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The mechanisms of atrial fibrillation (AF) are a challenging research topic. The rotor

hypothesis states that the AF is sustained by a reentrant wave that propagates around

an unexcited core. Cardiac tissue heterogeneities, both structural and cellular, play an

important role during fibrillatory dynamics, so that the ionic characteristics of the currents,

their spatial distribution and their structural heterogeneity determine the meandering

of the rotor. Several studies about rotor dynamics implement the standard diffusion

equation. However, this mathematical scheme carries some limitations. It assumes the

myocardium as a continuousmedium, ignoring, therefore, its discrete and heterogeneous

aspects. A computational model integrating both, electrical and structural properties

could complement experimental and clinical results. A new mathematical model of

the action potential propagation, based on complex fractional order derivatives is

presented. The complex derivative order appears of considering the myocardium as

discrete-scale invariant fractal. The main aim is to study the role of a myocardial, with

fractal characteristics, on atrial fibrillatory dynamics. For this purpose, the degree of

structural heterogeneity is described through derivatives of complex order γ = α + jβ.

A set of variations for γ is tested. The real part α takes values ranging from 1.1 to 2

and the imaginary part β from 0 to 0.28. Under this scheme, the standard diffusion is

recovered when α = 2 and β = 0. The effect of γ on the action potential propagation

over an atrial strand is investigated. Rotors are generated in a 2D model of atrial tissue

under electrical remodeling due to chronic AF. The results show that the degree of

structural heterogeneity, given by γ , modulates the electrophysiological properties and

the dynamics of rotor-type reentrant mechanisms. The spatial stability of the rotor and

the area of its unexcited core are modulated. As the real part decreases and the

imaginary part increases, simulating a higher structural heterogeneity, the vulnerable

window to reentrant is increased, as the total meandering of the rotor tip. This in silico

study suggests that structural heterogeneity, described by means of complex order

derivatives, modulates the stability of rotors and that a wide range of rotor dynamics

can be generated.
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1. INTRODUCTION

Atrial fibrillation (AF) represents an important socio-economic
burden for world health systems (Kirchhof et al., 2016).
Research efforts are focused on determining the AF underlying
mechanisms (Zaman and Peters, 2014). Catheter ablation has
improved the outcomes of therapeutic interventions for patients
in early stages of the arrhythmia (Haïssaguerre et al., 1998;
Atienza et al., 2014). However, as the AF perdures in time,
the ablation effectiveness decreases significantly (Kirchhof et al.,
2016; Lim et al., 2017). During this chronic AF (CAF) scenario,
the pathophysiological substrate sustains a more complex form
of the arrhythmia. The rotor hypothesis establishes that an AF
episode is sustained by a single or several spiral waves known
as rotors, activating the surrounding tissue at high rates and
generating complex patterns of propagation (Jalife et al., 2002).
A rotor is a functional reentry that circumvolves an excitable
but unexcited core (Guillem et al., 2016). Recent clinical studies
report high rates of success when targeting rotors as ablation
sites in CAF patients (Narayan et al., 2012, 2013; Miller et al.,
2017). This investigation provides evidence in favor of the rotor
hypothesis, but controversy persists since some researchers were
not able to replicate the results (Buch et al., 2016; Steinberg et al.,
2017). Therefore, a better understanding of the rotor dynamics
and the effect of structural heterogeneity, could lead to deeper
knowledge for determining critical ablation targets.

The electrical and structural remodeling that the atrial tissue
undergoes during CAF, yield a complex interplay in sustaining
the arrhythmia (Trayanova et al., 2014). It is recognized that
abnormal structural changes play a larger role in perpetuating
of CAF than the electrical remodeling alone (Anné et al., 2007).
Electrophysiological models were used for understanding the
start-up and the perpetuation of rotors, since this task is not easy
to develop in experimental terms. The proposed computational
descriptions of rotors propagating in a structurally remodeled
atrial tissue, provided insight of how rotors evolve under such
circumstances (Trayanova et al., 2014; Zhao et al., 2015; Hansen
et al., 2017). Structural heterogeneities are modeled through
non-conducting elements, reduced conductivity elements
and boundary conditions. However, a precise knowledge
of tissular conditions is needed in order to set the model
parameters (Stinstra et al., 2010). Furthermore, the commonly
used standard diffusion equation that models the action potential
(AP) propagation, assumes the myocardium as a continuous
domain (Keener and Sneyd, 1998), while in the real case,
conduction in cardiac tissue is inherently discontinuous (Shaw
and Rudy, 2010).

