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Abstract: An ideal scaffold should be biocompatible, having appropriate microstructure, excellent
mechanical strength yet degrades. Chitosan exhibits most of these exceptional properties, but it is
always associated with sub-optimal cytocompatibility. This study aimed to incorporate graphene
oxide at wt % of 0, 2, 4, and 6 into chitosan matrix via direct blending of chitosan solution and
graphene oxide, freezing, and freeze drying. Cell fixation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide, alkaline phosphatase colorimetric assays were conducted to assess cell adhesion,
proliferation, and early differentiation of MG63 on chitosan–graphene oxide scaffolds respectively.
The presence of alkaline phosphatase, an early osteoblast differentiation marker, was further detected
in chitosan–graphene oxide scaffolds using western blot. These results strongly supported that
chitosan scaffolds loaded with graphene oxide at 2 wt % mediated cell adhesion, proliferation, and
early differentiation due to the presence of oxygen-containing functional groups of graphene oxide.
Therefore, chitosan scaffolds loaded with graphene oxide at 2 wt % showed the potential to be
developed into functional bone scaffolds.
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1. Introduction

Tissue engineering was a novel solution to the misery underlying the limitations of the autografts
and allografts approach in regenerating bone defect areas, either arising due to congenital anomalies or
induced traumatically [1]. Among interesting biological observations leading to the concept of tissue
engineering is the in vitro genesis of tubular network that closely resembles the capillary vasculature
in vivo from capillary endothelial cells under appropriate culture conditions [2]. The three main
elements which constitute a tissue engineering construct are cells, biomaterials, and specific growth
signals that dictate cell proliferation and differentiation into a specialized tissue [3].

Biomaterials serve as biomimetic extracellular matrices (ECM) [4] which function as temporary
scaffold for tissue development and regulate tissue-specific gene expression by releasing growth
factors to the adjacent cells [5]. An ideal scaffold as a transient ECM generally requires good
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mechanical properties, biocompatibility, microstructure, tailorable degradation rates [6], and relatively
nontoxic degradation products [7]. Among biomaterials, scaffolds made of natural polymers are
highly sought-after.

Chitosan (CS), a N-deacetylated chitin derivative, is a promising material for bone tissue
engineering owing to its structure resemblance to the glycosaminoglycans (GAGs) found in natural
bones and cartilage [8,9]. It has been characterized with exceptional biocompatibility, biodegradability,
non-toxicity [10], as well as antimicrobial activities [11,12]. The cationic nature of multiple amino
groups in CS facilitated the functionalization with anionic GAGs which in turn concentrated cytokines
or growth factors [13]. Besides, its superiority over synthetic polymers offers a platform for new tissue
growth which conquers its load-bearing functions [14]. Notably, CS/fibroin-hydroxyapatite membrane
promoted guided bone regeneration in rat which further verified the in vivo efficacy of CS [15].
Wang and Stegemann discovered the correlation between the osteogenic differentiation of human
bone marrow mesenchymal stem cells (hBMSC) and CS content in CS-collagen composites based on
alkaline phosphatase activity, an early osteoblast differentiation marker [16]. Nonetheless, they also
underscored CS’s inferior cytocompatibility, possibly due to the nonexistence of cell attachment binding
sites. Despite the hopeful qualities offered by CS, one of its major drawbacks includes its non-supportive
nature in cell adhesion which is a key factor in osteoconductivity for bone regeneration [17].

Recently, graphene has emerged as vital material from electronic to biomedical field. As a single
layer of sp2 bonded carbon atoms arranged in a two-dimensional hexagonal matrix, graphene has
huge surface area and excellent mechanical properties [18–20]. Moreover, its derivative graphene
oxide (GO) produced from random introduction of carboxyl, epoxide, and hydroxyl groups have even
improved its hydrophilicity, aqueous dispersibility, and colloidal stability [21]. All these properties
have extended its use in the biomedical field.

