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The acquisition of high angular resolution diffusion MRI is particularly long and subject motion can become an issue. The
orientation distribution function (ODF) can be reconstructed online incrementally from diffusion-weighted MRI with a Kalman
filtering framework. This online reconstruction provides real-time feedback throughout the acquisition process. In this article, the
Kalman filter is first adapted to the reconstruction of the ODF in constant solid angle. Then, a method called STAR (STatistical
Analysis of Residuals) is presented and applied to the online detection of motion in high angular resolution diffusion images.
Compared to existing techniques, this method is image based and is built on top of a Kalman filter. Therefore, it introduces no
additional scan time and does not require additional hardware. The performance of STAR is tested on simulated and real data and
compared to the classical generalized likelihood ratio test. Successful detection of small motion is reported (rotation under 2∘) with
no delay and robustness to noise.

1. Introduction

DiffusionMRI has provided a great tool for neuroscientists to
understand and analyze in vivo the anatomyof the brainwhite
matter fiber tracts that connect different areas of the cortex.
The diffusion tensor model [1] has become increasingly
popular, and the study of scalar indices derived from it has
proved useful in the diagnosis of a wide range of neurological
diseases [2, 3]. For several specific applications, like fiber
tractography, this model is, however, known to be limited,
and high angular resolution imaging techniques should be
used instead, to reconstruct the model-free ensemble average
propagator [4–6] or the orientation distribution function
(ODF) [7–10].

The acquisition of high angular resolution diffusion
images requires longer time than diffusion tensor imaging.
Subjects are likely to move during these acquisitions, and we
can identify at least three motivations to develop a proper
method for the online detection of motion. First, images can
be registered prior to diffusion model estimation; however
this might increase partial volume effects [11], because of
the relatively low spatial resolution of diffusion-weighted
images and of interpolation in the registration procedure.
This also modifies the variance properties of the image [12],
which should be considered carefully for group studies.
When the subject moves during acquisition, a warning could
be issued, so as to take a decision accordingly. Depending
on the number of images already acquired, the decision
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could be to restart the scan or acquire a few more diffusion
weighted images than originally planned to compensate
for the variance increase due to the registration. Second,
diffusion acquisitions use a gradient table, which is a set of
orientations and 𝑏-values and has been designed following
an optimal sampling strategy. In Q-ball imaging for instance,
the set of orientations is designed to sample the sphere in
an optimal isotropic fashion [13, 14]. When correcting for
motion, the diffusion encoding gradients should be rotated
to be consistently defined in a coordinate frame related
to the subject [15–17]. This modification might break the
optimal sampling strategy as originally planned and affect the
reconstruction of the ODF. Finally, in the context of online
processing of diffusion images, motion must be detected,
so that it can be corrected to continue the incremental
reconstruction.

Several solutions for online motion detection and cor-
rection were recently proposed [18–21]. The authors in [18]
use a camera inside the scanner to detect and evaluate a
rigid motion. Their study shows the improvement in ODF
reconstruction with this prospective approach for motion
correction over a classical offline registration. However, this
technique requires additional hardware which is to date not
always available on scanners. Other approaches [19, 21] are
based on the interleaving of echo navigators through the
acquisition sequence. The authors in [19, 21] report good
results in detecting and correcting motion, but these addi-
tional acquisitions affect the overall protocol time. Finally, a
recent work [20] introduces a motion detection and prospec-
tive motion correction to account for slow motion artifacts
such as image misalignment. They also reduce fast motion
effects such as signal dropout, by identifying the volumes
most affected by motion, and schedule reacquisition at the
end of the scan. This last technique is very promising and
shows good results. But the motion detection and correction
is performed by comparing a diffusion weighted image to the
average of diffusion weighted images with the same 𝑏-value.
We believe this is suboptimal, as it does not take into account
the direction associated to each diffusion weighted image.
This thereforemight lead to a loss of sensitivity and specificity.