Fractional differential equations, that generalize the classical
derivatives/integrals of to real or complex valued orders (Oldham
and Spanier, 2006), gained incidence in several fields of
applied mathematics (Ionescu et al., 2017; Machado and
Kiryakova, 2017; Sun et al., 2018). Cardiac electrophysiological
fractional models were recently reported able to characterize
the ventricular repolarization expressed by a structurally
heterogeneous myocardial domain (Bueno-Orovio et al., 2014).
Although it is recognized that fractional derivatives/integrals can
better describe experimental data, how to physically interpret the

fractional order remains as an open problem whose answer is
relative to the specific system under study. In Bueno-Orovio et al.
(2014), the real valued fractional derivative is related with the
average degree of tissular structural inhomogeneities. However,
the estimation of the derivative order is bonded to the goodness
of fit of the data. It would be desirable that a specific value of the
derivative order could be translated to a tissular structure.

Fractal objects have been associated with distinct physical
phenomena (Mandelbrot, 1982). The main feature of fractals is
the self-similarity, meaning that the scaled parts resemble the
whole, yielding to irregular patterns (Captur et al., 2016). Such
patterns partially fill the embedding space, and in consequence
a non integer dimension, or fractal dimension, describes the
object. Thus, the overall morphologic complexity is measured by
the fractal dimension (Bizzarri et al., 2011). Biological systems
have been studied under the fractal perspective (Copley et al.,
2012; Wedman et al., 2015; Lennon et al., 2016; Stankovic
et al., 2016). There are reports suggesting that the fractal
dimension discriminates between healthy and pathological
conditions (Hiroshima et al., 2016; Zehani et al., 2016; Müller
et al., 2017; Zhang et al., 2017; Popovic et al., 2018). In
the cardiac context, structural remodeling generates significant
fractal dimension variations (Zouein et al., 2014; Captur et al.,
2016). Therefore, the fractal analysis could serve as a link between
the geometrical complexity of the myocardium and the AP
propagation dynamics under pathological conditions such as AF.

Bearing this ideas in mind, a new approach for assessing
the effect of structural heterogeneous tissue on rotor dynamics
based on complex fractional order derivatives is developed. We
assume that the structurally remodeled myocardium undergoing
CAF, has a fractal signature. Taking advantage of well developed
mathematical theory, we relate the fractal dimension with the
space fractional derivative order. It is evinced that complex
valued orders arising if the fractal domain have the property of
discrete-scale invariance. Previously, using a simplified cellular
model, we found that the rotor stability is affected by real
valued order derivatives (Ugarte et al., 2017). We extend the
electrophysiological fractional system bymeans of complex order
derivatives to assess the rotor dynamics and to implement
a detailed atrial membrane formalism. The fractal structural
heterogeneity of the tissue is then controlled by two parameters,
namely the real and imaginary parts of the complex derivative.
We test a set of discrete values for the complex derivative order
and we analyze the stability of the rotors generated for each case.
Our simulations include the standard diffusion solution given
that it is a particular case of the new complex fractional order
model.

2. MATERIAL AND METHODS

2.1. Electrical Potential Over a Fractal
Myocardium With Discrete Scale
Invariance
A fractal can be described by a fractional dimension
and generalizes the Euclidean concept of integer space
dimension (Mandelbrot, 1982). A fractal is a self-similar
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object and such property implies scale invariance. An object
f (x) depending on the space variable x, is scale-invariant if after
applying a scale factor ξ the following relation is obtained:

f (x) ∼ ξγ f (ξx), (1)

where γ is the fractal dimension. The scale factor ξ controls
the scale of magnification applied. The value of γ indicates
how the object fills the space and it is a measure of the object
irregularity (heterogeneity). The fractal dimension γ can be real
or complex: if the self-similarity is fulfilled only at discrete scales
of observation (i.e., at discrete zoom factors), then γ is a complex
number and the object is discrete-scale invariant. If self-similarity
is preserved at the full range of scales, then γ is a real number,
and the object is continuous-scale invariant. A mathematical
description is given in the Supplementary Material, and for a
detailed theoretical explanation please refer to Sornette (1998).

Let us assume the puntual current source s(x) over a
discrete-scale invariant fractal myocardium. For simplicity, the
myocardium is embedded on a one-dimensional space. We want
to investigate, how the source s(x) interacts with the fractal
myocardium. For this purpose, the convolution integral (2) over
the bounded myocardium � is calculated, such as:

φ(x) =

∫

�

P(x− u)s(x)du, (2)

where P(x) is the normalized fractal structure-factor of the
myocardium. If the Fourier image of P(x) converges for small and
large values of the Fourier variable (Nigmatullin and LeMehaute,
2005; Nigmatullin and Baleanu, 2013), then the function P(x) has
the form:

P(x) = A09α

1

|x|1−α
+A19α+jβ

1

|x|1−α−jβ
+A19α−jβ

1

|x|1−α+jβ
,

(3)
with:

9α±jβ =
1

π
Ŵ(1− α ∓ jβ) sin

[

(α ± jβ)π

2

]

, (4)

where Ŵ(·) is the Gamma function, A0 and A1 are complex
constants, the operator · represents the complex conjugation,
α is the fractal dimension of domain D� and β correspond to a
log-periodic correction to the fractal dimension.