This study aimed to reinforce CS scaffolds with GO at wt % of 2, 4, and 6 which were further
crosslinked with glutaraldehyde (GTA). The highest GO wt % attempted in this study was justified
by a recent work by Aidun and coworkers (2019) [22]. They also prepared their chitosan composite
scaffolds with GO at wt % of 6. Further GTA crosslinking on CS-GO scaffolds would be expected
to show structural integrity to facilitate osteoblastic functions like adhesion, proliferation and early
differentiation. However, the preliminary in vitro efficacy of GTA crosslinked CS-GO scaffolds has
not been proven which would be verified in this study. The in vitro efficacy of these nanocomposite
scaffolds was evaluated with human osteosarcoma cell line MG63, a classic model cell line for osteoblast
functional studies. This cell line retains the vital markers of osteogenic cell differentiation like alkaline
phosphatase (ALP) [23,24].

2. Results

2.1. Characterization of GO

Figure 1a shows the two-dimensional geometry of GO. The surface of GO was observed with
wrinkles and folds. The main elements of GO (in purple box) detected by EDX included carbon,
oxygen, and trace amount of sulfur which were tabulated in Table 1. The UV–VIS absorption spectrum
of GO suspended in deionized water is shown in Figure 1b. The main peak of GO was observed at
wavelength of 230 nm confirming π→ π* transition of aromatic C-C bond [25].
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Figure 1. (a) FESEM image with boxed area (purple line) of which the EDX analysis performed and 
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2.2. Morphology Study of GTA Crosslinked CS-GO Scaffolds 

The pristine GTA crosslinked CS scaffold in Figure 2a reveals a rather smooth surface. However, 

those with the GO dispersion, CS-GO2, CS-GO4, and CS-GO6 (Figure 2b–d), exhibited certain degree 

of surface roughness. Another noteworthy point these images reveal the tangible collapse of the 

interconnected pores which should have been formed through the water crystal formation and 

withdrawal via freezing and freeze-drying, respectively. 
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Table 1. Elemental composition of GO

Element Atomic %

Carbon 72.80
Oxygen 27.09
Sulfur 0.11

2.2. Morphology Study of GTA Crosslinked CS-GO Scaffolds

The pristine GTA crosslinked CS scaffold in Figure 2a reveals a rather smooth surface. However,
those with the GO dispersion, CS-GO2, CS-GO4, and CS-GO6 (Figure 2b–d), exhibited certain degree
of surface roughness. Another noteworthy point these images reveal the tangible collapse of the
interconnected pores which should have been formed through the water crystal formation and
withdrawal via freezing and freeze-drying, respectively.
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2.3. FESEM Images of MG63 Cells Fixed on Scaffolds for Cell Adhesion Study

Figure 3 shows MG63 cells on CS-GO2 (Figure 3b) having a wider spread over the scaffold surface,
while CS, CS-GO4, and CS-GO6 (Figure 3a,c,d respectively) manifested comparatively more rounded
morphology with numerous cellular filopodia suggesting the cytocompatibility on these scaffolds.
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Figure 3. FESEM images of MG63 cells fixed on GTA crosslinked scaffolds, (a–d) CS, CS-GO2, CS-GO4
and CS-GO6, respectively.

2.4. MTT Assay

As presented in Figure 4, CS-GO2 gives promising cell viability percentage of 95.84% on the third
day post-seeding and shows significant difference compared to CS scaffolds (* p < 0.001). On the other
hand, as the incubation period increased to 7 and 14 days, CS scaffolds at all GO concentrations gave
no significant difference (p > 0.05) in cell viability from MG63 cell control.
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Figure 4. Histogram showing MG63 cell viability percentages (%) against control on 3rd, 7th, and 14th
day post seeding on GTA crosslinked CS-GO scaffolds. Error bars represent standard error of means
(SEM). Independent experiments were conducted in triplicate (* p < 0.001).

2.5. ALP Assay

Figure 5 shows the ALP activity at the absorbance of 405 nm after 2 h of ALP-pNpp incubation.
ALP activities of MG63 cells on all scaffolds were observed on each day post-incubation. GO loading
may have enhanced the osteogenic properties of GTA crosslinked CS scaffolds in terms of ALP activities.
Therefore, more studies will be required to verify this.
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Figure 5. Histogram showing alkaline phosphatase (ALP) activity of MG63 cells on scaffolds on 7th,
14th, 21st, and 28th day post-seeding. Error bars represent standard error of means (SEM). Independent
experiments were conducted in triplicate (** p < 0.001).

