disturbances remain not categorically analyzed by neuroscientists
in their research (Furman et al., 2019), as the superposition
of elementary sources of pyramidal neurons. These elements
may be the reason for recommending individual models (or
user-dependents) so that a generalization is challenging in the
current context. It points out that classifiers are trained at the
group level with performance similar to the individual training
level (Wang D. et al., 2011). Cross person classifiers were
satisfactory in classifying non-linear features in EEG signals in
the work of Stikic et al. (2014) and five other works reported in
Supplementary Table 1.

Although we have not yet reached the ultimate stage regarding
the EEG signal processing, several recent alternatives are explored
in the feature extraction. Statistical analysis has gained great
space in scientific research, spectral analysis – raw/pre-processed
signals, discrete wavelet transform (DWT), wavelet packet
decomposition (WPD). These decomposition techniques, DWT
and WPD, are efficacious because significant information is
carried in different EEG bands (Kevric and Subasi, 2017). Our
study found results in accordance with the literature (Khosla
et al., 2020), in relation to the most used tools for feature
extraction, for a similar sample of articles (44).
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For the classification stage, some most common techniques are
cited in Supplementary Table 1, such as Support Vector Machine
(SVM), Principal Component Analysis (PCA), Common Spatial
Pattern (CSP), Convolutional Neural Network (CNN), Linear
Discriminant Analysis (LDA), K-means clustering, Naïve Bayes
(NB), Mismatch Negativity (MMN) – and statistical tests –
ANOVA, Student t-test. The MMN is a specific ERP component,
which is observed at fronto-central sites as a combination of the
2 different preattentive components: MMN with P3a and the
negative-going MMN component (peak at approximately 150–
250 ms from the onset of the deviant stimuli in a passive auditory
oddball paradigm) followed by the positive-going P3a component
(peak at approximately 220–280 ms). This behavior reflects a
subsequent attention-orienting process in the neurophysiological
performance of MMN to the P3a (Chung et al., 2018). Sequential
forward floating selection/search (SFFS) is a procedure applied in
classification analysis, which dynamically changes the number of
selected features, evaluating the best performance in the process.
This procedure shows up in two studies.

Some particular cases are less common. In one study, for
emotion recognition using an EEG signal, the fractal dimension
of raw signals has been implemented to extract the feature
using the Higuchi technique (Kaur et al., 2018). As classifiers,
linear embedding (LLE), support vector clustering (SVC) and
support vector data description (SVDD) are proposed in one
work as a technique to find the low-dimensional manifold in
the high-dimensional EEG feature space in order to extract
the representative EEG markers from different cortical regions
(Yin and Zhang, 2014). The Multi Layer Perceptron (MLP)
is described in one study (Lamti et al., 2016), it is a class
in artificial neural network (ANN) and has 4 neurons output
corresponding to the number of emotions. The SVM technique
applied with radial basis function (RBF) kernel shows up in one
study. For paradigm analysis, there are in Supplementary Table 1
the possibilities for EEG features: Steady State Visually Evoked
Potential (SSVEP) and Sensory Evoked Potential – SEP – (N80,
N200, P200, P50, P300, P600) are the most common.

Immersion Systems and User Experience
Regarding the changes in EEG results in the concentration
and immersion states (Ray and Cole, 1985) suggested that
the concentration state is associated with Alpha waves
Immersion definitions. First, the definition of immersion
must be considered. Immersion comprises relating engagement
in the user experience, taking into account the environment
in which it is inserted. Immersion can be a complex concept,
with multiple definitions, encompassing notions of usability
(Baek et al., 2019), emotional response (Manetta and Blade,
1995), quality of experience (QoE) (Choy et al., 2021), fun
in games (Jennett et al., 2008), flow (Csikszentmihalyi, 1991),
among others. These last authors, Jennett et al. (2008), indicate
that immersion should contain the following characteristics:
lack of awareness of time, loss of awareness of the real world,
involvement and sense of being in the task environment. In
this sense, it is not enough to have selective/oriented attention
to the virtual environment, but levels of immersion can be
denoted. The author Jennett points out five components

of immersion, in the context of games: control, challenge,
real world dissociation, emotional involvement and coming
cognitive involvement. Regarding these components, we can
work with the concept of virtual reality (VR), which requires
immersion and interaction with the virtual environment,
but not necessarily all VR devices will require the same
level of immersion (Robertson et al., 2002). It is a common
sense that more immersive is the experience, more attention
allocation is dispended.