Each term in the right side of (3) corresponds to the Green
function of the fractional Laplacian operator (Pozrikidis, 2016).
Therefore, Equation (2) can be expressed as:

φ(x) =
[

−A0(−1)−
α
2 − A1(−1)−

α+jβ
2 − A1(−1)−

α−jβ
2

]

s(x),

(5)
where φ(x) can be interpreted as the electrical potential over
a fractal domain generated by a electrical source s(x). If the
fractal myocardial structure is continuous-scale invariant, then
the Laplacian complex-conjugates pair vanishes and the potential
is governed by the real fractional Laplacian (recovering the
model proposed in Bueno-Orovio et al., 2014). Equation (5)

describes the electrical potential over a discrete-scale invariant
fractal myocardium. In what follows, we will evaluate the effect
of the Laplacian conjugates pair over the electrical potential
in a structurally remodeled myocardium (i.e., a discrete-scale
invariant fractal structure) under CAF conditions.

2.2. Complex Fractional Order Diffusion
Model
We propose that the AP propagation in a structurally
heterogeneous two-dimensional (2D) domain can be modeled by
the following equation

∂V

∂t
= κ

(

H
γ
x V +H

γ
y V

)

+
1

C
I, (6)

where V denotes the cellular membrane potential, I is the
ionic transmembrane current, C is membrane capacitance,
κ represents the diffusion coefficient assuming isotropic
propagation, x and y are the spatial variables, t is the time
variable, and γ = α + jβ is the complex fractional order. The
operator Hγ

x involves a pair of complex-conjugate derivative and
is defined by:

H
γ
x = −

1

2

[

(

−
∂2

∂x2

)γ /2

+

(

−
∂2

∂x2

)γ /2
]

, (7)

where γ = α − jβ is the complex conjugate of γ . The operator
H

γ
y in the Equation (6) is defined as in Equation (7) with

respect to the variable x. The purpose on defining Equation (7)
is to obtain a real-valued function after applying the complex
order derivative (Machado, 2013; Hartley et al., 2016). Model (6)
represents a generalization of the classical AP propagation model
based on the standard diffusion operator (Trayanova et al., 2014).

2.3. Model of Chronic Atrial Fibrillation
The Courtemanche atrial membrane formalism (Courtemanche
et al., 1998) is used to calculate the term I in Equation (6).
The ionic conductances are adjusted in order to implement the
electrical remodeling due to CAF. According to experimental
data (Van Wagoner et al., 1997; Bosch et al., 1999; Dobrev
et al., 2001) we modify the maximum conductances of the
transient potassium current (Ito) and the L-type calcium current
(ICaL) by a factor of 0.65, the maximum conductance of delayed
rectifier potassium current (IKur) is reduced by a factor 0.49, and
the maximum conductance of the potassium time independent
current (IK1) is incremented by a factor of 2.1.

Cholinergic activity is known as a factor that promotes CAF.
The cholinergic effect is included in the Courtemanche model
by implementing the acetylcholine-dependent potassium current
(IKACh) (Kneller et al., 2002) and an acetylcholine concentration
of 5 nM.

2.4. Stimulation Protocol
Rotors are generated by applying the S1-S2 cross-field
stimulation protocol. In this protocol, S1 is a train of stimuli
with a basic cycle length of 400 ms and is applied to a boundary
of the 2D domain, aiming to generate plane propagation waves.
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After S1, the S2 is a single premature stimulus applied at the
lower quadrant that is adjacent to the S1 application boundary,
when the last repolarization wave generated by S1 reaches the
half of the domain. The coupling interval is measured as the
difference between the time of the last S1 stimulus and the time
when starting S2. A single stimulus is a rectangular wavefront
current with a duration of 2 ms and an amplitude of twice the
diastolic threshold. Restitution curves are calculated by applying
a S1-S2 stimulation protocol. The S1 is a train of 10 stimuli with
a basic cycle length (BCL) of 1000 ms, and S2 is the premature
stimulus following S1. Measures of APD and CV are registered
at the point located at two thirds of L from the stimulation point,
provided that a wave of propagation is generated.

3. ATRIAL STRAND ANALYSIS

To assess the effect of β on the electrophysiological characteristics
of the Courtemanche model, simulations over atrial strands
are carried out. We use a set of test values for γ with α ∈

[1.1, 2] and β ∈ [0, 0.28], according to stability conditions (see
Supplementary Material).

We perform the analysis at microscopic scale with measures
from a cell within the strand, and atmesoscopic with representing
properties of the atrial strand. At the microscopic scale, the
transmembrane ionic currents and action potential duration
(APD) from the middle cell are measured. At the mesoscopic
scale, the APD dispersion (dAPD), spatial peak currents profiles
and restitution curves are registered. The APD is defined at 90%
of repolarization. The CV is measured between the points located
at one third and two thirds of L. The global dAPD is defined
as the range of the APD values within the strand. The local
dAPD is negative and is defined as the difference between the
minimum APD within the strand and the local APD. The peak
ionic current spatial profiles are build using the peak values of
the corresponding ionic current at each cell of the strand.

