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Spatial interplay of tissue hypoxia and T-cell regulation
in ductal carcinoma in situ
Faranak Sobhani 1,2✉, Sathya Muralidhar1,2, Azam Hamidinekoo1,2, Allison H. Hall3, Lorraine M. King4, Jeffrey R. Marks4, Carlo Maley5,
Hugo M. Horlings 6, E. Shelley Hwang4 and Yinyin Yuan1,2✉

Hypoxia promotes aggressive tumor phenotypes and mediates the recruitment of suppressive T cells in invasive breast carcinomas. We
investigated the role of hypoxia in relation to T-cell regulation in ductal carcinoma in situ (DCIS). We designed a deep learning system
tailored for the tissue architecture complexity of DCIS, and compared pure DCIS cases with the synchronous DCIS and invasive
components within invasive ductal carcinoma cases. Single-cell classification was applied in tandem with a new method for DCIS ductal
segmentation in dual-stained CA9 and FOXP3, whole-tumor section digital pathology images. Pure DCIS typically has an intermediate
level of colocalization of FOXP3+ and CA9+ cells, but in invasive carcinoma cases, the FOXP3+ (T-regulatory) cells may have relocated
from the DCIS and into the invasive parts of the tumor, leading to high levels of colocalization in the invasive parts but low levels in the
synchronous DCIS component. This may be due to invasive, hypoxic tumors evolving to recruit T-regulatory cells in order to evade
immune predation. Our data support the notion that hypoxia promotes immune tolerance through recruitment of T-regulatory cells,
and furthermore indicate a spatial pattern of relocalization of T-regulatory cells from DCIS to hypoxic tumor cells. Spatial colocalization
of hypoxic and T-regulatory cells may be a key event and useful marker of DCIS progression.
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INTRODUCTION
Ductal carcinoma in situ (DCIS) of the breast is the most common
mammographically detected breast cancer. This “pre-invasive”
lesion may progress to invasive ductal carcinoma, but does so at a
relatively low frequency (14–53% over 10–15 years)1. Nonetheless,
it is commonly treated with extensive surgery, radiation, and
hormonal therapy even though most of these lesions would never
progress to invasive ductal carcinoma. Thus, there is a pressing
clinical need to stratify the risk of DCIS tumors into those in need
of intervention and those that can be safely monitored without
intervention.
Characterizing the evolvability of DCIS into invasive ductal

carcinoma could address this need, by predicting those that have
a high likelihood of evolving to malignancy versus those that are
likely to remain indolent. A recent study based on evolutionary
genomic models has categorized DCIS evolution to invasive ductal
carcinoma into four models, highlighting its heterogeneity2. Since
genomics is not the sole driver of tumor behavior, phenotypic
characterization of DCIS and its tumor microenvironment, using
markers of hypoxia, immune response, and matrix organization
among others, will help unveil the influences of the ecological
forces driving the evolution of DCIS.
Recent studies highlighted the importance of tumor-infiltrating

lymphocytes in the progression from DCIS to invasive ductal
carcinoma3 and the risk of local and metastatic recurrences. High-
grade DCIS contains a higher percentage of FOXP3+ cells
compared to the non-high-grade DCIS4,5. Consistent with obser-
vation in invasive ductal carcinoma that high numbers of FOXP3+
regulatory T cells (Tregs) relative to CD8+ T cells predicts
decreased progression-free survival and overall survival3,6, an
increase in the numbers of FOXP3+ Tregs or a decrease in CD8/

FOXP3 ratio in DCIS are associated with increased recurrence
risk3,6,7. While these studies underscore the role of FOXP3+ T cells
in the evolution of DCIS, the low frequency of these cells in DCIS
(<10% of all T cells) and their highly variable topological
distribution make quantitative assessment and immune scoring
a challenging task8.
Furthermore, factors promoting Treg cell recruitment in DCIS

remain elusive. Hypoxia, a condition defined as lacking or low in
oxygen, has been shown to be increased in IDC (invasive regions
adjacent to ducts in IDC/DCIS samples) compared with DCIS9. It
has also been shown to modulate the differentiation and function
of T lymphocytes and mediate recruitment of suppressive and
proangiogenic T-cell subsets10. In invasive ductal carcinoma,
hypoxia measured by CA9 positivity has been shown to promote
the recruitment of Tregs defined using FOXP3-positive cells in
both basal and non-basal subtypes11. In DCIS, CA9 was found to
be expressed more frequently in high-grade DCIS associated with
central necrosis, compared with low-grade DCIS and normal
epithelium9. However, very little is known about the interplay
between hypoxia and T-cell regulation in DCIS and how this
influences the progression from DCIS to invasive ductal carcinoma.
With advancing computing techniques, remarkable progress in