On as early as 7th day post-seeding, MG63 cells exhibited a significant (** p < 0.001) level of ALP
activity on CS-GO2 and CS-GO6 in contrast to CS scaffolds. A remarkable observation could be made
on the ALP activity of MG63 on CS-GO6 on 28th day post-incubation. The ALP activity started off

at a high (p < 0.001) 0.709 µM/mL min−1 which then plummeted on 21st day post-incubation before
ascending to the level of ALP activity similar to that achieved on 7th day post-incubation by 28th day
of cell-scaffold interaction (Figure 5). The decrease in ALP activity observed in CS-GO6 scaffolds at
day 21 may be caused by the presence of a greater number of mature osteoblast cells as compared to
those undergoing early differentiation [26]. On day 28, the increased ALP activity of MG63 on CS-GO6
was observed again which implies bone formation. Therefore, more investigation will be required to
confirm this speculation.

2.6. Western Blot Detection of Alkaline Phosphatase (ALP)

Based on the nitrocellulose membrane capture from western blot assay shown in Figure 6, the early
osteoblast differentiation marker, ALP, was detected at the correct band size of 80 kDa (as highlighted
in red box), the tissue non-specific type, TNSALP [27].
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(Fermentas). CS—2 lanes, CS-GO2—1 lane, CS-GO4—2 lanes, CS-GO6—1 lane, MG63 (control)—1
lanes and BLANK—2 lanes.

3. Discussion

In the endeavor of bone tissue engineering (BTE), a primary criterium lies within its ability to
sustain the cell penetration, proliferation, and differentiation in bone remodeling [28]. The FESEM
images in Figure 2 tangibly show collapse of the interconnected porous structure which should have
been formed via the freezing and freeze-drying processes. This could be caused by the low viscosity of
the CS solution which contributed to the rapid freezing rate during the quench of CS-GO solution to
−20 ◦C before water droplets could coalesce for the formation of ice crystals [29]. Besides, the wt % of
GO is not high enough to retain the porous structure of CS scaffolds. CS scaffolds with TiO2 nanotubes
as filler in a previous study showed porous structure [30]. The wt % of TiO2 nanotubes in the scaffolds
was as high as 16 wt %. However, the wt % of GO has to be kept not more than 6 in this study to ensure
the cytocompatibility of CS scaffolds. Therefore, the resultant scaffold is a stack of CS layers without
visible pores. Nonetheless, all scaffolds of CS and CS-GO demonstrated certain degree of roughness on
their surfaces (Figure 2).

GO comprises a large surface area supplemented with a panoply of oxygen-containing functional
groups. It is suggested that GO dispersion is more even in CS solution containing 2 wt % of GO. When
the wt % of GO is increased to 4 and 6, the agglomeration of GO becomes dominant due to high surface
energy. The dispersive force by magnetic stir bar is not strong enough to prevent the agglomeration.
Instead of being well dispersed in the solution, GO stay as clumps and deposit at other parts of CS-GO
scaffolds. The release of GO clumps in CS scaffolds starts upon the degradation of chitosan matrix.
Even the clumps are not released, they remain in the chitosan matrix facilitating sites for osteoblastic
adhesion which will be followed by proliferation and differentiation. However, more investigation is
needed to confirm the presence of GO particles in other parts of CS scaffolds.