3.1. Reentry Vulnerability and Rotor
Dynamics Analysis
The reentry vulnerability analysis is accomplished by applying
the S1-S2 protocol at different coupling intervals. We define
the vulnerable window (VW) as the difference between the
maximum and minimum coupling intervals that triggers a rotor
sustaining for at least two rotations within the domain.

The analysis of the rotor dynamics requires calculating the
rotor tip trajectory from the phase maps (Bray et al., 2001). The
phase analysis defines the rotor tip as the singularity point where
the phase is undefined. A phase map is calculated, based on the
values of V over the space domain at a given time. The Hilbert
transform is obtained from each V time series, and the phase is
calculated from the relation of the imaginary part of the Hilbert
transform and the corresponding V value at a given time. The
rotor dynamics is characterized by the motion of the singularity
through the tissue.

3.2. Simulation Setup
An atrial tissue is modeled as a 2D domain of 4×4 cm2 in surface
and is discretized with uniform space steps of 1x = 1y = 321.5

µm. The time is discretized with a step of 1t = 10−2

ms. The Equation (6) is numerically solved by splitting the
operator (Marchuk, 1968; Strang, 1968). The complex order space
derivative operator is calculated using a semi-spectral scheme
(details are presented in the Supplementary Material). The time
derivatives of the Courtemanche model are obtained using the
explicit Euler approximation.

Initial conditions for the atrial tissue are set from unicellular
simulations, where a single CAF remodeled cell is paced at a
basic cycle length of 400 ms during 60 s. For assessing the rotors
behavior for different degrees of structural heterogeneity, we
define a set of test values for γ . The real part α is varied within the
interval [1.1, 2] with a step of 0.1. The range of the imaginary part
β is bounded to ensure numerical stability of Equation (6) (see
SupplementaryMaterial). Taking this into account, the imaginary
part assumes two values β = {0, 0.28}. The diffusion coefficient
κ is adjusted in order to generate plane propagation with a
conduction velocity (CV) of 63 cm/s, when the CAF remodeling
is not applied to the Courtemanche model. Therefore, a specific
value of κ is defined for each α with β = 0.

Prior to the rotor simulations, the effect of β over the
electrophysiological characteristics of the CAF model are studied
using a 1D model. An atrial strand is modeled as a 1D domain
with L = 2 cm discretized at N = 128 points. Simulations
for a dynamical evolution during 10 seconds are executed. The
stimulation is applied at the left side of the strand at a BCL of
1000 ms. Microscopic measures are registered from the middle
cell of the strand.

4. RESULTS

4.1. Atrial Electrophysiological
Characteristics Under Complex Order
Diffusion
4.1.1. Microscale Analysis

Figure 1A shows the action potentials (AP) registered from the
middle cell within the strand for β = 0.28 fixed. The standard
diffusion case (γ = 2+ j0, dotted line) is also shown. The AP foot
during the depolarization phase describe a smoother transition
from rest to activation as α decreases. The AP repolarization
is also affected and reveals a decreasing APD as α decrease. In
both cases, a significant difference between the standard diffusion
and the new description with γ = 2 + j0.28 is observed. This
is clarified in Figure 1B, that presents the APD map over the
complex plane (α,β). The APD decrease smoothly as α decreases
and β increases. However, β generates greater reductions of the
APD than α. For example, a reduction of 9 ms is achieved by
fixing α = 2 and increasing β from 0 (APD = 108 ms) to 0.28
(APD = 99 ms). In order to generated such an APD reduction
with β = 0, a reduction from 2 to 1.6 is needed.

The effects of β on the ionic currents are shown in Figures 1C,
2. Figure 1C depicts the map of the sodium peak current.
Reducing α, or increasing β , increases the peak value, but the
effect is more significant for β increments. Figure 2 illustrates
the effect of γ over the temporal series of representative ionic
currents. Complex values of γ modulate the ionic current
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FIGURE 1 | (A) Courtemanche’s action potential registered at the center of the atrial strand under CAF conditions. Dashed line corresponds to standard diffusion and

colored curves correspond to test values of γ . (B) APD map over the (α, β) plane. (C) Sodium peak current map over the (α,β) plane. White means that no record is

obtained due to absence of propagation.

FIGURE 2 | Transmembrane ionic currents registered at the center of the atrial strand for several test values of γ . (A) Rectifier potassium current IK1. (B) Outward

transient potassium current Ito. (C) Ultrarapid delayed rectifier potassium current IKur. (D) L-type calcium current ICaL. Dashed line corresponds to standard diffusion

and colored curves correspond to test values of γ .

transients which is in accordance with the modulations observed
during the despolarization and repolarization phases of the atrial
AP.

4.1.2. Mesoscale Analysis

Figure 3 shows the effect of γ over the dAPD. Figure 3A shows
the map of the global dAPD over the complex plane (α,β). The
map suggests that the global dAPD increase with β and with
decrements of α. Although the β modulation is stronger, the
dAPD changes are smaller in magnitude than those observed
in the microscopic analysis. Figure 3B shows the local dAPD

spatial profiles for three representative values of α. For α fixed,
β modulates the local dAPD profiles, producing relevant changes
for small α values.

