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Abstract

Africa is the second most populous continent and has perennial health challenges. Of the

estimated 181 million school aged children in sub-Saharan Africa (SSA), nearly half suffer

from ascariasis, trichuriasis, or a combination of these infections. Coupled with these is the

problem of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection, which

is a leading cause of death in the region. Compared to the effect of the human immunodefi-

ciency virus on the development of TB, the effect of chronic helminth infections is a

neglected area of research, yet helminth infections are as ubiquitous as they are varied and

may potentially have profound effects upon host immunity, particularly as it relates to TB

infection, diagnosis, and vaccination. Protection against active TB is known to require a

clearly delineated T-helper type 1 (Th1) response, while helminths induce a strong opposing

Th2 and immune-regulatory host response. This Review highlights the potential challenges

of helminth–TB co-infection in Africa and the need for further research.

Introduction

Africa, with approximately one billion residents, is the second most populous continent and

accounts for about 15% of the world’s population [1]. As a result of factors beyond the scope of

this Review, the continent carries a disproportionate burden of infectious diseases, such as

human immunodeficiency virus (HIV), malaria, and tuberculosis (TB) [2]. TB is the leading

cause of mortality in sub-Saharan Africa (SSA), with 29% of the 9 million TB cases occurring

there in 2013 and 254,000 TB-related deaths [3]. Helminth infections are also highly prevalent

with the soil-transmitted helminth (STH) infections, which account for about 85% of the

neglected tropical diseases (NTDs) affecting sub-Saharan Africans [4]. Helminth infections are
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chronic diseases and typically cause asymptomatic infection or prolonged morbidity rather

than mortality [5].

Co-endemicity of helminths and other infections in SSA has consequences for public health

and affected hosts. Much is already known about the bidirectional interaction of Mtb and

HIV; however, there is relatively sparse understanding of the interaction between Mtb and hel-

minth infections—the subject of this Review in the context of Africa—and existing data on the

potential immunologic consequences, including those that may affect TB vaccination and

diagnosis. This Review supports the need for studies to clarify the impact of helminth co-infec-

tion on TB control and how any negative impact might be mitigated, as highlighted by the

World Health Organization (WHO) in 2012 in its published top-ten list of research priorities

for helminth infections [6].

Methods

A systematic search was conducted using Google Scholar, Pubmed, CAB Direct, and African

Journals Online (AJOL), using the following search words and phrases: helmint�, tubercul�,

helmint� and tubercul�, helminth and tuberculosis infection Africa, helminth and tuberculosis

diagnos�, and helminth and tuberculosis vaccin�. The review included studies involving hel-

minth, TB, and helminth–TB infection, diagnosis, and vaccination in humans and animals.

The burden of helminth infection in Africa

Helminths are multicellular worms that belong to three taxonomic groups: cestode (tape-

worms), nematode (roundworms), and trematode (flukes). They present a striking variety of

life cycles, from direct fecal–oral transmission (ingestion of worm eggs, e.g., of the round-

worms Ascaris lumbricoides and Trichuris trichiura) to development through free-living stages

(larval penetration of the skin, e.g., from Ancylostoma duodenale hookworm) or dependence

on invertebrate vectors (such as the schistosome snail vector). Helminths may also infect via

insect bite, for example, from the filarial worms Onchocerca (blackfly) and Brugia species

(mosquito). In SSA, the most common helminth infections are hookworms, followed by schis-

tosomes, ascarids, Trichuris whipworms, and lymphatic filariasis (Brugia) (Table 1) [7–10].

In the vast majority of developing tropical and subtropical regions of the world, helminth

infections, especially those caused by STHs and schistosomes, constitute major public health

challenges, particularly among school aged children who may be nutritionally or physically

impaired as a result [10–12]. Current WHO estimates indicate that about 1.5 billion individu-

als are infected with STH infections globally (https://www.who.int/news-room/fact-sheets/

detail/soil-transmitted-helminth-infections), with more than one-half of SSA’s population

affected by one or more helminth infections [12,13] Of the estimated 181 million school-aged

children in SSA, almost one-half (89 million) are infected with hookworm, ascariasis, trichur-

iasis, or some combination of these STH infections, which may vary according to factors such

as geographical location and socioeconomic status within a given country and even the type of

school attended [4, 10–14]. The disability-adjusted life years (DALYs) lost due to these hel-

minth infections provide a more accurate picture of the disease burden, although the estimates

of DALYs lost differ greatly from one source to another (Table 1) [15].

The conventional control programs for helminths are based on mass treatment, as recom-

mended by WHO (2017 Guideline: Preventative Chemotherapy to Control STH Infections in

At-Risk Population Groups). Regular treatments with broad-spectrum antihelminth drugs

(such as the benzimidazoles, mebendazole, or albendazole) are effective at reducing morbidity

from STH infections and are well-tolerated, while ivermectin has been employed in areas

endemic for filarial diseases. In the case of ivermectin treatment of filariasis in Africa, while
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progress is being made (e.g., a recent report from Sierra Leone described reductions in Oncho-
cerca worm burden [16]), in other countries and areas issues such as poor medicine distribu-

tion (e.g., one study in Nigeria [17]) and treatment side effects (e.g, increased epilepsy cases in

Tanzania [18]) also need to be addressed if elimination of these debilitating parasites is to be

achieved. Even so, a meta-analysis of helminth re-infection studies has shown that prevalence

can be quick to re-establish—in this case Ascaris, Trichuris, and hookworms re-established

over the ensuing 12 months to 94%, 82%, and 57% of pretreatment levels, respectively [19].