In this work, we propose a diffusion weighted-image-
based technique for the online detection of motion in Q-
ball imaging. Our method does not require new hardware or
change in the acquisition protocol and is based on a Kalman
filter reconstruction of the HARDI signal [22, 23]. The first
contribution is the adaptation of the Kalman filtering frame-
work for online reconstruction ofODF in constant solid angle
recently introduced in the Q-ball imaging community [9, 10].
Then, we present a solution to the detection of motion in
diffusion images, adapted from the generalized likelihood
ratio test (GLRT) [24]. To overcome certain shortcomings
of this method, we introduce STAR (STatistical Analysis of
Residuals), an original method for the detection of motion
in diffusion weighted images. The method is tested under
various experimental conditions on semiartificial and on
real data and compared to GLRT. In the Results, we report
successful detection of small motion (rotation by angle under
2
∘), even in noisy conditions. The detection using STAR

outperforms GLRT, while STAR does not need any delay for
the detection.

2. Methods

In this section, we review the definition and the expression
of the ODF calculated in constant solid angle. It has been
shown recently that this mathematically correct definition
of ODF can be reconstructed in Q-ball imaging [9, 10].
We present an incremental reconstruction algorithm for
this ODF, based on the Kalman filter. We formalize the
problem of motion detection only from the observation of
the diffusion signal. We present a brief review of methods for
fault detection, in particular GLRT, built upon the Kalman
filter, as first described by [24]. Finally, we present STAR,
an original approach based on a statistical modeling of the
image. It has several advantages over GLRT. Both algorithms
are implemented, andwe present at the end of this section the
validation methods used to compare them.

2.1. ODF in Constant Solid Angle. The ODF is a spherical
function, retaining the angular information of the ensemble
average propagator, 𝑃. When defined as the marginal proba-
bility of direction, the ODF, 𝜓, is the probability for a water
molecule to diffuse along a given direction in a constant solid
angle. It is defined from the diffusion propagator as

𝜓 (u) = ∫
∞

0

𝑃 (𝑟u) 𝑟2d𝑟. (1)

In diffusion MRI, we measure the signal, 𝑠(q), which
is related to the ensemble average propagator 𝑃 through a
Fourier transform, under the narrow-pulse condition [25]

𝑃 (r) = ∫
q∈R3

𝑠 (q)
𝑠 (0)

𝑒
−2𝜋𝑖q⋅rdq. (2)

Under the assumption of a monoexponential decay of the
diffusion signal 𝑠, the relation between 𝑠(q), 𝑠(0), and theODF
𝜓 is given by

𝜓 (u) = 1

4𝜋
+
1

16𝜋2
FRT{∇2

𝑏

ln(− ln 𝑠

𝑠 (0)
)} (u) , (3)

where FRT denotes the Funk-Radon Transform and ∇2
𝑏

the
Laplace-Beltrami operator [9].

The computation of the ODF can be implemented using
the modified spherical harmonic basis for real and symmet-
ric functions [8] to describe the transformed signal 𝑦 =

ln(− ln(𝑠/𝑠(0))) [9], as both the Funk-Radon transform and
the Laplace-Beltrami operations in (3) have a close-form
matrix expression in the spherical harmonic basis. If 𝑐

𝑗
are

the spherical harmonic coefficients that describe 𝑦, then the
spherical harmonic coefficients to describe the ODF 𝜓 are

𝑐
󸀠

𝑗

=

{{{{{{

{{{{{{

{

1

2√𝜋
𝑗 = 1

−
1

8𝜋
(−1)
𝑙𝑗/2

1 × 3 × ⋅ ⋅ ⋅ × (𝑙
𝑗
+ 1)

2 × 4 × ⋅ ⋅ ⋅ × (𝑙
𝑗
− 2)

𝑐
𝑗
𝑗 > 1,

(4)
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Figure 1: (a)Nonlinear transformon the diffusion signal; (b) derivativewith respect to the signal.Thedistortion ismaximum for 𝑠/𝑠(0) → 0.0

and 𝑠/𝑠(0) → 1.0 and minimum for 𝑠/𝑠(0) ≈ 1/𝑒.