The spatial profiles of ionic current peaks for INa, Ito, IKur,
and ICal are illustrated in Figure 4. Complex values of γ generate
a family of spatial profiles with differences in magnitude. Note
the gap in magnitude between the profiles family generated with
complex values of γ and the profile for the standard diffusion case
(γ = 2+ j0, dashed line).

Finally, the restitution curves are shown in Figure 5. As it is
characteristic of CAF, flat curves for APD and CV are generated
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FIGURE 3 | (A) Global dAPD map over the (α,β) plane. (B) Local dAPD spatial profiles for three distinct values of α. In each panel, for a given α, the β value varies

between 0 and 0.28.

FIGURE 4 | The spatial profiles of ionic current peaks for several test values of γ . (A) Sodium current INa. (B) Outward transient potassium current Ito. (C) Ultrarapid

delayed rectifier potassium current IKur. (D) L-type calcium current ICaL. Dashed line corresponds to standard diffusion and colored curves correspond to test values

of γ .

for complex values of γ . The coupling interval values for each
family of restitutions curves suggest a non linear behavior:
(i) in the interval 2 ≥ α > 1.2, for decreasing values
of α, the atrial strand generates propagation with premature
stimulus; (ii) for α < 1.3 premature stimulation is accepted
for increasing values of α. For the CV restitution curves, there
is a notorious difference in magnitude between the standard
diffusion case and the family of curves generated with γ

complex. This difference is not evident for the APD restitution
curves.

4.2. Rotor Simulations
We present the results of rotor simulations using the novel
model based on the complex fractional order diffusion operator.

In a unicellular environment, pacing is applied during 60 s to
the Courtemanche model before and after applying the CAF
electrical remodeling. The last AP generated for each case
are shown in Figure 6. Modifications in the AP characteristics
resulting from the CAF conditions can be summarized as: the
action potential duration reduces from 309 ms to 96 ms and
the resting membrane potential decreases from −80.98 mV to
−84.67 mV.

We calculate κ for each variation of γ = α+j0 for generating a
CV of 63 cm/s without CAF. Table 1 shows the adjusted κ values
and the corresponding CV for both physiological conditions. The
CAF remodeling reduces the CV as α decreases or β increases.
This behavior is depicted in the bar graph of Figure 6. The
propagation generated with standard diffusion decreases the CV
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FIGURE 5 | Restitution curves for several test values of γ . (A) APD restitution curve. (B) CV restitution curve. Dashed line corresponds to standard diffusion and

colored curves correspond to test values of γ .

FIGURE 6 | (A) The unicellular AP curves for no CAF and CAF models. (B) CV map over the complex plane (α,β) under CAF conditions. (C) Sample frame of rotor

propagation for γ = 1.6+ j0.28.

by 5%, while for γ = 2+ j0 and γ = 1.2+ j0.28 the CV decreases
by 25% and 55%, respectively. For γ = 1.1 + j0.28 propagation
cannot be generated under CAF conditions.

4.2.1. Vulnerable Window

The analysis of the reentry vulnerability of the tissue is performed
by applying the S1–S2 protocol for each variation of γ and
measuring the VW as detailed above. Under this scheme, we were
not able to generate a sustained reentry for any couple interval
value for γ = {1.2+ j0.28, 1.1+ j0.28}. Table 2 shows the results.
For β = 0 the VW increases as α increases. For β = 0.28 the
VW tends to increase as α decreases, reaching a maximum with

α = 1.4. The values of VW obtained with β = 0.28 are larger
than those obtained with β = 0.

4.2.2. Rotor Dynamics

Fibrillation episodes in the 2D atrial tissue are simulated by
generating rotor mechanisms. We apply the S1–S2 protocol for
simulating fibrillatory episodes of 5 seconds. The variations of
γ = α + j0.28 with α ≤ 1.3 are excluded since propagation
cannot be sustained. We study the effect of γ on the rotor tip
trajectories through the phase singularity motion. Figure 7 shows
the filament of the phase singularity, that represents the temporal
evolution of the rotor tip depicted in the tridimensional space
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TABLE 1 | Adjusted values of κ that yield propagation at 63 cm/s under non-CAF conditions and β = 0. CV (cm/s) for CAF conditions with β = {0, 0.28}.

α 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1

κ(cm2/s) 0.40 0.59 0.87 1.26 1.84 2.68 3.81 5.38 7.52 10.28

CAF
CV, β = 0 60.10 57.87 57.87 57.87 57.87 55.80 55.80 53.88 52.08 47.35

CV, β = 0.28 41.11 41.11 40.06 39.06 39.06 38.11 36.34 33.97 28.94 –

The mark–means no sustained propagation.