machine learning has been made on the objective assessment of
cellular context in digitized histological sections. Histological
samples can provide the spatial context of diverse cell types
coexisting within the microenvironment. Advanced computer-
vision techniques have been developed for spatial mapping of
cells in histological samples. This has enabled the applications of
experimental and analytical tools from ecology to cancer research,
generating system-level knowledge of microenvironmental spatial
heterogeneity.
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To enable spatial mapping of hypoxia and T-cell regulation in
DCIS, we designed an end-to-end deep learning framework for
histology image analysis. We hypothesize, and provide preliminary
data, that Treg recruitment is spatially dependent on the hypoxic
state. Our primary aims were: (1) to develop a fully automated and
versatile pipeline for digital pathology that can accurately classify
cells based on hypoxic status and T-regulatory cell marker in
immunohistochemistry (IHC) samples; (2) to tailor a powerful deep
learning approach for DCIS, thereby dissecting the complex tissue
architecture of DCIS. This enabled us to incorporate information
from single-cell protein expression, identified in Aim 1, with global
DCIS ductal architecture in whole-section tumor sections; (3) to
compare the spatial dependency of T-cell regulation on the
hypoxic microenvironment in pure DCIS cases and DCIS compo-
nents identified concurrently with invasive cells in invasive ductal
carcinoma.

RESULTS
Mapping DCIS intra-tumor heterogeneity of CA9 and FOXP3
expression
To investigate the intra-tumor heterogeneity of tumor hypoxia
and T-cell regulation in breast tumors, 99 whole-tumor sections
stained with dual marker CA9/FOXP3 from cases clinically
classified as pure DCIS (n= 30) or invasive carcinomas with
synchronous DCIS (IDC/DCIS, n= 34) were included in this study
(Table 1). Consistent with the previous publications3,9 and upon
preliminary visual inspection, CA9 expression was rare in normal
epithelium and benign lesions, but was present focally in DCIS for
both pure DCIS and IDC/DCIS samples. High spatial heterogeneity
of CA9 staining in DCIS was evident in some tumors (Fig. 1a).
To analyze cell expression in the context of DCIS ductal

structure, we designed an end-to-end framework for both single-
cell classification and semantic segmentation of DCIS ducts (Fig.
1a–d). For the objective and accurate identification and classifica-
tion of single cells based on their CA9 and FOXP3 expression, we
developed a deep learning approach using convolutional neural
networks (CNNs, Fig. 1a, b), using a total of 35,883 single-cell
annotations (Methods). Two independent cell identification and
three cell classification models were evaluated (Tables 2 and 3,
respectively). For single-cell detection, spatially constrained
convolutional neural network (SCCNN) outperformed
ConCORDe-Net (F1 score= 0.80 for SCCNN and 0.67 for Con-
CORDe-Net, Table 2). For cell classification, SCCNN achieved the
highest test accuracy of 88.6% (accuracy across all cell classes,

visual representation in Fig. 2) compared to Inception_v2 and
Inception_v3 in a testing set of 10 randomly selected sections and
hence was selected as the final model. Confusion matrix of
predicted results versus true class (pathologist’s annotations) for
five cell classes (CA9+/− epithelial, FOXP3+/− lymphocyte, and
stromal cell) are depicted in Table 3. Subsequently, single-cell
detection and classification models were applied to all 99 IHC
images used in this study, generating 22,121,761 single-cell
identities and spatial locations.

Deep learning-enabled automated segmentation of DCIS
ducts
For the detection and segmentation of DCIS ducts in CA9/FOXP3
IHC images, we developed a new model based on generative
adversarial network (GAN), specifically accounting for their
complex tissue architecture and highly variable shapes and sizes.
(Fig. 1c, d). Given the need to capture large ductal regions as well
as the architectural details, we used an extended version of
GANs12 for analyzing high-resolution histology images and
generating semantic label maps corresponding to the target
regions (DCIS ducts in our case). This model enabled us to analyze
images at high resolutions and predict ducts of variable size and
shape (Fig. 3). The network was trained on 18 whole slide images
and the performance of the model was tested on annotations
from eight unseen slides, using a total of 1500 hand-drawn
annotations of individual ducts. To investigate the generalizability
of the model, we performed two separate experiments based on
different training sets and holdout cross-validation sets (we
named them Fold 1 and Fold 2). In each experiment, 18 randomly
selected whole slide images were used to make the training set
and perform model training. The model performance was then
evaluated on the holdout validation set (8 unseen slides) in each
experiment. This model achieved the average Dice score of 0.85
and 0.95 for the segmentation performance in the first and the
second experiments, respectively. The reported average Dice
score is calculated using all the image tiles in the holdout
validation set in each experiment (Table 4). The proposed model
performs well on the cribriform, solid, and comedo categories with
recognizable morphometrics. For example, cribriforms show
patterns of gaps between cancer cells. In solid pattern ducts,
cancer cells completely fill the affected breast ducts and comedo-
type ducts are usually filled by large, markedly cancer cells. The
common characteristic of these three DCIS subtypes is that they
show distinct boundaries which can be detected better compared
to the papillary type ducts. In addition, the limited amount of
training data on papillary ducts due to their lower frequency also
impacted the performance.
The DCIS segmentation model was applied to IDC/DCIS whole-

tumor section IHC images (n= 56), identifying and segmenting on
average 100 DCIS ducts per section. Notably, the automated DCIS
duct segmentation was observed to reliably segment ducts in
DCIS histology types such as cribriform, papillary, solid and
comedo (Fig. 3). This enabled us to automatically differentiate
synchronous DCIS components from IDC components in IDC/DCIS
samples, facilitating spatial analysis for individual components in
the next step.