Head-mounted-display devices (HMD) based on VR systems
can make the user achieve the greatest degree of immersion,
offering a great sense of being present, thus increasing the
allocation of attention demand. The HMD is a VR headset that
positions screens in front of the user’s eyes, closing the sides
and hanging over the individual’s head, making it impossible to
see outside the virtual environment projected on the screens.
These headsets have built-in gyroscopes, causing the user’s head
movement to position the virtual environment according to the
user’s direction. This technology incorporates Stereoscopic 3D
(S3D), which has seen great recent growth, as in the Facebook
Oculus (Egliston and Carter, 2020), Oculus Rift and HTC VIVE
(Borrego et al., 2018) equipment. Despite enabling great user
immersion, it can also generate great visual fatigue and visually
induced motion sickness (VIMS) (Choy et al., 2021).

Virtual reality devices (VRs), can be classified into desktop-
based VR systems, fully immersed VR systems, and distributed
VR systems (Liu et al., 2017). These differences are necessary
in the classification of immersive VR environments, since the
user, when watching a 2D or 3D video, without interaction
with the virtual environment by any control, is not facing an
immersive environment – non-immersive VR, or desktop- based
VR systems. Semi immersive VR devices, or distributed VR
systems, allow a mixed view of the virtual environment, as
with the use of 3D glasses. In the fully immersed VR system,
the immersion device must be an HMD or be placed in a
cave automatic virtual environment (CAVE), which is a room
covered by screens on all walls (Li et al., 2020b). In order to
understand the context of immersive environments (and not
just games), the three levels of immersion are identified: 1 –
engagement – initial level of immersion, making the user invest
time, effort and attention, but no further involvement is noticed;
2 – engrossment – second level of immersion, in which the user
gets attached with an emotionally immersive environment, and
makes that experience an important part of their attention, effort
and time and 3 – total immersion – total sense of being present
(SoP), the highest level of immersion, with the user’s complete
immersion, making him feel inside the environment and the
possibility of flow.

Analogous to immersion, concentration brings the individual
into a very similar state of mind, which requires directing
attention toward a particular task. However, the authors Lim, Yeo
and Yoon (Lim et al., 2019) conducted a study in an attempt to
differentiate the states of concentration and immersion through
the EEG signal. In concentration, subjects should focus on a
red dot in the center of the screen, while in immersion they
should focus on playing a VR game. The beta waves rose in
both the concentration and immersion states in the frontal
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and occipital lobes, increasing further in immersion. The alpha
waves showed only decay in both concentration and immersion
states, at rest times between tasks. Factors that stimulate the
immersion process or greater attention of the individual in the
required activity were not confronted in the study, or factors that
call the individual’s visual attention, causing saccade, were not
investigated, in order to assess the individual’s distraction during
recording of the EEG signals.

One factor that stimulates the individual’s immersion process
in the virtual environment is the individual’s presence in the
virtual environment. This is possible through an avatar, which
is defined as a direct extension of ourselves as they are a
close resemblance of what we experience in the real world
(Waltemate et al., 2018). When transposing to the virtual world,
identifying itself as an avatar, we are facing an illusion of virtual
body ownership (IVBO) (Slater et al., 2008). Even temporarily,
the individual with the help of the avatar may present new
behavior or have a self-image different from what they actually
perceive, called the Proteus effect (Yee and Bailenson, 2007).
When measuring the impact of the IVBO relationship and
the immersion levels of the environments, authors found that
environments with full immersion are strongly recommended in
the emotional response process, increasing the SoP (Waltemate
et al., 2018). Games are the main way to explore the individual’s
presence in the virtual environment. More focused on medical
attention, exergames (VR-based exercises) have been a recent
investigation into the approach of VR technologies, scientific
investigation of physiological signals and therapies, often with
the use of avatars.

Exergames have been a recent outlet for therapy for people
with a psychological disorder or educational tool. The use
of exergames in treatments has been well accepted for being
affordable in terms of time, costs and a sense of achievement
when achieving the proposed goals. In non-patient individuals, it
is especially interesting in order to gain a greater understanding
of the effects of greater engagement in long (sustained-attention
situation) and repetitive games (Wouters et al., 2013). The EEG is
used in the context of exergames, in the neurofeedback process,
as it awakens the individual’s ability to learn important steps
in the game, being informed of the cognitive state of interest.
When there is a desired action, the individual is rewarded as
well as being punished for unwanted behavior in the game. This
feedback can be visual or auditory, but, as mentioned earlier, the
visual stimulus is more recurrent. The neurofeedback technique
stimulates engagement and, consequently, attention/arousal
in the individual.