where 𝑙
𝑗
= {0, 2, 2, 2, 2, 2, 4, 4, 4, . . .} for 𝑗 = {1, 2, 3, . . .} is the

order associated to the 𝑗th spherical harmonic.
The computation of the spherical harmonic coefficients

ĉ describing 𝑦 from a series of measurements 𝑦[𝑘] =

ln(− ln(𝑠[𝑘]/𝑠(0))) = ln(− ln(𝑠(𝑞u[𝑘])/𝑠(0))), 𝑘 = 1 ⋅ ⋅ ⋅ 𝑁 at
discrete positionsu[𝑘] on the unit sphere, and ameasurement
without any diffusion encoding gradient 𝑠(0) is implemented
by minimizing:

𝑀(c) = (y − Bc)TΣ−1 (y − Bc) + 𝜆cTLc. (5)

The second term is a Laplace-Beltrami regularization con-
straint on the fitted signal, with the matrix L having diagonal
elements 𝑙2

𝑗

(𝑙
𝑗
+ 1)
2. The matrix Σ in the data fitting term of

(5) accounts for the uncertainty in the diffusion-weighted
measurements 𝑠[𝑘] as well as for the distortion introduced by
the nonlinear transform, which is illustrated in Figure 1. The
distortion is higher in high-magnitude and low-magnitude
signal modes. The diagonal elements of Σ can be approxi-
mated through first-order error propagation; the uncertainty
on the transformed signal 𝑦 is simply

𝛿𝑦 =
𝜕𝑦

𝜕𝑠
𝛿𝑠 = −

1

𝑠 ln (𝑠/𝑠
0
)
𝛿𝑠. (6)

Provided that the error on separate measurements is uncor-
related, the diagonal elements 𝜎2[𝑘] of Σ are simply

𝜎
2

[𝑘] =
Var(𝑠 [𝑘])

𝑠 [𝑘]
2ln2 (𝑠 [𝑘] /𝑠

0
)
, (7)

where Var(𝑠[𝑘]) denotes the variance of the diffusion signal
𝑠[𝑘] and can be estimated once for the whole volume using a
method like PIESNO for instance [26].

2.2. Incremental ODF Reconstruction. Provided that the
acquisition sequence is incremental (in this study we use
the incremental point sets as in [23]), the energy in (5) can
be minimized incrementally using a Kalman filter [23]. The
incremental system adapted to the reconstruction of theODF
in constant solid angle is given by

Initialization
{{

{{

{

c [0] = E [c]
P̃ [0] = E [(c − c [0]) (c − c [0])T]
P [0] = (P̃[0]−1 + 𝜆L)

−1

,

Update

{{{{{{{

{{{{{{{

{

𝑉 [𝑘] = B [𝑘]P [𝑘 − 1]B[𝑘]T + 𝜎2 [𝑘]
g [𝑘] = P [𝑘 − 1]B[𝑘]T𝑉[𝑘]−1

P [𝑘] = (I − g [𝑘]B [𝑘])P [𝑘 − 1]
𝛾 [𝑘] = 𝑦 [𝑘] − B [𝑘] c [𝑘 − 1]
c [𝑘] = c [𝑘 − 1] + g [𝑘] 𝛾 [𝑘] .

(8)

The 𝜎2[𝑘] depend on the data as expressed in (7), and
the covariance 𝑉[𝑘] of the residual 𝛾(𝑘) can no longer
be precomputed offline. The expected covariance of the
estimated spherical harmonic coefficients c[𝑘] is the matrix
P[𝑘] computed by the Kalman filter. Then the expected
mean squared error on the spherical harmonic coefficients
describing the ODF is given by

MSE (c󸀠[𝑘]) = Tr (FTLTP [𝑘] LF) , (9)
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Figure 2: Synthetic mixture of Gaussian model, and reconstruction of the ODF in constant solid angle using the Kalman filter. (a) 60∘ and
(b) 90∘ crossing fibers. The 30 first iterations of the Kalman filter are shown.

where F is the matrix form of the Funk-Radon transform and
has diagonal elements 2𝜋𝑃

𝑙𝑗
(0), where 𝑃

𝑙𝑗
(0) is the Legendre

polynomial of degree 𝑙
𝑗
evaluated at 0, and L is the Laplace-

Beltrami matrix as in (5). An example of ODF reconstructed
incrementally is shown on Figure 2.