Validating the single-cell classification by comparison with
pathological scores of CA9 positivity
As an additional validation, we compared pathologist’s scoring of
ductal CA9 positivity (Methods) with abundance of CA9+ cells
predicted by deep learning. To this effect, whole-tumor sections
with low abundance of deep learning-predicted CA9+ epithelial
cells (0–1%, n= 80) belonged predominantly (n= 74, 92%) to the
Pathologist_Score_Negative (samples graded by pathologist as
negative for epithelial CA9 expression) with few samples (n= 6,
8%) belonging to Pathologist_Score_positive (samples with

Table 1. Demographics of patients in the dataset comprising pure
DCIS and IDC/DCIS samples.

Pure DCIS (n= 30) IDC/DCIS (n= 34)

Age (median, years) 61.87 56.29

Grade

1 1 7

2 12 12

3 17 15

ER status

Neg 5 11

Pos 21 23

NP 4 0

PR status

Neg 6 14

Pos 20 20

NP 4 0
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varying degree of CA9 positivity). The proportion of samples with
a higher abundance of deep learning-predicted CA9+ epithelial
cells (1–5% and >5%), did not vary between the two pathologist
score groups (Table 5). Factors contributing to the discrepancy
between deep learning and pathological scoring include cell

misclassification by deep learning, the lack of ability of deep
learning to adapt to some of the artifacts presented in the slides,
such as air bubbles, folds, blurring, etc. In addition, discrepancies
when comparing a slide-level assessment with a single-cell-level
automated quantification could be due to weak cytoplasmic CA9

Fig. 1 Studying intra-tumor heterogeneity of hypoxia in DCIS using deep learning and digital pathology. a An illustrative example of a
DCIS tumor with high spatial intra-tumor heterogeneity of hypoxia. Shown are images of IHC dual staining with CA9 and FOXP3, cells were
classified into five types based on their expression of CA9 and FOXP3 and morphological features. b The deep learning pipeline using
convolutional neural networks (CNNs) for single-cell analysis. c Generative adversarial networks (GANs) for semantic segmentation of
individual DCIS ducts. d An example of DICS tumor where individual DCIS ducts have been segmented using GANs. Two high-resolution
examples show ground truth obtained from annotations by pathologists and output from GANs. Scale bar represents 100 µm.
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expression in a subset of samples. This could explain some of the
false-positive deep learning predictions in samples graded
negative for CA9 expression by pathologists.

Spatial colocalization of CA9 and FOXP3-positive cells in pure
DCIS and IDC/DCIS samples
To quantify and compare hypoxia and Treg cell spatial colocaliza-
tion in the microenvironments of pure DCIS (n= 44 IHC images)
and IDC/DCIS (n= 56) samples, the Morisita–Horn index, an
ecological measure of community structure to quantify the extent
of spatial colocalization or overlap between two spatial variables13

was used. Morisita indices range from 0 to 1, with 0 indicating
spatial segregation and 1 indicating maximal colocalization
between two spatial variables. For pure DCIS samples, a single
value of Morisita colocalization per whole-tumor section was
computed. For IDC/DCIS samples, Morisita colocalization for
synchronous DCIS (ductal regions in IDC/DCIS samples) and IDC
(invasive regions adjacent to ducts in IDCIS samples) were
computed per component (Methods).
Colocalization between FOXP3+ and FOXP3– lymphocytes with

CA9+ and CA9– epithelial cells was compared across the
aforementioned sample groups (Table 6 and Fig. 4b). Among
the pairwise comparisons (tested using pairwise Wilcoxon rank-
sum tests), IDC regions had significantly higher FOXP3+ and
CA9+ colocalization, compared to synchronous DCIS regions
(p= 0.0004) and pure DCIS samples (p= 0.0007) (Table 6).
Similarly, and consistent with previous reports5,14, we report
significantly higher FOXP3+ lymphocytes abundance (number of
FOXP3+ lymphocytes/total number of lymphocytes) in IDC than in
synchronous DCIS regions of the IDC/DCIS samples (p= 3.8e–6),
indicating a preferential localization of FOXP3+ lymphocytes to
the invasive components in IDC/DCIS (Fig. 4c). To ensure that
cellular abundance and clinical covariates do not confound
colocalization, we report that the difference in FOXP3+ CA9+
colocalization between IDC regions and pure DCIS samples is
independent of abundance of FOXP3+ lymphocytes and CA9+
epithelial cells (which does not vary significantly between these
groups: p= 0.44 and p= 0.48 respectively, Fig. 4c), ER status ER
status (multivariate p value adjusted for ER status= 0.004) and
grade (multivariate p value adjusted for DCIS grade= 0.01).
Consistent with this observation, there was no significant
difference between CA9%, FOXP3%, or FOXP3-CA9 colocalization
between ER– and ER+ subsets (Supplementary Fig. 1).
We explored the differential ductal microenvironments