As depicted in Figure 3b, MG63 cells also demonstrated a conspicuous flattened morphology
on CS-GO2 in contrast to a more spherical morphology on other scaffolds. The oxygen-containing
functional groups such as hydroxyl (-OH) groups on CS-GO2 scaffolds are suggested to be responsible
for better adaptability of MG63 to CS-GO2. These functional groups enhance the polarity and wettability
of the surface [31,32], thereby allowing cell adhesion-mediating molecules such as fibronectin and
vitronectin to form ionic interaction with it [33] in forms with more flexibility for the strategic positioning
of various active sites. In addition, the increased wettability contributed by hydroxyl groups has
shown to reduce the adsorption of albumin which is non-adhesive for cells [34].
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When the findings from MG63 cells initial adhesion to the scaffolds are combined with MTT
and ALP data, CS-GO2 was found to not just improve MG63 cell spreading and adhesion on the
scaffold but also significantly (* p < 0.001) enhanced the cell viability percentage against CS on the third
day post-seeding (Figure 4). Moreover, on as early as seventh day post-incubation in osteoinductive
medium, CS-GO2 also gives a significantly high (** p < 0.001) ALP activity in contrast with CS
(Figure 5). CS-GO6 also gave promising enhancement of ALP activity both on 7th and 28th day
post-seeding (Figure 5) although the initial cell viability percentage was only 53.3% of MG63 cell
control (Figure 4). This is contradictory to a recent finding which reported that the ALP expression of
MG63 was decreased over incubation period with GO nanosheets [35]. Also, the administration of
nanographene platelets was also shown to hamper osteogenesis from as low as above 10 µg mL−1 [36].
Nonetheless, these previous works were conducted using electrodeposited CS-GO film and direct GO
solution administration, which could potentially bring the final GO concentration exposed to MG63
cells much higher, in contrast to this study whereby GO was incorporated into CS matrix to form a 3D
structure prior to exposure to cells. Therefore, the final GO concentration exposed to MG63 cells is
deduced to be lower in this study.

The mechanism behind the enhancement of osteogenesis brought about by CS-GO6 is hypothesized
to stem from the chemical properties conferred by higher GO loading. Some studies supported that GO
being an osteoinductive material even in the absence of osteogenic medium [37,38]. Most of the findings
have been ascribed to the various planar oxygen-containing functional groups like hydroxyl, carboxyl,
and epoxide which have allowed various π–π stacking interactions, electrostatic and hydrogen bonds
for the concentration of osteogenic inducers [39] and growth factors [40]. Besides, the osteoinducer
used in this study, l-ascorbic acid, was also suggested to adsorb onto GO and subsequently binds
calcium ions which mediated increase in ALP activity and mineralization in mouse osteoblasts [41].

4. Materials and Methods

4.1. Characterization of GO

The surface and elemental composition of GO were examined at accelerating voltage of 20 kV
using a field emission scanning electron microscope (FESEM, FEI, Quanta 400F, Hillsboro, OR, USA)
and energy dispersive X-ray (EDX, Oxford-Instrument INCA 400 with X-Max Detector, High Wycombe,
ENG, UK) respectively. The UV–VIS absorption spectrum of suspended GO was conducted at range of
200–800 by using UV–VIS spectrophotometer (PerkinElmer, Lambda 25, Boston, MA, USA). GO was
dispersed in deionized water for 5 min by using an ultrasonic bath (Elmasonic S180H, Singen, BW,
Germany) prior to UV–VIS analysis.

4.2. Fabrication of GTA Crosslinked CS-GO Scaffolds

The CS-GO composite scaffolds were formulated via the direct blending, freezing and freeze-drying
methods. Three wt % (wt %) of CS (Sigma-Aldrich, Saint Louis, MO, USA) solution in 0.2 M acetic acid
was blended with (0, 2, 4, 6 wt %) of GO (Nalgene Graphene Supermarket, Ronkonkoma, NY, USA) via
direct blending for 20 min to produce CS composite scaffolds with different wt % of GO as tabulated in
Table 2. Prior to blending with CS, different wt % of GO were suspended in deionized water for 5 min
using ultrasonic bath. Subsequently, the CS-GO mixture was solidified at −20 ◦C and freeze-dried
at −40 ◦C for 24 h each. The CS-GO scaffolds were rehydrated with 100%, 70%, and 50% ethanol for
1 hour, 30 min, and 30 min, respectively. The rehydration of scaffolds using alcohols allowed direct
sterilization of scaffolds and hydrated CS scaffolds were reported to be spongy and very flexible [42].
The CS-GO scaffolds were dried with silica gels for 2–3 days. The desiccated scaffolds were then
crosslinked by immersing them in 100 mL 1% (v/v) GTA solution for 20 h. Each of the crosslinked
scaffolds was then rinsed with three washes of 200–300 mL of deionized water and subsequently
desiccated with silica gels until complete dryness. A final step of sterilizing each crosslinked scaffold
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in 1 mL of 70% (v/v) ethanol for 30 min was conducted prior to characterization assays on their in vitro
biological properties.