TABLE 2 | Values of VW (ms) measured for several test values of γ after applying the S1–S2 cross-filed stimulation protocol to the tissue.

α

β 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1

0 16 16 16 17 18 21 18 24 31 36

0.28 39 38 38 39 40 42 49 0 0 0

(x, y, t). The filament corresponding to the standard diffusion
case (γ = 2 + j0) stably evolves around an axis parallel to
the t-axis. By varying α and β , the filaments describe distinct
spatially complex trajectories. In order to quantify the effect of
γ over the rotor spatial stability, we estimate the tip maximal
displacement (D) as the maximum euclidean distance between
two points that belongs to the singularity filament, assuming all
points as coplanar:

D = max

{

√

(xj − xk)2 + (yj − yk)2
}

, (8)

where (xj, yj) and (xk, yk) are any couple of points within the
filament. Figure 8 shows the filaments within the same plane
(x, y). The red mark represents the core of the rotor. The black
marks represent the farthest points within the filament, where
the distance between them is equal to D. The standard diffusion
generates the lowest value ofD that can be interpreted as themost
stable rotor dynamics among the γ variations. For β = 0, the
value of D tends to increase as α decreases, depicting filaments
with closed trajectories around the core of the rotor. For β =

0.28, different dynamics can be identified: for α > 1.6 the rotor
meanders without defining a stable core, and for α ≤ 1.6 the
rotor meandering describe closed paths around an stable core.
Note that the values of D with β = 0.28 are greater than their
counterparts with β = 0.

5. DISCUSSION

The present computational study assesses the interplay between
rotors and the structural heterogeneity of a CAF remodeled
tissue. The structural remodeled tissue is modeled as fractal
structure with discrete-scale invariance. Such structural
heterogeneities are implemented using the complex derivative
order γ = α + jβ , that represents the fractal dimension of
the domain with log-periodic corrections. Thus, the proposed
complex fractional order diffusion equation has two degrees
of freedom (α and β) besides those imposed by the cellular

model (reactive term) and the diffusion coefficient (κ). Having
the same electrical remodeling due to CAF, through the
simulations we found that: the incremental changes of β

generates electrophysiological modulation to a greater extent
than the decremental changes of α. The quantitative and
qualitative changes in the repolatization features (such, as
APD, and ionic currents) generated by β are more visible on
the microscale. At the mesoscale, the extent of β modulation
depends on α. The observed restitution properties indicate
that complex values of γ favors the premature propagation.
This result suggests that increasing structural complexity of a
discrete-scale invariant atrial strand, has proarrhythmic effects
which is characteristic of CAF. The reentry vulnerability of the
tissue can be modulated by γ , where the shortest VW achieved
corresponds to the standard diffusion case. Furthermore, the
extent in which the CAF remodeling reduces the CV depends on
the value of γ , having the smaller reduction with the standard
diffusion. Lastly, by varying γ the rotor dynamics is affected,
generating meandering or drifting rotors, and modifying the
area covered by the rotor core.

5.1. The Complex Order Model of AP
Propagation
Fractal analysis and fractional differential equations have proven
to be useful tools for describing real processes (Mandelbrot,
1982; Captur et al., 2016; Ionescu et al., 2017; Machado and
Kiryakova, 2017). Although, there is a general agreement about
a relation between both theories, the formal mathematical
arguments supporting this relation are still being developed.
Important advances in this regard have been made in
the last two decades (Sornette, 1998; Nigmatullin and Le
Mehaute, 2005; Nigmatullin and Baleanu, 2013; Calcagni, 2017;
Nigmatullin et al., 2017). Therefore, this work contextualizes
this theoretical frame and situates it within the scope of
cardiac electrophysiological systems. A complex fractional order
diffusion equation is proposed considering the propagation
medium as a fractal object. The complex derivative order
implies that the myocardium is discrete-scale invariant. Such
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FIGURE 7 | Effect of γ on the rotor dynamics represented by singularity cores.

a property is characteristic of, for example, fractal trees,
percolation and diffusion-limited aggregates (Sornette, 1998).
These mathematical objects have been applied to describe
cardiovascular components: (i) fractal trees are used to
study the human coronary vasculature (Zamir, 1999; Zenin
et al., 2007), the His-Purkinke conduction system (Goldberger
and West, 1987; Berenfeld, 1991), and the atrial pectinate
musculature (Goldberger and West, 1987; Goldberger et al.,
1990); (ii) percolation clusters serve for modeling fibrosis
(Vigmond et al., 2016), and a heterogeneous and discrete
myocardium (Alonso and Bär, 2013); (iii) diffusion-limited
aggregates are used to model fibroblast (Dickinson et al.,
1994; Nogueira et al., 2011). The atrial tissue is composed by
a discrete net of cardiomyocytes, a microscopic structure of
capillaries, and non-myocyte cells such as the fibroblasts. This
complex atrial architecture can be considered as a fractal object,
whose mechanisms lead to discrete-scale invariance. Moreover,
the fractal analysis has been applied to characterize structural
pathological states (Cross, 1997; Fuseler et al., 2007; Zouein
et al., 2014; Captur et al., 2015, 2016). Thus, the complex order

diffusion equation can serve as a good model of atrial structural
remodeling.