between pure DCIS and synchronous DCIS regions, i.e., ducts
adjacent to invasive cancer cells. To this effect, pure DCIS samples
had significantly higher FOXP3+ CA9+ colocalization (p= 0.0007,
Fig. 4a) as well as abundance of CA9+ (p= 2.3e–9) and FOXP3+
cells (p= 4.4e–6, Fig. 4c), compared to synchronous DCIS regions.
The difference in this spatial pattern between pure DCIS and
synchronous DCIS remained significant after adjusting for FOXP3+
lymphocyte (adjusted p= 0.0005) and CA9+ epithelial cell

abundance (adjusted p= 0.0012). Within the ER+ subsets of
these groups, the differences between groups remained signifi-
cant (Supplementary Fig. 2). In comparison, there was no
significant difference in colocalization of FOXP3– lymphocytes
with CA9+ epithelial cells between the three groups (Table 6).
Taken together, we report that the spatial microenvironmental

phenotype of IDC regions differs from pure DCIS samples, with
increased colocalization of FOXP3+ lymphocytes and CA9+
epithelial cells in IDC regions, independent of cellular abundance
and ER status. Notably, our study revealed that the ductal
microenvironment of pure DCIS and synchronous DCIS vary, with
significant differences in spatial organization of hypoxic CA9+
epithelial cells and FOXP3+ lymphocytes.

DISCUSSION
This study provides evidence that Treg recruitment is spatially
dependent on the hypoxic microenvironment in DCIS. Hypoxia is
thought to promote the recruitment of T-regulatory cells for
increased immune tolerance and immune evasion10,11, but there is
a lack of data on this in DCIS. Our analysis integrating deep
learning, computational pathology, and spatial statistics on a
customized IHC panel revealed a spatial pattern of preferential
colocalization between FOXP3+ lymphocytes and CA9+ epithelial
cells in DCIS. Compared with pure DCIS samples, the degree of
CA9+ epithelial cell and FOXP3+ lymphocyte colocalization was
significantly higher in the invasive compartment of invasive breast
cancer (IDC), but significantly lower in the synchronous DCIS
compartment. These differences were independent of the
abundance of these cell types. Therefore, our study reiterates
differential microenvironments between pure DCIS and IDC
compartments14–17. However, we also present evidence that the
ductal microenvironment of pure DCIS and synchronous DCIS
vary, with significant differences in spatial organization of hypoxic
CA9+ epithelial cells and FOXP3+ lymphocytes14–17. Based on
these data, our proposed model is that hypoxic epithelial cells
promoting Tregs recruitment are selected during DCIS progres-
sion, resulting in stronger, preferential colocalization of these cells
within the invasive compartment (Fig. 4d).
This study adds crucial data to the increasing body of evidence

that adaptation to hypoxia as a result of evolutionary selection is
key to transition from in situ to invasive cancer9,18,19. In addition, it
suggests that the inflammatory program that hypoxia promotes
through the recruitment of Tregs in DCIS are spatially focal events.
We speculate that these focal events may influence the invasive
potential of individual DCIS ducts and potentiate the invasion of
the basement membrane. We are currently testing this hypothesis
comparing cohorts of patients with invasive breast cancer

Table 2. Performance evaluation of deep learning methods for single-
cell detection.

Methods TP FP FN Precision Recall F1 score

CONCORD 2582 969 173 0.73 0.62 0.67

SCCNN 3591 1200 564 0.74 0.86 0.80

TP number of true positives, FP numbers of false positive, FN number of
false negative, Precision percentage of the results that are relevant TP

TPþFP,
Recall percentage of total relevant results correctly classified by the
algorithms TP

TPþFN, F1 score harmonic mean of precision and recall 2 ´ P ´ R
PþR.

Table 3. Confusion matrix of the prediction results along with the row
and column summaries displaying the percentages of correctly and
incorrectly classified observations for each true/predicted class.