Table 2. GTA crosslinked CS scaffolds with different wt % of GO

Scaffold Wt % of GO

CS 0
CS-GO2 2
CS-GO4 4
CS-GO6 6

4.3. Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectrometry
(EDX) Examination on CS and CS-GO Scaffolds

The surface morphology and elemental composition of GTA crosslinked CS-GO scaffolds was
studied by using FESEM and EDX. The analyses were conducted at voltage of 5–10 kV under low
vacuum condition.

4.4. Cell Seeding on GTA Crosslinked CS and CS-GO Scaffolds

MG63 cells were thawed from a frozen stock and cultured in 75 cm3 flasks using Minimum
Essential Medium (MEM, Gibco, Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal
bovine serum (FBS, Gibco, Carlsbad, CA, USA), 1% penicillin-streptomycin, 1% l-glutamine, and 1 mM
sodium pyruvate (Sigma-Aldrich, St Louis, MO, USA) at 37 ◦C in a humidified atmosphere of 5% CO2.
Cells were passaged at 80% confluency using 0.25% (w/v) trypsin (Sigma-Aldrich, St Louis, MO, USA).
Fresh medium was replenished at every 2–3 days. Prior to cell seeding onto scaffold at cell density
of 30,000 cells per well/scaffold, each scaffold was immersed in 1 mL MEM for 30 min for swelling.
The cell-scaffold structures were maintained in MEM with 10% FBS and incubated under standard
culture conditions for each duration per incubation (d.p.i.). MEM with 10% FBS supplemented with
β-glycerolphosphate (Sigma-Aldrich, St Louis, MO, USA) and L-ascorbic acid (Fluka, Germany) was
used in alkaline phosphatase (ALP) assay. Replicate wells containing only cell suspension served
as controls.

4.5. Cell Adhesion Assay

After 6 h of cell seeding onto scaffolds, the cell-scaffold construct was rinsed with 1× phosphate
buffered saline (PBS, Sigma-Aldrich, St Louis, MO, USA) once. Then, the fixing solution was added to
fully immerse each scaffold and incubated at 4 ◦C for 30 min. One PBS wash was conducted again prior
to the dehydration at room temperature using ethanol of graded concentrations 70%, 95%, and 99.5%
for 20 min, respectively. Subsequently, the final two drying steps were executed by immersing scaffolds
in the solution of 50% pure ethanol mixed with 50% hexamethyldisilazane (HMDS, Sigma-Aldrich,
St Louis, MO, USA) and 100% HMDS and gentle continuous rocking for 5 and 10 min, respectively.
Excess HMDS was removed and scaffolds were air dried for approximately 2 days. The morphology
of cells grown on scaffolds with different wt % of GO was examined by using FESEM at accelerating
voltage of 10 kV.

4.6. MTT Assay

After the incubation period of 3, 7, and 14 days, respectively, the medium was replaced with MEM
without FBS, 100 µL of 5 mg mL−1 of sterile MTT solution in PBS was added to each well and allowed
to react with the cells on scaffold for 4 h. Mitochondrial dehydrogenase in viable cells cleaved MTT to
form purple formazan crystals [43] and these were solubilized with DMSO added at 1 mL to each well.
The plate was oscillated for maximal dissolution effect of the DMSO. The optical density at 570 nm of
the resultant solution was measured using VarioskanTM multiplate reader (ThermoFisher Scientific,
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Carlsbad, CA, USA). Quantity of formazan is presumably directly related to the number of viable
cells [44]

The result was presented as cell viability percentage (%) against MG63 control cultured on
polystyrene well for each incubation period.