Previous report of fractional electrophysiological model
of cardiac propagation (Bueno-Orovio et al., 2014), justified
the adoption of real fractional derivative order as a degree
of structural heterogeneity between a homogeneous domain,
dictated by the standard diffusion model (α = 2,β = 0),
and the domain inhomogeneities, dictated by the ballistic regime
(α = 1,β = 0). We want to stress here that our approach does
not disagree with the one proposed in Bueno-Orovio et al. (2014).
Indeed, a fractal dimension of γ = 2 + j0 corresponds to a
full homogeneous domain. As the fractal dimension decreases
(α → 1), the irregularity of the domain increases (i.e.,
the increasing structural heterogeneities). Thus, the transition
between both regimes is preserved. A purely real derivative
order would imply a system with no characteristic scale, and
a given property is held regardless the scale of observations,
also referred as a scale-free system. However, in real systems,
physical cut-offs prevent the invariance spreading over all scales
Khaluf et al. (2017). Therefore, the complex order derivative
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FIGURE 8 | Trajectory of the rotor tip within the spatial plane (x, y) for several test values of γ . The red mark indicates the rotor core. The D value corresponds to the

distance between the black marks. These marks depict the farthest points within the trajectory.

yields a more realistic model of electrophysiological systems. The
inclusion of the imaginary part β implies the existence of relevant
length scales within the electrophysiological system (Sornette,
1998), one of these scales may be related with the size of a
single cardiomyocyte. Through the complex derivative order,
the characteristic scales that may play a role during the cardiac
dynamics can be identified. For this reason, our complex order
model extends the real fractional model, in order to enhance
the comprehension of the cardiac structure effects on cardiac
propagation.

5.2. The Modulation of Electrophysiological
Properties Through the Complex Fractional
Derivative
We evinced that the depolarization phase of the AP is modulated
by complex derivative order. The slow down of the AP foot
was related to structural heterogeneities in atrial and ventricular
tissue from adult dogs (Spach et al., 1998). This observation
agrees with the results obtained using the complex order diffusion
model.

It is well recognized that the APD is reduced under CAF
conditions due to the electrical remodeling (Wijffels et al., 1995;
Bosch et al., 1999; Workman et al., 2001). Our results suggest
that structural changes reduce the APD under CAF conditions.
Experimental measures of APD reduction were obtained mainly

from unicellular patch clamp experiments. Determining the APD
response to structural remodeling is a difficult task. In fact,
there are some experimental studies reporting, through subrogate
measures, that the APD decreases in patients undergoing CAF
and structural remodeling (Morillo et al., 1995; Graux et al., 1998;
Vasquez et al., 2010) and, therefore, our results agree with those
observations.

Clinical studies described different behaviors for the dAPD
in CAF patients, indicating a global increment of the dAPD
(Boutjdir et al., 1986) and also reporting a regional dependance
(Kamalvand et al., 1999). Our results suggest that, under similar
electrical remodeling conditions, distinct degrees of global dAPD
can be generated by means of γ . This can be used to represent
different regions within the atria, which coincides with the
description of Kamalvand et al. (1999). Furthermore, the local
dAPD profiles obtained by means of the complex order model
indicates a reduction of the APD in the direction of propagation.
This gradient has been observed in rabbit atria, sinoatrial node
zone (Boyett et al., 1999), rat ventricular cellular cultures (Badie
and Bursac, 2009) and human ventricles (Hanson et al., 2009).

The reduction of CV plays an important role in the onset
of AF, because it can favor the occurrence of reentry (Bosch
et al., 1999). The structural remodeling under CAF conditions
is a factor that alters the CV (Jalife and Kaur, 2014; Nattel
and Harada, 2014). Our results agree with those observations:
decreasing CV values are obtained when α decreases or β
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increases and their combination represents different degrees of
structural heterogeneities. The changes in CV result from varying
the complex order γ under the same CAF electrical remodeling
conditions, where the reductions in CV are greater when
increasing the imaginary part β . Local structural characteristics
in the atria are important to determine the propagation of the
AP, meaning that the CV varies according on the region (Lesh
et al., 1996). When the CAF electrical remodeling occurs, the
extent of CV deterioration depends on the atrial zone (Markides
et al., 2003; Xia et al., 2004; Lalani et al., 2012). Using the complex
fractional model it is possible to simulate different atrial tissues
with heterogeneous CV values that can represent distinct atrial
regions.