True class CA9– 685 28 38 2

CA9+ 2 52 225 6 42

FOXP3+ 12 14 3646 88

FOXP3– 1 1 14 1195 188

Stroma 4 2 482 102 2709

Predicted 97.3% 75.4% 83.0% 89.1% 89.4%

2.7% 24.% 17.0% 10.9% 10.6%

CA9– CA9+ FOXP3– FOXP3+ Stroma
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recurrence after a diagnosis of pure DCIS, to patients with pure
DCIS who have not had a diagnosis of invasive breast cancer.
Other limitations include the lack of data on other immune cell

subsets such as myeloid cells, B lymphocytes, and NK cells, which
could add further insights to the immune landscape of DCIS; the
limitation on sample size, which prevented further analysis with
respect to HR status. Studies on more immune subsets, biological
processes, and conditions including hypoxia that may drive the
evolution of DCIS to invasive cancers are also ongoing in our
laboratories.
Nevertheless, our study defined a new hypoxic and immuno-

suppressive phenotype, which is the increased spatial colocaliza-
tion pattern of hypoxic and Tregs identified using machine
learning, which differs not only between IDC and synchronous
DCIS regions but also pure DCIS samples. With additional
validation studies, this new phenotype may be a useful biomarker
to predict DCIS progression, and further guide patient selection for
new therapeutic approaches to target hypoxia20.
Our study was enabled by a new deep learning system design.

Deep learning-based methodologies have facilitated a variety of

applications in pathology, but the results are often limited to low-
resolution images and small images such as tissue microarrays.
Precision segmentation of DCIS ducts with highly variable shapes
and sizes was not possible in these images. In this work, we
generated high-resolution results using a deep learning approach
with robust adversarial loss and multi-scale architectures for the
generator and the discriminator. This method generates unique
results given the same inputs leading to robust and reproducible
results. Recently, a U-Net-based deep learning method for the
automated detection and simultaneous segmentation of DCIS
ducts in H&E samples has been published by our group21.
Interestingly, we found that this pipeline did not transfer well to
the IHC domain, potentially due to the confounding color contrast
in staining and less definitive features of DCIS, but in a way
resonating similar experience for pathologists. Our proposed
pipeline specifically designed for IHC based on generative
adversarial models can capture architectural details of DCIS amidst
color variations in high resolution. Besides facilitating detailed
microenvironmental studies of these ducts, it paves the way for

Fig. 2 Single-cell classification for CA9/FOXP3-stained immunohistochemistry samples of breast tumors. a Examples of five cell classes.
b Examples of cell annotations by pathologists, collected with white boxes as shown, alongside deep learning output. c High-resolution
images showing FOXP3– and FOXP3+ lymphocyte examples.
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new studies of ductal morphology, adding a new dimension to
genotype–phenotype analysis.
In summary, this study highlights the importance of immune

spatial heterogeneity in hypoxic tumor microenvironments. It
warrants further investigation into detailed molecular activities

modulating this phenotype, such as the secretion of chemokine
such as CCL28 that induces T-regulatory cell recruitment22.

MATERIALS AND METHODS
Patient cohort
The dataset consists of patient samples composed of pure DCIS disease
(“pure DCIS” henceforth) or IDC/DCIS cases containing synchronous DCIS
and invasive components (IDC). A total of 99 whole-tumor sections were
obtained from formalin-fixed paraffin-embedded blocks from 64 patients.
Patient demographics and baseline characteristics of the dataset are
summarized in Table 1. Tissue sections of samples with pure DCIS (n= 43:
17 sections with 1 section and 13 sections with 2 sections per patient) and
IDC/DCIS samples (n= 56: 12 sections with 1 section and 22 sections with

Fig. 3 Examples of DCIS duct segmentation in CA9/FOXP3-stained immunohistochemistry samples of breast tumors. a Deep learning
output according to DCIS histology types. b An example of pure DCIS samples, with high-resolution images showing a comparison between
pathologists’ DCIS duct annotation (red) and deep learning DCIS duct segmentation (blue).

Table 4. Evaluation metrics calculated for the DCIS segmentation.

Dice score Precision Recall Sensitivity Specificity

Fold 1 0.85 0.89 0.84 0.84 0.98

Fold 2 0.95 0.95 0.94 0.94 0.99

F. Sobhani et al.
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2 sections per patient) were stained and digitized (automated Aperio
scanner; resolution= 0.5 µm/pixel; magnification= ×20).
The study was approved by the institutional review board of Duke with a

waiver of the requirement to obtain informed consent. ER and PR status
were obtained from IHC assay performed at the time of diagnosis (Dako ER
pharmDx kit and Dako Link autostainer). Grade of pure DCIS (Table 1,
column 2) and IDC/DCIS samples (Table 1, column 3) was based on
pathology grading of the whole slide and of the invasive compartment of
the IDC/DCIS samples23, respectively.

Immunohistochemistry
All 99 whole-tumor sections used in this study were dual-stained for CA9
and FOXP3. Formalin-fixed paraffin-embedded tissues were dewaxed and
5 µm sections cut. Antigen retrieval was performed by steaming in a 1X
Citrate buffer (Sigma C9999). Dual staining was performed using the
ImmPRESS Duet Double Staining Polymer kit (HRP Anti-Mouse IgG/AP Anti-
Rabbit IgG, Vector labs, MP-7724) as per the manufacturer’s instructions.
Sections were stained for cytoplasmic CA9 expression (ImmPACT Vector
Red, magenta; primary antibody: rabbit anti-CA9, Novusbio #NB100-417)
and nuclear FOXP3 expression (ImmPACT DAB, brown; primary antibody:
mouse anti-FOXP3, ABCAM #ab20034), followed by hematoxylin
counterstain.