The Kalman filter was derived with the assumption that
the local diffusion propagator does not change in time. Next,
we show how we can derive a motion detection algorithm
from this Kalman filter.

2.3. Motion and Diffusion Signal. Subject motion generally
occurs in a short time compared to the acquisition time.
This may induce an abrupt change in the diffusion signal.
The detection of abrupt changes in dynamical systems has
been extensively studied [24, 27]; a very good review of
methods and algorithms can be found in [28]. They propose
a classification of change detection problems, together with
suggested methods and algorithms to address them.

In the previous section, we have introduced a Kalman
filter solution to reconstruct the spherical harmonic coeffi-
cients of the Q-ball signal. The state of our system is the
vector of spherical harmonic coefficients c[𝑘], and a motion
of the subject at time 𝜃 is likely to imply a modification of
this state, c[𝑘 ≥ 𝜃] = c[𝑘 < 𝜃] + p. The problem of motion
detection reduces to the problem of change detection in this
multidimensional system. Besides, since both the time 𝜃 and
the magnitude p of the change are unknown a priori, the
classification in [28] suggests to use a generalized likelihood
ratio test (GLRT) for the detection. In the next section we
briefly describe this method and its implementation upon a
Kalman filter, as originally introduced in [24].

2.3.1. Classical Solution:TheGeneralized Likelihood Ratio Test.
The Kalman filter presented in the first section is built under
the hypothesis of no motion. We can monitor the residuals
of this Kalman filter for each iteration and test whether
the hypothesis is still valid. As it has been shown in [24],
the prediction error after a change occurred at time 𝜃 for
subsequent iterations can be decomposed as

𝛾 [𝑘] = G (𝑘, 𝜃) p + 𝛾
1
[𝑘] , (10)

where 𝛾
1
is zero-mean Gaussian distributed with covariance

𝑉[𝑘] andG(𝑘, 𝜃) represents the propagation of a jump at time
𝜃, to the prediction error at time 𝑘. This can be computed as
in [24]:

G (𝑘, 𝜃) = B [𝑘](I −
𝑘−1

∑

𝑗=𝜃

g [𝑗]G (𝑗, 𝜃)) ,

G (𝑘, 𝑘) = B [𝑘] .

(11)

The problem of a change detection is to discriminate
between two hypotheses:
(H
0
): no change in the state vector: 𝛾[𝑗] = 𝛾

1
[𝑗], 𝑗 = 𝜃

0
⋅ ⋅ ⋅ 𝑘,

(H
1
): at time 𝜃

0
, the state vector becomes c + p

0
.

When p
0
and 𝜃

0
are known, a natural statistic for the

detection is the likelihood ratio. Provided that the residuals
are linearly related to the change (10), the log-likelihood ratio
is

𝑙 (𝑘; 𝜃
0
, p
0
) = ln

𝑝H1
(𝛾 [𝜃
0
⋅ ⋅ ⋅ 𝑘])

𝑝H0
(𝛾 [𝜃
0
⋅ ⋅ ⋅ 𝑘])

. (12)

Provided that the densities 𝑝H0 and 𝑝H1 are Gaussian, after
simplification this is rewriten as

𝑙 (𝑘; 𝜃
0
, p
0
) =

𝑘

∑

𝑗=𝜃0

𝛾 [𝑗]𝑉
−1

[𝑗] 𝐺 (𝑗, 𝜃
0
) p
0
. (13)

In our case, both p and 𝜃 are unknown.The generalisation
of the likelihood ratio method suggests to replace 𝜃

0
and p

0

in (13) by their maximum likelihood estimates:

𝜃 (𝑘) = argmax
𝜃

𝑙 (𝑘; 𝜃, p̂ (𝑘; 𝜃)) ,

p̂ (𝑘; 𝜃) = (
𝑘

∑

𝑗=𝜃

𝐺
𝑇

(𝑗, 𝜃) 𝑉[𝑗]
−1

𝐺 (𝑗, 𝜃))

−1

×

𝑘

∑

𝑗=𝜃

𝐺
𝑇

(𝑗, 𝜃)𝑉[𝑗]
−1

𝛾 [𝑗] (least squares estimate) .