5.3. Rotor Dynamics
The focal ectopic activity is an important source of reentrant
propagation (Haïssaguerre et al., 1998; Arora et al., 2003).
There is experimental evidence suggesting that the mechanisms
determining the tissue vulnerability to reentry are related with
structural and electrical remodeling interactions (Narayan et al.,
2017). The complex fractional model reveals that increasing
the degrees of structural heterogeneity increase the VW. Under
the conditions of our simulations, these results indicate that
increased vulnerability to reentry might be regulated by the
underlying tissular structure. Additionally, we show that the VW
values increase significantly with the imaginary part, so that β

can be interpreted as a parameter representing a specific type of
structural complexity.

The interest in rotor dynamics research has increased since
clinical reports claim that rotor ablation improves the rates
of success in human CAF treatment (Narayan et al., 2012).
Using in silico models, mechanistic explanations and therapeutic
approaches have been tested (Zhao et al., 2015; Berenfeld, 2016;
Guillem et al., 2016; Tobón et al., 2017). In this work, we assessed
the effect of structural heterogeneities on rotor propagation by
varying the complex derivative order γ . For real values of γ

(i.e., γ = α + j0) meandering quasi-stable rotors, with a shape-
changing core, are generated. For complex values of γ (i.e., γ =

α + j0.28) the rotor dynamics varies from drifting trajectories
(α > 1.6) to meandering trajectories whose core is markedly
greater with respect to those with β = 0. Asmentioned above, the
inclusion of the imaginary part β yields a major modulation of
electrophysiological features. In the case of the standard diffusion
(i.e., γ = 2 + j0), corresponding to a structurally homogeneous
tissue (Bueno-Orovio et al., 2014), the rotor meanders in a
quasi-stable form and describes the minimum tip displacement
among all γ variations. Therefore, by varying γ , the spatial
stability of the rotor can be modulated, obtaining a wide range
of rotor dynamics. Previous simulation studies report quasi-
stable dynamics using the Courtemanche model (Cherry and
Evans, 2008; Wilhelms et al., 2013). Our standard diffusion
simulations agree with those reports. However, additionally we
evinced that using the CAF remoled Courtemanche formalism
and keeping its parameters fixed, unstable rotor trajectories can
ben obtained through γ variations. Thus, we show that using
the complex fractional order diffusion model, it is possible to
simulate realistic CAF conditions in which meandering and

drifting rotors are observed. These dynamics can be related with
increasing degrees of structural heterogeneity causing difficulties
in accurately locating and ablating rotors. Under such conditions
the CAF may be not reverted which agrees with experimental
observations (Buch et al., 2016; Steinberg et al., 2017).

The growing evidence that structural remodeling has
a relevant role in AF dynamics, leads the computational
electrophysiology researchers to incorporate myocardial
structure features in the AP propagation models. There is a lack
of consensus on defining how purely structural properties has
to be included in a computational model. Variable diffusion
tensor (ranging from reduced conductivity to zero conductivity),
boundary conditions and non-cardiomyocite active models, are
proposals for modeling the myocardial structure (Trayanova
et al., 2014; Brown et al., 2015). There is a common element
among these approaches: the standard diffusion equation that
assumes the cardiac tissue as a continuum (Keener and Sneyd,
1998). Although these computational schemes have improved
our knowledge about the CAF mechanisms, modeling the
inherently discontinuous myocardium as a continuous domain
is inconsistent with the cardiac histological structure (Shaw and
Rudy, 2010). In this work, the cardiac structural heterogeneity
is implemented using a complex conjugate derivative operator.
The resulting mathematical model generalizes the previously
established propagation models (Keener and Sneyd, 1998;
Bueno-Orovio et al., 2014) without the restriction of assuming a
homogeneous domain.

5.4. Limitations
The biophysical interpretation of the complex derivative order
is build on the mathematical theory of smoothed functions
averaged over fractal sets (Nigmatullin and Le Mehaute,
2005). This problem has been solved for fractional temporal
derivatives and the relation with the complex dimension has been
stablished (Nigmatullin et al., 2017). This theory is supported by
experimental results (Nigmatullin et al., 2007, 2018). However,
the solution for spatial derivative operators is a more complex
problem and the averaging procedure only admits specific types
of fractals (Nigmatullin and Baleanu, 2013). Therefore, although
in this work a fractal as medium of propagation was assumed,
the specific fractal that is related with the fractional Laplacian
operator has not been stablished. Future investigations will look
into this problem. The simulations are performed in 2D domains.
Nevertheless the atrial tissue is a 3D complex domain, whose
heterogeneities can impact the rotor dynamics (Kharche et al.,
2015). For this reason, our results cannot be generalized until
analyzing 3D experiments of rotor propagation. The lack of
detailed experimental data describing the spatial distribution of
atrial electrophysiological properties does not allow an exhaustive
assessment of the simulation outcomes. Therefore, the results
obtained in this work invite to design experimental setups in
order validate them.

6. CONCLUSIONS

The new complex fractional order diffusion model allows the
simulation of a wide range of rotor dynamics. The results
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can be correlated with changes in the atrial tissular structure
that have been observed in the clinical practice. This approach
is a step toward an integral electrophysiological mathematical
model that embodies the structural and electrical features of the
myocardium.
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