However, the correct application of EEG signal-based
technologies in the context of exergames, or perception of
3D content, with validation and effectiveness is currently
not completely clear. There is, therefore, a barrier between
understanding the results extracted from the EEG signal and
applying exergames or virtual games in general (Coenen et al.,
2020). In general, there are proposals for the perception
of 3D content using a widescreen and HMD to achieve
better visual attention (Clemente et al., 2014; Choy et al.,
2021). However, standardizations of the design requirements of
subjective methodologies in this sense remain uncertain, so that

scientific results are better explored and have better quality in
their conduction.

METHODS

Study Design
The breakdown of the research carried out in this study is
intended to restrict the scientific information found in excellent
journals, without, however, pointing out the origins of the
work. The aim is to discover whether many reference works in
the literature encompass all the descriptors pointed out in the
research strategy section of the articles and how they relate these
characteristics. The possibilities of relating the collected signals,
the extraction of characteristics and the paradigm/external
stimulus used are diverse. In this work, we propose to update
on the most assertive investigations that relate attention-based
elements, with immersive environments and technologies that
capture the neural signal in an easier way (EEG signal), showing
the main paths that need to be better explored.

The studies were processed according to: study sample;
duration of visual stimulus; device for capturing the EEG signal
with number of channels; signal sampling frequency; EEG
device wired or wireless communication; location of acquisition
electrodes; processing technique used to extract characteristics of
the EEG signal; which is the main investigation associated with
the EEG signal (attention allocation, workload, drive simulation,
fatigue, game, VR variables, serious games); level of immersion
in virtual environments; presence of visual/sound stimulus to
constitute the extraction of EEG signal characteristics, type of
data processing (online or offline), whether data processing is
user-dependent or not, in addition to the main results found.

Data Sources and Studies Selection
The platforms for scientific articles consulted in October 2020
were: PubMed, MEDLINE, Scopus, Web of Science, IEEE Xplore,
and ScienceDirect. The search was sorted by a combination of
terms: Attention, Fatigue, Workload, Immersion, Game, Virtual
Reality, Augmented Reality, Mixed Reality, Extended Reality,
EEG, BCI, Brain Computer Interface, Electroencephalography.
No suitable MeSH (Medical Subject Headings) terms have been
identified. ‘On the subject’ filter were used, in order to prevent
finding articles citing the terms of interest in another context.
Inclusion criteria were: only peer-reviewed journal articles
written in English; use of surface EEG to access information
on the variation of attention/workload/fatigue in the use of
immersive systems; use of auditory or visual paradigms in
interacting with the system; motor or neural control of the
virtual interface.

A total of 85 articles were identified between 1986 and 2020,
with only 76 being peer-reviewed. In order to generate a fair
comparison between different studies and minimize bias in the
interpretation of results, in this study, the discussion will be
centered on experiments with EEG signal collection in non-
clinical adult populations, in response to generated visual and
auditory stimuli, when interacting/controlling virtual systems,
with some degree of immersion in the virtual system. Purely
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review articles were excluded, one article written only in Chinese
was excluded, as well as articles with incremental contribution by
the same authors.

As we are interested in evaluating articles that deal with
the investigation of attention, workload, fatigue and their
derivatives in the manipulation of immersion systems, were also
excluded: articles that only include measurements of signals
other than EEG, articles using only sound paradigms, articles
with actual exposures to activities (not simulated ones), articles
with virtual reality interventions in the elderly and articles
studying the effect on therapy, or diagnosis, of diseases such
as: dementia, Attention Deficit Hyperactivity Disorder – ADHD,
mild cognitive impairment, autism, stroke. As a result of the
selection by the PRISMA method, see Figure 2, we identified 40
articles, the oldest from the year 2011 and the most recent from
the year 2020, dealing with immersion systems and investigation
through the EEG of attention variation attributes, cognitive load
or user fatigue. Next, we will present the main research topics
extracted from these works, we will summarize the scientific
findings and point out future directions in the subject.

IMMERSION ENVIRONMENTS
MEASURES ON ATTENTION,
WORKLOAD AND FATIGUE BASED ON
ELECTROPHYSIOLOGICAL SIGNAL
ANALYSIS – RESULTS

In line with the work of Brouwer et al. (2015), we adopted
the six recommendations to avoid common pitfalls in the use
of electrophysiological signals that reflect cognitive or affective
state. In the database selected in this study, we investigated some
analyses: Work analysis considering the test protocols phases
(stimulus – duration and subjects); work analysis considering
the EEG recording phase (equipment – frequency, location of
electrodes); Work analysis considering the Filtering phase of
artifacts; Work analysis considering the feature extraction phase;
Work analysis considering the Classification phase (online or
offline methods – or both –, user-dependent or independent
outcomes and analytical analysis method of the EEG signal). In
order to standardize the findings of the scientific works analyzed,
we built Supplementary Table 1, which list the works in order of
year of publication, pointing out the analyzed characteristics of
each one. The classification of articles according to the analyzes
used is explained below.