(14)

Finally, the decision is taken by comparing 𝑙(𝑘; 𝜃, p̂) to a
threshold 𝜖.

This technique works fine, yet suffers from several draw-
backs. First, the calculation of the maximum likelihood
estimate of p involves the inversion of a matrix in (14) which
has full rank only if 𝑘 − 𝜃 > dim(p). In other words, this
implies a delay at least equal to the dimension of the problem.
As an example, when the signal is fitted in the 4th order
symmetric spherical harmonic basis, this dimension is 15.
In addition, the choice of a threshold 𝜖 was reported to be
critical and highly dependent on the delay [29]. Finally, in
our situation the state vector represents the diffusion signal
locally, and GLRT does not say how to combine the statistics
of different voxels to calculate a statistic which could be an
indicator of motion for the whole volume at once. To address
these weaknesses, we propose in the next section an original
approach without delay, incorporating a statistical model of
the image, in order to provide a more suitable detection
algorithm.
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2.3.2. Statistical Analysis of the Residuals. The reconstructed
image is a vector field c(r), where c is a vector of spherical
harmonic coefficients describing the diffusion signal at voxel
position r. We consider the difference p between two such
vector fields c

1
and c
2
, representing the same subject before

and after a rigid transform. In what follows, we consider p(r)
as a random variable, with unknown covariance matrix C.

Hence if there is no motion, the residuals for the whole
volume will be distributed as N(0, 𝑉[𝑘]), where 𝑉[𝑘] is
the variance predicted by the Kalman filter. Otherwise the
overall variance of the residuals will increase as 𝑉[𝑘] +
G(𝑘, 𝜃)CG(𝑘, 𝜃)T, where G(𝑘, 𝜃) is the matrix for the prop-
agation of a jump at time 𝜃 to the prediction error at time 𝑘,
and the covariance matrix C of p is unknown.

Based on the previous observations, we design a test for
motion detection without delay. This means that based on
measurements up to time 𝑘, we are able to decide whether
a motion occurred at time 𝑘 or not. Given a sample of
𝑀 residuals at time 𝑘, at voxel positions x

1
⋅ ⋅ ⋅ x
𝑀

selected
randomly within the brain, the hypotheses that a motion did
occur at time 𝜃 or not are equivalent to

(H
0
) : 𝛾[𝑘] has variance 𝑉[𝑘], as predicated by the Kalman
filter;

(H
1
) : 𝛾[𝑘] has a variance 𝜎2 > 𝑉[𝑘].

This decision problem is commonly addressedwith a one-
sided 𝜒2-test [30]. We first calculate the statistic:

𝑇 =
∑
𝑀

𝑗=1

𝛾
2

(x
𝑗
) [𝑘] − (1/𝑀∑

𝑀

𝑗=1

𝛾[𝑘])
2

𝑉 [𝑘]
. (15)

Under the hypothesis (H
0
), 𝑇 approximately follows a 𝜒2

𝑀−1

distribution. We want to reject the hypothesis with a signifi-
cance level 𝛼: under the hypothesis (H

0
), we compute 𝑝 such

thatP(𝑇 > 𝑝) = 𝛼.The value of𝑝 is obtained from the inverse
cumulative function of the 𝜒2

𝑀−1

distribution.

2.4. Validation Methods. We implemented the incremental
reconstruction using Kalman filtering, together with GLRT
and STAR for motion detection. These techniques were
tested on real data, and a quantitative analysis of both
was performed on semiartificial data, where the motion is
simulated by a rigid transform. In this section, we describe
how these images were synthesized.