Pathologist’s score of CA9 positivity in DCIS cells
We used a pathologist-generated score (A.H.H.) of CA9 positivity in DCIS
cells as a metric to validate the abundance of CA9+ epithelial cells
predicted by our deep learning pipeline. The pathologist’s scoring was
performed independently, blinded to the deep learning prediction of CA9
+ epithelial cells. The pathologist’s score was based on the intensity of
CA9 staining of DCIS cells, with 4 categories ranging from 0 (CA9 Negative,
no stain) to 3 (High CA9 staining intensity). The percentage of cells (across
a slide) pertaining to each category was scored. For ease of comparison
with our deep learning pipeline (which predicts CA9+/− and does not
factor intensity), we categorized the pathologist’s score into the following
groups:

● Pathologist_Score_Negative: samples in which 100% of DCIS epithelial
cells were graded negative for CA9 expression (category 0).

● Pathologist_Score_Positive: samples with varying degrees of CA9
positivity in DCIS epithelial cells (0% in category 0 but >1% in
categories 1–3).

Deep learning pipelines for DCIS IHC histology
The deep learning framework used to analyze pure DCIS and IDC/DCIS
samples in this study consists of four parts.

Tissue segmentation
Fully automated tissue segmentation was performed to remove back-
ground and reduce noise and artifacts, allowing for computational
efficiency and reduced processing time in subsequent image analysis
steps. Tissue segmentation was performed using a pre-trained Micro-Net-
51224,25. Each whole slide image was reduced to ×1.25 resolution, which
was subsequently visualized at multiple resolutions in Micro-Net-512
architecture to capture context information and maintain salient features.

Single-cell identification
A deep learning model was used to identify all individual cells within a
given IHC tissue section. The main objective of this step was to detect all
nuclei in a whole slide image by locating nuclei center positions, regardless
of their class labels. Briefly, an SCCNN25,26 was trained to predict the
probability of a pixel being the center of a nucleus. The single-cell
detection model was trained in a supervised manner based on pathologist-
derived single-cell annotations. To this effect, 26,345 single-cell annota-
tions from 10 whole slide images (double stained for CA9 and FOXP3) were
collected from a pathologist (H.M.H). Two network architectures, SCCNN26

and ConCORDe-Net27, were tested and the architecture that produced
single-cell detection with the highest accuracy was adapted.

Single-cell classification
A deep learning model was used to classify single cells (detected in the
previous step) into one of five classes: Stroma, FOXP3+ lymphocyte, FOXP3–
lymphocyte, CA9+ epithelial cells, and CA9– epithelial cells. Softmax SCNN26

network was used to train the single-cell classification model. Briefly, nuclear
morphology features such as shape, size, color, and texture were considered
as the main parameters for the model to distinguish between different cell
classes. The single-cell classification model was trained in a supervised
manner based on pathologist-derived (H.M.H) annotations performed on 12
whole slide images. A total of 35,883 single-cell annotations (2580 stromal
cells, 1462 FOXP3+ lymphocytes, 15,413 FOXP– lymphocyte, 4229 CA9+
epithelial cells and 12,199 CA9– epithelial cells) were used for model
training. Three network architectures: SCCNN, Inception_v2, and Incep-
tion_v3 were tested and the architecture that produced single-cell
classification with the highest accuracy was adapted.
Whole slide images were split into tiles of size 2000 × 2000 pixels (with

pixel size of 0.5 µm/pixel). Quality control of annotations was performed at
the tile level and expert consensus was obtained before using the respective
tiles for training. Performance of deep learning models for single-cell
detection and classification was evaluated in independent samples (not
used for training) by comparison with ground truth, i.e., pathologist’s
annotations. In the case of the single-cell classification model, a five-fold
cross-validation was performed to account for class imbalance and sampling
effects. Annotations from ten whole-section tumor images (26,345 cells)
were randomly divided into five equal groups. Class imbalance was taken
into account while creating these five groups. For each cross-validation, four
groups were chosen for training and one group for testing. From the four
groups of training data, 20% (5269 cells) of the annotations was randomly
picked for validation purpose. Therefore, we trained and tested each
classifier five times separately on each of these groups. Three single-cell
classification networks were trained on the created training data and their

Table 5. Comparing the pathological scores of CA9 in DCIS cells with
deep learning.

CA9+ abundance (%) (deep learning
predicted)

Pathologist_
Score_Positive

Pathologist_
Score_Negative

0–1%
(n= 80)

n= 6 (8%) n= 74 (92%)

1–5%
(n= 11)

n= 5 (45%) n= 6 (55%)

>5% (n= 3) n= 2 (66%) n= 1 (33%)

Table 6. Comparison of colocalization between FOXP3+/− lymphocytes with CA9+/− epithelial cells across IDC, synchronous DCIS, or pure DCIS
sample groups.