Classification
User-Dependent/Independent
The data classification process can be done with models adhered
to the analyzed subjects, in an individual or generalized way.
When the model is individualized, generally better results are
presented, but there is a loss in processing generalization,
which can affect the comparison of results among individuals.
In Supplementary Table 1 we detail which analyzed works
in this study relate their models and samples in an objective
or subjective way.

Main Investigation Through the Electrophysiological
Signal
The investigations analyzed in the articles were divided into
the following categories: attention allocation (AA) (which may
be accompanied by the terms ‘education,’ ‘game’ and ‘internal
and external,’ depending on the context of the article); VR
Variables (VRV); Drive simulation; Learning; Workload; Fatigue;
and some combinations of these terms, depending on the
main investigations of interest to the scientific work. These
terminologies were annotated in this section according to
our perception of the main investigation of the addressed
article. What is its main focus of analysis and main output
variables presented.

The columns Stimulus, Subjects, Device and N. of
channels, sample frequency and electrodes location refer to
the characteristics of the EEG study device, describing how many
times and the duration of the visual stimulus exposed to the
sample, in order to generate the EEG signals recorded in the
study. Which EEG device was used in data recording, as well
as how many channels, sampling frequency of signal recording
were also mentioned. The placement of the electrodes is also
evidenced in the aforementioned column, in order to facilitate
the comparison among works, for the investigated brain lobes.
The Communication column differentiates the studies between
those with wireless (NW) and wired (W) communication. This
communication refers to the EEG device and how the recorded
data is sent to the destination computer.

Immersion Level
In this column, we bring together the definitions discussed in
section D. We adopted as ‘Engagement’ the works in which there
is little interaction with the individual, or the virtual environment
is non-immersive and research was conducted with desktop-
based VR systems, without a virtual scenario close to real one
or the graphics did not show robustness. Games without avatars
or tetris-like are included in this context. ‘Engrossment’ included
works with more robust graphics, conducted in semi-immersive
environments, with the presence of an avatar or not, in which
individuals had a greater involvement with the virtual scenario,
but it was not yet a condition of total immersion. In the ‘Total
Immersion’ classification, the individual was exposed to well-
refined graphics, with scenarios close to reality, in the presence
of avatars, conducted by HMD or inserted in CAVEs.

Electrophysiological-Based Artifact Filtering,
Electrophysiological Features, Feature Extraction and
Analytical Methods
Several analytical methods can be applied in the treatment of
EEG signals. Section C.(i). lists all the analytical methods, artifact
filtering techniques and feature extraction found in the analyzed
works, mentioned here for the purpose of characterize and allow
comparison of related articles.

Offline/Online Signal Processing System – OFF vs.
ON Column
Offline signal processing (OFF) describe systems that perform the
complete EEG signal processing after the signal recording and
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FIGURE 2 | PRISMA flow chart scoping attention allocation, virtual reality, cognitive workload and fatigue.

completion of the data collection phase. Online processing (ON),
on the other hand, is plausible in neurofeedback, for example,
where results are found in real time, due to the EEG signal
processing in real time up to the user to respond to the activity
in the moment of performance.

Supplementary Table 1 summarizes the 40 analyzed works
addressing a number of methodological settings including:
experimental protocol (subjects, stimulus duration and
repetitions number), experiment immersion level and EEG
recording data (equipment, sampling frequency, electrodes
location and mean of communication to send data to
the computer). The Artifact Filtering stage is highlighted
(computational techniques used to de-noise, select or pre-
processing the EEG signal of interest), considering the EEG
Features (features extracted from EEG signal), the Features
Extraction (computational techniques to extract EEG features
of interest), the Analytical Method/Classifier of the EEG signal
stage (analytical/computational techniques applied to classify the

EEG signal events designated in EEG features), and considering
the study methods of recording and processing data (online –
ON – or offline – OFF – methods – or both –, user-dependent –
UD – user-independent – UIN – or both outcomes). These
detailed information addressing each one of the 40 analyzed
works is done in order to map the main methodology settings
and punctuate what to compare in them in this context.