The simulation is based on a tensor field reconstructed
images of still subject, acquired on a 3T Siemens magnet
at the Center for Magnetic Resonance Research, University
of Minnesota Medical School, with 200 encoding directions
computed following the optimal sampling scheme of [23], 𝑏 =
1000 s/mm2, isotropic resolution 2.0 × 2.0 × 2.0mm, 25 𝑏 = 0
images, 128×128 imagematrix, 64 slices, TE = 90ms, and TR
= 8500ms.We choose a series of diffusion gradient directions
{g[𝑘], 𝑘 = 1 ⋅ ⋅ ⋅ 𝑁} and a 𝑏-value for synthesis. The rigid
motion is specified by an instant 𝜃, its rotation component
R and its translation vector t. Provided that the diffusion
encoding gradients should be rotated accordingly [15–17], the
gradient directions used for synthesis are {g[1], g[2], . . . , g[𝜃−

1],Rg[𝜃], . . . ,Rg[𝑁]}. The rigid transform is finally applied
to the synthetic diffusion weighted images 𝜃, . . . , 𝑁, after
which the images are corrupted by Rician noise.

3. Results

We evaluate the general likelihood ratio, and the residual-
based statistics computed for STAR as a motion detection
criterion. We first investigate the accuracy of the theoretical
threshold in STAR. Then we compare the sensitivity and
specificity of GLRT and STAR, for different values of the
experimental parameter. Within this section, we report the
true positive rate (TPR), defined as TPR = #detected posi-
tives/#positives, and the false positive rate, define as FPR =
#mislabeled negatives/#negatives.

3.1. Software Implementation. The Kalman filter and STAR
were implemented in Python, with the use of the SciPy [31]
toolkit, which is an efficient library for scientific computing.
Based on this implementation, the reconstruction of theODF
field for an image of dimensions 128 × 128 × 64, with 200
diffusion-weighted images, took approximately 29 s on a 4-
core Intel Core computer at 3.20GHz, with 4.0GB memory,
running Linux Mint 13. This means that each diffusion
volume is processed within less than 150ms, which is short
with respect to TR.

3.2. Threshold Selection in Motion Detection. One of the
advantages of STAR outlined in the previous section is that
the threshold for the detection can be deduced from the
target false positive rate. In practice, as 𝑀 becomes large,
we approximate the 𝜒2

𝑀−1

distribution for the decision test
described in Section 2.3.2 by a normal distribution: (𝑇 −𝑀+
1)/√2(𝑀 − 1) ∼ N(0, 1), and 𝑝 is given by the inverse
normal cumulative density function. For a false positive
rate fewer than 5%, the theoretical threshold is (𝑝 − 𝑀 +

1)/√2(𝑀 − 1) = 1.64. This value is experimentally tested,
and the results are presented in the next section.

We report in Figure 3 the value of the statistics (𝑇 −
𝑀 + 1)/√2(𝑀 − 1), for a series of 100 experiments without
motion and a series of 100 experiments where the volumewas
rotated after 18 acquisitions by an angle of 2∘. The threshold
was taken as 1.64, for which the false positive probability is
5%. The empirical false positive rate we report for these 200
simulations is 4%, while the true positive rate is 90%.

3.3. Motion Detection: Sensitivity and Specificity. We com-
puted both detection criteria on a series of 100 datasets
withoutmotion, and a series of 100 experiments withmotion.
We plot in Figure 4 the curve TPR versus FPR obtained by
choosing different threshold values.

We also evaluate the robustness of GLRT and STAR
in various experimental conditions. For a fixed FPR = 5%,
we plot the TPR score of both methods. The experimental
conditions include the delay, instant of motion in the acqui-
sition sequence, SNR, and motion magnitude. The results of
these simulations are reported in Figure 5. The experimental
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a rigidmotion (rotation by an angle of 2∘) occurred after 20 diffusion
weighted images were acquired.

conditions, unless explicitly modified, were a rotation around
the left-right axis by an angle of 3∘, SNR = 20, motion instant
𝜃 = 20 and a delay 𝑘 − 𝜃 = 3 (for GLRT). The experiment
includes 400 negatives (simulations without motion) and
100 positives (simulations with motion). The monitoring of
residuals in STAR and in GLRT is limited to 500 voxels
randomly selected within the brain to get a computational
cost adequate for online treatment.