Colocalization between IDC vs synchronous DCIS IDC vs pure DCIS Synchronous DCIS vs pure DCIS

Pairwise comparisons using Wilcoxon rank-sum test (adjustment method: Holm)

FOXP3+ and CA9+ 0.0004 0.0007 0.0007

FOXP3– and CA9+ 0.15 0.60 0.15

FOXP3+ and CA9– 0.04 0.74 0.05

FOXP3– and CA9– 0.04 0.45 0.04

P values are reported from Wilcoxon rank-sum test, adjustment method: Holm.
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performances on the testing set were compared. Based on our results, the
SCCNN obtained the average accuracy of 89%, the Inception_v3 obtained
the average accuracy of 86% and the Inception_v2 obtained the average
accuracy of 82%. The SCCNN (see Fig. 2) achieved the highest, 89% accuracy
for cell classification in the validation set.

DCIS duct detection and segmentation
We describe a deep learning model for the simultaneous detection and
segmentation of DCIS ducts from IHC images. An improved GANs
architecture12 was used to train a deep learning model capable of
delineating DCIS duct regions from surrounding tissue.
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DCIS duct segmentation using GANs
We propose an improved GAN incorporating a coarse-to-fine generator
and multi-scale discriminator architectures suitable for conditional image
generation at a much higher resolution. This method is based on
conditional GANs that use a robust adversarial learning objective together
with new multi-scale generator and discriminator architectures. Using this
network, the goal is to translate an input histology image from IHC domain
to the binary domain given input-output (histology-mask) image pairs
used as training data. This model is composed of two main parts: (i) the
generator and (ii) the discriminator. The objective of the generator (G) is to
generate semantic label maps (in binary) from histology images (in RGB),
while the discriminator (D) learns to distinguish ground truth (GT) images
from the created masks (semantic label maps). This framework operates in
a supervised setting and the training dataset is prepared as sets of pairs of
corresponding images {x_i,y_i}, where x_i is a histology image and y_i is the
corresponding ground truth label map, annotated by expert pathologists.
The overall aim of the network is to model the distribution of the semantic
label maps via Eq. (1), given the input histology tiles.

MinG MaxD1;D2;D3
Xk¼3

k¼1

E x;yð Þ logDk x; yð Þ½ � þ Ex log 1� Dk x;GðxÞðð Þ½ �� �
 !

(1)

In Eq. (1), G denotes the generator that contains two sub-networks: (i) G1
or global generator with the aim of generating the initial prediction
(semantic map) and (ii) G2 or local generator with the aim of enhancing
the quality of the output from G1 and generating the output image with a
higher resolution (i.e., ×2). Primarily, a histology image of resolution
[1024 × 1024 × 3] is passed through the sequential components of the
global generator to output a binary image of resolution [1024 × 1024].
Subsequently, the output of the convolutional front-end of the local
generator plus the last feature map of the global generator are fed to the
residual block of the local generator, effectively integrating the global
information captured by G1. In Eq. (1), D denotes the discriminator part
that employs multiple discriminators with identical network structures that
operate at different scales of an image pyramid. These discriminators are
trained to differentiate the GT and predicted masks at different scales,
which encourages coarse to fine learning of the generator. We have used
three discriminators (k= 3) as suggested by12, all of which have identical
architectures but operate at different scales (coarse to fine). This specific
architecture combination helps the generator to learn a better and
consistent global view of the image to generate while improving the
details of the generated image.
The model was trained on hand-drawn annotations of more than 3600

individual ducts (H.M.H.) pertaining to 18 whole slide images. The
performance of the model was evaluated on 1500 hand-drawn individual
ducts annotations of (H.M.H.) pertaining to an independent set of 8 whole
slide images, i.e., images not used for model training. Segmentation
efficiency was evaluated using the Dice score, which estimates the degree
of overlap between the ground truth (human-defined duct boundaries)
and model prediction of duct boundaries28,29.

Applying trained deep learning models on whole slide IHC
samples
The deep learning framework described above was applied to the pure
DCIS and IDC/DCIS tissue sections used in this study. However, DCIS
segmentation was not applied to pure DCIS samples, since these samples
effectively contain only duct regions. The final outcome of the deep
learning pipeline was the spatial quantification of five cell classes (stroma,
FOXP3+ lymphocyte, FOXP3– lymphocyte, CA9+ epithelial cells, and CA9–

epithelial cells) in pure DCIS samples, synchronous DCIS (ducts within IDC/
DCIS samples), and IDC.