The table below is divided into immersion levels due to
the methodological works characteristics and the experimental
conditions exposed to the individuals (passive games, non-avatar
interface, HMD, CAVE, etc.). The level of total immersion will
not necessarily generate higher levels of attention allocation as
a result than in engagement or engrossment immersion levels.
The presentation of this content division is intended to provide
to the reader tools of which analytical strategies and tools were
used to identify the attention allocation and which can be
reproduced by him for comparison purposes. Next, we discuss
the methodologies used in the analyzed studies.
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Main Findings
Below we summarize the main findings of this study aiming
to converge to a set of methodological parameters commonly
used to attention detection, workload and fatigue approaches
from EEG signal analysis. In the Supplementary Table 1,
we can observe that half of the studies (20) developed their
methodologies with low immersion in the virtual environment,
only at the level of engagement. The stimulus duration and times
of stimulus on the experiments vary a lot among methodologies,
as well as the results are quite different from each other.

At the engagement level of immersion, the main investigations
of the EEG signal are associated with the attention allocation
(6) and the evaluation of variables of the virtual reality
system (VRVs) (6), one study concurrently analyzed fatigue
and attention allocation variables and two studies associated an
investigation of learning and workload. As other investigations
for this level of immersion are in relation to the study of
behavior in driving simulation environments (5), assessment
of the workload level (2) and, finally, fatigue was the main
investigation alone in only one (1) work. In the second level
of immersion considered in this work, engrossment, seven
(7) studies investigated variables on: attention allocation (2),
workload (1) and evaluation of the virtual reality system (4). At
the level of complete immersion, total immersion, the allocation
of attention is the main investigation in six (6) works, and it is
a concomitant investigation with workload in the situation of
drive simulation (1) and VRV (2). VRV is the main investigation
in one (1) work purely, and concomitant to workload (1).
Workload is the primary investigation into only one (1) work or
concomitant fatigue (1).

The main findings from the methodologies adopted in the
works are pointed out below.

• Studies dealing with VRV analyzed two gaming conditions
for the same sample at engagement level:

# for different levels of a game, no significant differences
were found in α and β waves for the subjects’ brainwave
power data (Coenen et al., 2020), while (Cowley and
Ravaja, 2014) identified decreased delta power and
relatively balanced fronto-hemispheric alpha power in
the five levels analyzed;

# for the same game and different control manners, it was
identified that the visual evoked potential (SSVEP) at the
frequency of 12Hz was satisfactory for controlling the
interface, noting the fatigue of individuals in this type of
control based on questionnaires (Leite et al., 2018), while
(Asensio-Cubero et al., 2016) compared classification
methods for controlling a BCI through body movements,
in a multiresolution analysis;

# when comparing a virtual simulation and a real game,
significant lower power data were found for the θ wave
in the condition of the simulated scenario (Fuentes-
García et al., 2019); for different cognitive load demands
in the game, as learning increases, the best predictors
were frontal alpha power and alpha and delta ERSPs,
but not P300 (Mathewson et al., 2012); the authors (X.

Yang et al., 2018) propose the comparison of immersive
VR conditions and paper-pencil schemes. Based on EEG
variables, the results showed that participants in the
immersive VR condition maintained a more stable focus
or attention than others without VR immersion.

# the sense of being present was evaluated at engrossment
level: identified by more pronounced N200 and P300
potentials in the fronto-central and occipital electrodes,
were features regarding the exposed virtual environment,
but not modulated by the different tasks requested
(Vogt et al., 2015), as for the two screen types analyzed
(Clemente et al., 2014), the common desktop screen
and the high-resolution power wall screen, significant
differences were found in θ and α increase in navigation
conditions (screen with greater immersion). Still on
active or passive user action identification (Chen et al.,
2014) investigate the P300 and its differentiation in
these two states, using dynamic causal modeling, which
suggests that passive and active P300 share the same
parietal-frontal neural network for attentional control.

# In order to compare neurofeedback systems in 2D or
3D games (Wang Q. et al., 2011) propose outputs with
fractal dimensions in order to estimate concentration
levels of individuals in these environments. The authors
(Li et al., 2020b), monitored the usability of VR systems
in 2D and 3D situations, resulting in greater allocation of
attention to the 3D scenery. Berger and Davelaar (2018)
investigated the exposure of two groups to 2D and 3D
environments separately, in order to confront, by means
of α, whether exposure to learning tasks would indicate
cortical inactivity or cortical processing efficiency,
the latter being the final association with efficient
neurocognitive processing in the 3D environment.