3.3.1. Experiment on a Real Data. We also validate our
methods on a real dataset, with the same imaging parameters
as above. During the acquisition, the subject was asked to
slightly tilt his head after 80 images were acquired. The
motion was a posteriori identified as a rotation of 20∘ about
the 𝑧-axis (see Figure 6). The detection algorithms could

detect this motion: with a delay of 2 acquisitions for GLRT,
and with no delay for STAR.

4. Discussion

Among the challenges of a motion detection algorithm, we
have tested both GLRT and STAR in these conditions:

(i) small delay for the detection (ideally no delay);
(ii) motion that occurred in the first few iterations of the

Kalman filter;
(iii) very noisy conditions (SNR down to 10);
(iv) small motion.

With the help of simulated motion, we were able to present
this exhaustive set of tests and subsequently the quantitative
results. In addition to these tests on artificially addedmotion,
we also showed the application of themethod in a real setting,
with a healthy subject asked to move on purpose during the
scan.

Both criteria show good results in detecting motion, even
in severe experimental conditions.As expected, STAR ismore
robust to noise (Figure 5(a)) and performs better in detecting
small motion (Figure 5(b)), since it combines natively the
residuals from different voxels.

In addition, GLRT cannot be computed if the number
of acquired signals is lower than the dimension of the
model, which is 15 in the case of 4th order real, symmetric
spherical harmonics.This impacts the ability to detectmotion
occurring at the beginning of an acquisition sequence: they
are detected by STAR, while GLRT cannot be computed (see
Figure 5(d)). In addition, GLRT needs a delay greater than 6
to get similar sensitivity as STAR (Figure 5(c)). STARdoes not
need any delay in the decision.Therefore, STAR is an original
method that is best adapted to the problem of detecting
motion online from a set of diffusion weighted images.

As we have reported in the implementation section, the
reconstruction of the ODF field using Kalman filtering is fast
and compatible with online implementation.

5. Conclusions

In this paper, we have proposed a method for the detection
of motion in diffusion MRI. We have developed a Kalman
filter solution for the estimation of the ODF in constant solid
angle. The detection algorithm STAR is based on the analysis
of the residuals of theKalman filter, yet it is general and can be
directly applied to any linear diffusion model reconstruction.
Compared to other techniques for the prospective detection
and correction of motion [18, 19], our method does not
require any camera or additional device. Once motion is
detected by our technique, a decision could be taken by
the scanner operator, or the protocol in [19] could be used
for motion correction. To the best of our knowledge, our
technique is the only image-based approach that clearly
takes into account the directional information in diffusion
weighted images to detect motion online.

The proposed technique was tested on semi-artificial data
as well as in a real data and shows good results for the online
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Figure 5: TPR: the threshold was chosen so that FPR = 5%. We compare the performance of GLRT and STAR. The dependency on several
experimental conditions is tested: (a) SNR, (b) motion magnitude, (c) delay of the detection, and (d) instant of motion.

· · ·

Figure 6: A real acquisition: the subject was asked to slightly move his head during the acquisition.

detection of motion. Compared to GLRT, which is a classical
solution for the detection of changes in dynamical systems,
STAR combines the residuals at different voxel positions to
compute a statistic, on which the decision is based. STAR
performs better than GLRT in the detection of small motion,
motion in noise, or motion occurring early in the acquisition
protocol. Besides, STAR does not need any delay for the
detection, whichmakes it very efficient in practical situations.
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putation of pdf-based characteristics from diffusion mr signal,”
in Proceedings of the International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI ’08),
pp. 70–78, Springer, Berlin, Heidelberg, 2008.

[5] E. Ozarslan, C. G. Koay, T. M. Shepherd, S. J. Blackband, and P.
J. Basser, “Simple harmonic oscillator based reconstruction and
estimation for three-dimensional q-space mri,” in Proceedings
of the 17th International Society for Magnetic Resonance in
Medicine Scientific (ISMRM ’09), Hawaii, Hawaii, USA, April
2009.
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