Quantifying cellular abundance and colocalization in pure
DCIS and IDC/DCIS samples
The deep learning-predicted cell classes and their location were used to
compute the abundance of cell types and the degree of colocalization
between pairs of cell types, in pure DCIS and IDC/DCIS samples.
Cellular abundance: FOXP3+ and CA9+ abundance was computed as

follows and compared across groups

FOXP3þ lymphocyte aboundance ¼ number of FOXP3þ lymphocytes
total number of lymphocytes

(2)

CA9þ epithelial aboundance ¼ number of CA9þ lymphocytes
total number of epithelial cells

(3)

Cellular colocalization: the Morisita–Horn Index30 was used to quantify
colocalization of FOXP3+, FOXP3– lymphocytes with CA9+ and CA9–
epithelial cells. Briefly, The Morisita–Horn Index computes the statistical
significance in spatial co-occurrence of a pair of cell types within a spatial
region defined by Voronoi tessellation. The number of seeds needed to
perform Voronoi tessellation (prior to computing colocalization) was set as
the cube root of all cells within the region of interest.
For the pure DCIS samples which are composed exclusively of DCIS duct

regions, cellular abundance and colocalization were computed across
whole slide images. This produced a single abundance and colocalization
index (per pair of cell types), per whole-tumor section.
IDC/DCIS samples are composed of DCIS ducts (segmented by deep

learning DCIS segmentation) as well as invasive components. Given our
interest in analyzing each component individually, we adapted the following
approach: the entire tissue area was divided into non-overlapping Voronoi
polygons which were classified into three types (Fig. 4a): (1) synchronous
DCIS polygons composed of only DCIS ducts, (2) IDC polygons composed
predominantly of invasive cancer cells and (3) mixed polygons composed of
both ducts and invasive regions, denoting the interface between DCIS and
invasive regions. Note: synchronous DCIS were named as such to distinguish
them from pure DCIS regions in subsequent comparative analyses. Cellular
abundance and colocalization were computed separately for synchronous
DCIS and IDC regions, producing two distinct abundance/colocalization
indices per whole section of tumor images. The discrepancy in the number
of synchronous DCIS regions (n= 27, rather than 56 to match the IDC
regions) is due to a proportion of IDC/DCIS samples (n= 29) that did not
contain sufficient synchronous DCIS regions for spatial analysis. These
samples were not used for comparisons described above, since they
produce a null synchronous DCIS colocalization index (owing to the lack of
synchronous DCIS regions).

Statistical tests
Statistical significance of variable colocalization between pairs of cell types
(CA9+/−, FOXP3+/−) across any two groups (IDC vs synchronous DCIS, IDC
vs pure DCIS, and synchronous DCIS vs pure DCIS) was performed using
Wilcoxon rank-sum test (multiple test adjustment method: Holm). Multivariate
regression tests were used as tests of independence to account for covariates
such as cellular abundance, ER status, where relevant.

Fig. 4 Applying Morisita index to measuring spatial colocalization of cells in DCIS. a Voronoi tessellation of tumor region in representative
pure DCIS samples (left pane) and IDC/DCIS samples (representative image-right pane), denoting normal DCIS ducts (blue polygons), IDC
component (green polygons), and synchronous DCIS (red polygons). Gray polygons (in both DCIS and IDC/DCIS samples) represent other cell
types (fibroblasts, normal epithelium, adipose tissue, and artifacts) excluded for analysis. Yellow-shaded regions represent ducts segmented
by automated duct segmentation b Boxplots comparing colocalization between FOXP3+ and FOXP3– lymphocytes with CA9+ epithelial cells
in pure DCIS samples (n= 44), IDC (n= 56), and synchronous DCIS (n= 27) regions. c Boxplots comparing abundance of FOXP3+
lymphocytes, CA9+ epithelial cells in pure DCIS samples (n= 44), IDC (n= 56), and synchronous DCIS (n= 27) regions. FOXP3+/− lymphocyte
abundance = number of FOXP3+/− lymphocytes/total number of lymphocytes. CA9+/− epithelial cell abundance = number of CA9+/−
epithelial cells/total number of epithelial cells. d Proposed model for hypoxic epithelial cells promoting Tregs recruitment selected during
DCIS progression. ***p < 0.001. P values from pairwise Wilcoxon rank-sum test, adjusted using Holm method for multiple testing.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All training data, including the fully anonymized raw image tiles and pathological
annotations, and binary marks, are available in the corresponding author’s https://
github.com/sobhani/DCIS-CA9. Requests for data access for the Duke samples can be
submitted to E.S.H. (shelley.hwang@duke.edu) and Y.Y. (yinyin.yuan@icr.ac.uk). Data
underlying Fig. 4b, c are in the R package in the same GitHub repository https://
github.com/sobhani/DCIS-CA9.

CODE AVAILABILITY
The deep learning pipeline for digital pathology image analysis is available in the
GitHub repository https://github.com/sobhani/DCIS-CA9 for reproducibility. All codes
used for statistical analyses of image data were developed in R (v.3.5.1) and are
available at https://github.com/sobhani/DCIS-CA9.
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