• In attention allocation findings, most at engagement level:

# in the application of action games to two distinct samples
of players and non-players, aspects of selective attention
were investigated, as a function of inhibitory control, in
which α, β, and γ waves performed better in the sample
of players than non-players (Hazarika et al., 2018);

# a significant improvement in attention was also found
through the θ/β bands power ratio (Yang et al., 2018);

# increased cortical activation (Lee et al., 2015);
# identification of P300 in learning contexts (Rohani and

Puthusserypady, 2015) and
# multivariate analysis (Myrden and Chau, 2015) com with

ongoing user experience.
# the states of concentration and immersion were

compared at engrossment level, in the concentration task,
a specific point on the screen was required for focus,
while in the immersion task the task was to control the
entire game. Significant differences in α, θ, and β were
identified for the different tasks (Lim et al., 2019);

# In HMD systems investigations, at total immersion level:
to assess the theory of attention restoration (ART) in
two different groups, given the variable response time
and EEG, θ and parietal P3b metrics (Li et al., 2020d)
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and when faced with passive auditory stimuli, in the
assessment of mismatch negativity (MMN)/P3a (Chung
et al., 2018), pointing to highly restorative experience;
in six different virtual environments (Gao et al., 2019),
identifying improvements in the state of restoration and
fatigue relief; (Peterson et al., 2018) analyzed individuals
during exposure or not to VR by HMD during beam-
walking, as a result, through peaks of EEG amplitude,
they found that VR exposure may increase physiological
stress during dynamic balance tasks and may impair
physical and cognitive performance during balance; in
addition to the investigation of feature-based attention
(FBA) through SSVEPs (Chu and D’Zmura, 2019),
pointing out that these potentials are strongly influenced
by flicker stimulus in the peripheral visual field.

• Driving simulation findings approaches can help prevent
accidents due to human fails are, in some conditions, most
at engagement level:

# supervised and unsupervised training strategies,
pointing out that combinations of classifiers in specific
frequency bands can identify situations of mental load
change, such as increase in the frontal region of θ (Yin
and Zhang, 2014);

# evaluating the high mental load in the face of congruent
and non-congruent stimuli in a joint task while driving,
the identification of P300/P600 was identified as a result
in the presence of difficulty in orienting attention in
multitasking conditions (Causse et al., 2016);

# the significant increase in α and θ, as well as the
significant decrease in β are indicative of fatigue
during long periods of monotonous driving simulation
(Jagannath and Balasubramanian, 2014);

# from brain spectral components, in which high accuracy
was identified regarding the focus of attention (Wang Y.
K. et al., 2015) and fluctuations in behavior (Touryan
et al., 2016), in order to enable systems to dynamically
assess the attention spent during the driving simulation.

# flight training, in total immersion level, challenges are
proposed at three levels in the study by Jaquess et al.
(2017), through the amplitude of potentials N1, P2
and P3 (attention allocation) and measures of cortical
activation (workload), empirically corroborated the
notion that cognitive workload and attentional reserve
are inversely related.

• In investigations purely of workload and fatigue,
modulations in the EEG signal were distinguished in
the investigations:

# at four different levels of mental demand, the attenuation
of P300 was greater as there was greater workload
demand (Yu et al., 2015);

# analyzing two workload scenarios, there was a significant
increase in the frontal region and a significant decrease in
the occipital region of activity θ for the scenario of higher
cognitive load (Savage et al., 2013).

# For the investigation of fatigue, the association of
different classifiers to identify the P300 correlated with
different levels of fatigue can be useful to monitor virtual
wheelchair control systems, as shown in Lamti et al.
(2016) study.

• Inside CAVE simulations:

# Magosso et al. (2019) applied two flight cabin
simulations. In both experiments, participants were
exposed to tasks with mental demand at different levels.
The authors, through the processing of the EEG signal,
identified that α decreases when there is an external
visual stimulus and when there is a very high arithmetic
demand. On the other hand, α greatly increases during
the purely mental task in VR immersion is noted.

# Pereira et al. (2018) analyzed the Olympic shooting
scenario, the participants performed the same
experiment and, at the end, they identified that
novice shooters with lower pre-shooting α have better
performance competition in a VR scenario.

In order to summarize the main findings mentioned above,
Figure 3 below illustrates the regions of the main predictors
of identification of attention allocation, situations of more
immersion states and effects of greater cognitive load. The
indication of increased θ/β bands power ratio is supported by
these findings in frontal, parietal and occipital areas, according
to the works pointed out above and highlighted in Figure 3.

DISCUSSION AND CONCLUSION

Although 20% of the works analyzed in this study work with
machine intelligence classifiers to extract information from the
mechanism of attention, recent studies have shown that powerful
robust outcomes are extracted when creating models to encode
and decode attention in Artificial Neural Networks (ANNs) (Cho
et al., 2015). However, it is important not to overestimate the
results achieved with machine intelligence, nor to extrapolate to
a single, universal model. The current state of the art has not
yet reached this level (Li et al., 2021). Wang Y. et al. (2020)
also points out that the way forward with machine learning
and models for detecting attention and fatigue are better when
individualized, especially for risky situations. Likewise, it is not
interesting to underestimate models that do not use machine
learning, since they are less complex, have a lower computational
cost and often interfere less in the source signal, causing less
bias in the obtained results. By bringing neuroscientists together,
observing opportunities and considering the possible pitfalls
in each step of analyzing the variables measured by the EEG,
developers can reach new goals of making everyday tools based
on the neural signal more common, through IoT technologies
and wearable devices.