4.7. ALP Assay

This colorimetric test is based on the color visibility of a reaction catalyzed by the enzyme,
ALP which is an early osteoblast differentiation marker. First, both the cells and cell-scaffold
construct were washed with 1× PBS before being homogenized in 1 mL cell lysis buffer (PRO-PREPTM,
Gyeonggi-do, Korea) and incubated on ice for 15 min. Following cell lysis, the mixtures were then
centrifuged at 4 ◦C at 10,000 rpm for 10 min. The supernatant was incubated with p-nitrophenyl
phosphate (pNpp, Sigma-Aldrich, St Louis, MO, USA) liquid at 1:1 ratio and 37 ◦C in a 96-well plate
for 2 h. The pNpp would be hydrolyzed by ALP to p-nitrophenol (pNp). The addition of 100 µL of
0.2M NaOH was to stop the hydrolysis. The optical density of the pNp was read at 405 nm using the
VarioskanTM Multiplate reader.

4.8. Western Blot Analysis

This analysis aided to detect the presence of ALP, early differentiation marker. Sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was conducted at 170 V for 75 min at a loading
volume of 30 µL of heat-denatured supernatant (90 ◦C for 10 min) from the aforementioned cell lysis
reaction (PRO-PREPTM) using the NuPAGE Novex Bis-Tris Precast gel (Life Technologies, Carlsbad,
CA, USA). The size-separated protein sample was then electro-blotted at 25 V for 90 min using the
XCell II™ Blot Module (Life Technologies, Carlsbad, CA, USA). The electro-blotted nitrocellulose
membrane was then rinsed with deionized water prior to soaking in blocking buffer of 4% (w/v) milk
in phosphate buffered saline-0.05% Tween-20 (PBS-T) solution. After horizontal shaking at 100 rpm
for 30 min, mouse primary anti-ALP antibody ab54778 (Abcam, Eugene, OR, USA) was added at
1:2000 dilution to the blocking buffer and horizontally shaken at 100 rpm for 5 min before storing
at 4 ◦C overnight. Subsequently, it was horizontally shaken at 100 rpm for 2 h prior to three 10 mL
PBS-T washing steps of 4-min interval each. Thereafter, horseradish peroxidase linked-anti-mouse
secondary antibody ab9484 (Abcam, Eugene, OR, USA) was added at 1:5000 dilution in 10 mL of PBS-T
solution. The reaction was maintained on the horizontal shaker at 100 rpm for 2 h. This was followed
by four 10 mL PBS-T washing steps of 4-min interval each before a final wash with deionized water.
The membrane was washed with 1 mL of 3,3′,5,5′-tetramethylbenzidine (TMB) substrate until band
was visibly observed. The partially dried membrane was then captured using GS-800 densitometer
(Bio-Rad, Hercules, CA, USA).

4.9. Statistical Analysis

MTT and ALP assays were statistically analyzed with two-way ANOVA in Randomized Complete
Block Design using the software GenStat 17th Edition (32 bit).

5. Conclusions

Glutaraldehyde crosslinked CS scaffolds dispersed with GO offered promising in vitro bioactivities
in terms of MG63 cell adhesion, proliferation, and differentiation. CS-GO2’s bioactivities were found
to be more associated with surface nanotopography while those of CS-GO6 were more likely to be
contributed by surface physicochemistry bestowed by the oxygen-containing chemical groups of GO.
Nonetheless, dispersion of GO in CS solution garners further improvement so that glutaraldehyde
crosslinked CS-GO nanocomposites can act synergistically via organized nanotopography coupled
with enhanced surface physiochemistry in terms of MG63 cell adhesion, proliferation, and osteogenesis.
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Abbreviations

ALP alkaline phosphatase
BTE bone tissue engineering
CS chitosan
Da Dalton
DMSO dimethyl sulfoxide
ECM extracellular matrices
EDX Energy dispersive X-ray
FBS fetal bovine serum
FESEM field emission scanning electron microscope
GAGs glycosaminoglycans
GO graphene oxide
GTA glutaraldehyde
hBMSC human bone marrow mesenchymal stem cells
HMDS hexamethyldisilazane
MEM minimum essential medium
MG63 human osteosarcoma cell line
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PBS phosphate buffered saline
PBS-T phosphate buffered saline-0.05% Tween-20
pNp p-nitrophenol
pNpp p-nitrophenyl phosphate
SDS PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
TMB 3,3′,5,5′-tetramethylbenzidine
TNSALP tissue non-specific type
UV–VIS ultraviolet-visible
wt % weight percent
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