Head-mounted-display devices with virtual reality
environments extend SoP and attention, leaving behind 2D
applications without immersion and user interaction (Li et al.,
2020b). A recent work (Wan et al., 2021) also defends that,
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FIGURE 3 | Main predictors for identification of attention allocation, higher immersion states and higher cognitive load effects as found in the database. Image of
public domain, by Laurens R. Krol. EEG electrode positions in the 10–10 system using modified combinatorial nomenclature. The electrode sites are color-coded
according to the lobes of the brain which their labels (F, C, P, O, and T) represent. The head indicates the location of the fiducials: the nasion (Nz), the (left)
pre-auricular point (LPA), the (right) pre-auricular point (RPA), and the inion (Iz). About the studies cited, up arrows are for increase of those features and down arrows
for decrease. The studies and patients are detach from Supplementary Table 1, here are grouped in methodologies and main predictors to indicated attention
allocation and similar investigated states. The green color shades the frontal and pre-frontal areas (electrodes: Fp1, Fp2, Fpz, F1–F10, AF3, AF4, AF7, AF8, AFz, and
Fz), in these areas the eight studies described in the ‘Main Findings’ section identify rising α and θ and declining δ and β in recognized attention allocation states;
orange color shade is in fronto-parietal areas (Fp1, Fp2, Fpz, F1–F10, AF3, AF4, AF7, AF8, AFz, Fz, T7, T8, FT7–FT10, and TP7–TP10), in these areas eleven studies
identify attention allocation by means of P300 presence or θ rising; blue color shade is in fronto-central-occipital (Fp1, Fp2, Fpz, FCz, C1–C6, FC1–FC6, CP1–CP6,
Cz, CPz, O1, O2, PO3, PO4, PO7, and PO8), in these areas two studies identify from presence of event-related potentials N100, N200, P200, and P300 assigning
attention allocation in the proposed methodologies; and yellow color shade comprises occipital area (O1, O2, PO3, PO4, PO7, and PO8), in three studies this area is
related to the attention allocation investigation, by means of SSVEP technique or θ rising. The electrodes associated with those regions are processed by means of
EEG signals, identifying to record changes in frequency bands and ERPs associated with changes in the attention allocation.

through EEG signal outputs for detecting working memory
and attention state, applications involving VR environments
are greater to those with 3D interaction, having a better impact
on the user’s cognitive ability. It is important to consider these
characteristics in modern devices, regulating cognitive load and
visual fatigue, in view of greater engagement and better access
to sustained-attention in new generations. Even in VR scenarios
with little interaction, a profound effect is identified in the alpha
band as indicative of the individual’s isolation from the external
environment, promoting attentional orientation to his internal
aspects. The authors Magosso et al. (2019) corroborate these

perspectives, showing that this occurs in the need for greater
mental effort. Several developments in psychophysiological
investigations can be studied based on the results presented in
the cited works. There is still, however, a lack of high-resolution
EEG approaches, presenting connectivity of cortical regions
of interest to access information on immersion, attention,
cognitive load and fatigue to concurrent stimuli, as the neural
circuits or processes of the attention should not be studied in
isolation (Amso and Scerif, 2015). For example, since workload
classification algorithms often utilize the ratio of power in the
clinical frequency bands, the modeling approach designed to
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identify level of alertness from EEG spectra would also capture
some aspect of mental workload.

In this review, we present the analysis of works dated from
2011 to 2020, which proposed to process EEG signals in the
context of immersion systems, analyzing the cognitive load or
attention expended in the interaction with such systems. Our
analysis was designed from the perspectives of (1) identifying
the steps of analysis and processing of EEG signals in relation to
virtual interaction environments and (2) pointing out the main
extracted characteristics and tools associated with the immersion
system using the signal EEG. EEG-based signal analysis are
indicated to obtain objective results and accurate measures of
fatigue (mental and visual), cognitive workload and attentional
orientation. As presented in this review, several terminologies are
associated with the study of attention, some involving attention
cue and others exploring the origin of the external or internal
stimulus that caused the elevation of brain waves as a result of
the attention allocation. The perception of attention in the EEG
signal will depend more on the region analyzed (i.e., on the
placement of the electrodes) and less on the analytical method
used in the extraction of signal characteristics. Regarding the
results presented in Supplementary Table 1, this can be observed,
since different methodologies are applied and different outputs
analyzed, not complying with the input variables, analysis and
outputs coordinated among the analyzed works. Thus, it is
possible to observe a large amount in the variation of the features
analyzed with loss of information in the different processes
interposed in the different methodologies. As a result of this
diversity, the behavior estimate remains a black box in the
methodological perception.

The EEG signal is maximally correlated with measured
behavior, regardless of the perceptual, cognitive, motor or
artifact process from which they are generated. Thus, there
is no clear method for predicting how well a specific model
will translate into a new task. In Supplementary Table 1, we
specify the times of EEG signals recorded, considering the
application of one or more tasks for a short or long period
of time. With this information, we can outline the studies and
their findings counting long period of task time associated
with the EEG signal that can generate information in order
to build a hierarchy of neural characteristics to maximize the
universality of EEG-based performance prediction models. While
the intermediate constructs of workload and engagement can
be helpful, the stability of constituent neural characteristics,
especially under stress and fatigue, remains unclear under long
period of time applications.

As future direction, we can list the main recommended aspects
that surround and must follow attention detection/investigation
through EEG-signal:

i. create/use a recognized great data-driven model, user-
independent;

ii. analyze constructs separately, avoiding controlled
environment conditions;

iii. search for new EEG-signal devices, they can be very specific
for detecting attention in some applications;

iv. Avoid new terminologies, focus on using what already exists
to explain new strategies/methodologies;

v. Avoid overprocessing EEG signal, avoiding inputting new
bias;

vi. Improve actual free-viewing approaches;
vii. Vary methodologies to study attention allocation in

different immersion levels and different cognitive load
conditions. In this way you will obtain more results of
attention allocation in brain signals out of different triggers;

viii. Avoid gender bias, besides only 10 out of 40 studies showed
in Supplementary Table 1 have balanced male/female
proportion. Male gender prevails in most studies;

ix. Investigate attention by means of ERP components to
identify attention allocation through N100, N200, P100 and
P300 in fronto-central-occipital brain areas (Vogt et al.,
2015; Jaquess et al., 2017); P300 in fronto-parietal brain
areas (Rohani and Puthusserypady, 2015; Vogt et al., 2015;
Yu et al., 2015; Causse et al., 2016; Chen et al., 2016; Lamti
et al., 2016; Jaquess et al., 2017; Chung et al., 2018; Li et al.,
2020d) and SSVEP component in occipital area (Leite et al.,
2018; Chu and D’Zmura, 2019) as we cited in Figure 3;

x. Investigate attention by means of brain waves increase,
decrease and beta (12–31.25 Hz)/theta (3–8 Hz) ratio
in fronto-parietal brain areas, θ (Clemente et al., 2014;
Fuentes-García et al., 2019; Lim et al., 2019), in occipital
area, θ (Savage et al., 2013), in frontal area, αβθδ (Clemente
et al., 2014; Cowley and Ravaja, 2014; Jagannath and
Balasubramanian, 2014; Yin and Zhang, 2014; Lee et al.,
2015; Hazarika et al., 2018; Lim et al., 2019; Li et al., 2020d)
as we cited in Figure 3.

Explaining better this list, we indicate that data-driven models
of behavior could operationally defined constructs to better
understand what constructs are incorporated in a predictive
model of behavior and their limitation (what processes are
fundamentally task-specific). In this case, a more detailed
analysis of the behavior, additional EEG processing, and the
inclusion of other physiological measures are needed. For
example, some aspects of the observed behavior may be
more strongly associated with one construct (e.g., fatigue or
stress) whereas other aspects are more directly linked to a
collection of task-specific neural processes. New technologies
may benefit from identifying common neural inseparable
processes in some cognitive constructs to explain behavior,
such as brain-computer interfaces (BCIs), which have been
a field of great interest in science, emerging as commercial
products. New commercial approaches to BCIs will be seen
in the market, as large technology investment programs,
such as Horizon 2020, have concentrated many efforts and
investments in this field.

As we have presented, there is a lack of standardization
in the terminologies dealt with in neuroscience, evaluating
engagement and EEG-based interfaces. There is also a trap when
processing the EEG signal under controlled conditions, while
it must be inserted in everyday applications, in contact with
natural stimuli from its environment, in the context of free-
viewing. Concerning this controlled conditions, HMD-VR has
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two inherent advantages with respect to enhancing one’s neural
state that each deal with unique sources of irrelevant information:
the ability to effectively limit influences of external distraction
on attention and the ability to heighten engagement internally
to remediate internal distraction. This path will be the greatest
potential use of EEG-based device applications, in detecting
the individual’s attention and engagement, in everyday, natural
and virtual use.
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