According to the opinion of some experts, treatment of infected individuals, even on a mass

scale of drug administration, is not itself sufficient to resolve issues that are fueled by poverty,

lack of sanitation, adequate hygiene, and education [20]. Access to a clean water supply to

wash fruit and vegetables, identified as an important risk factor particularly in rural areas of

Africa [21], could reduce the DALYs lost via such food-borne infection routes [22], supporting

the critical role of access to clean water supplies, environmental sanitation, and also education

as important to break transmission routes while other potential control measures, such as the

use of vaccines are theoretically attractive but remain elusive.

TB in Africa

TB is a chronic debilitating and wasting disease resulting from infection with Mtb and remains

among the leading causes of death from an infectious agent globally. About 5% to 10% of

infected humans develop active TB within one year of infection (primary TB). The remainder

are classified as individuals with latent TB infection (LTBI). About 5% to 10% of latently

infected individuals develop clinical TB during their lifetime via reactivation. Others develop

active TB after re-infection with Mtb because LTBI does not provide full immunity against

repeated infection [23–24]. Whether or when a latently infected person will develop active TB

is summed up by Comstock and colleagues [25]: “Following infection, the incubation period

of TB ranges from a few weeks to a lifetime. Both the length and variability of the incubation

period are tremendously greater than for nearly all other infectious diseases,” making TB a dis-

ease of significant public health importance.

Since the 1990s, TB incidence rates in different parts of the world have developed quite

divergently. TB is a major cause of ill health and death, mainly in Africa and Asia where factors

like poverty, malnutrition, overcrowding, HIV, poor living conditions, and, of recent, develop-

ment and spread of multidrug resistant TB are fueling the epidemic. In 2016, the estimated

Table 1. Disease Burden (DALYs) in SSA Resulting from the NTDs.

Disease Estimated Global Disease Burden in DALYs Estimated %

Disease Burden

in SSA

Estimated SSA

Disease Burden

in DALYs

References

Hookworm 1.5–22.1 million 34% 0.5–7.5 million [9 – 11]

Schistosomiasis 1.7–4.5 million 93% 1.6–4.2 million [8, 10, 12]

Ascariasis 1.8–10.5 million 21% 0.4–2.2 million [9 – 11]

Lymphatic filariasis 5.8 million 35% 2.0 million [8]

Trichuriasis 1.8–6.4 million 27% 0.5–1.7 million [9 –11]

Onchocerciasis 0.5 million 99% 0.5 million [8]

Total NTDs More than 49.8 million 15%–37% 5.5 million–16.1 million [10]

DALY estimates for STH infections and schistosomiasis were obtained by adjusting a wide range of available global estimates according to the percentage of the total

number of cases that occur in SSA, while for the other NTDs the disease burdens were quoted directly from WHO estimates. DALY is a WHO measure of overall

disease burden expressed as the number of years lost due to ill-health, disability, or early death. Adapted from Hotez and Kamath, 2009 [7]. DALY, disability-adjusted

life year; NTD, neglected tropical disease; SSA, sub-Saharan Africa; STH, soil-transmitted helminth; WHO, World Health Organization

https://doi.org/10.1371/journal.pntd.0008069.t001
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global TB incidence rate was 140 cases per 100,000 persons, which equates to 10.4 million

(range of 8.8 to 12.2 million) incident TB cases. Most of the estimated incident TB cases in

2016 were in Southeast Asia (45%) and Africa (25%), with smaller proportions of cases in the

Eastern Mediterranean region (7%), Europe (3%), and the Americas (3%) [26]. Whereas in

most parts of the world TB incidence rates remained stable or have declined slightly, in Africa,

the incidence rates have increased by almost 30%. This increase was most pronounced in the

southern half of the continent, especially South Africa, where the incidence nearly quadrupled

to approximately 1,000 cases per 100,000 persons.

Bacille Calmette Guerin (BCG), an attenuated strain of Mycobacterium bovis, was first used

to vaccinate humans against TB in 1921. This vaccine is estimated to provide about 73% pro-

tection against fatal forms of childhood TB but shows inconsistent efficacy (with a protection

that varies from 0% to 80%) against development and transmission of adult TB [27]. This, cou-

pled with the rising TB epidemic worldwide, compelled WHO to declare TB a global emer-

gency in 1993 [28]. Progress in controlling TB has been slow, and epidemiological models

have suggested that global TB elimination targets can only be achieved with a combination of

effective TB vaccination, diagnosis, and treatment strategies [29–30]. However, we suggest that

included within this strategy must be consideration for those ubiquitous helminth species that

have co-evolved with humans and TB and have the potential to undermine TB control by

diverting the host immune responses upon which host protection and TB diagnostic tests rely.

A better understanding of the effects of helminths on these key interventions may uncover

mediating pathways that can be exploited to accelerate the attainment of global TB elimination

goals

Potential impact of helminths on host responses to TB infection,

vaccination, and diagnosis

Containment of Mtb by the immune system

Upon inhalation of Mtb bacilli, the alveolar macrophages are among the first cells to encounter

the micro-organism (Fig 1), making macrophages the first line of defense against invading

Mtb. Bacilli become trapped inside a vacuole called phagosome, which thereafter undergoes

sequential fusion to acquire microbicidal and degrading characteristics by a process called

maturation, which is regulated by the network of Rat sarcoma (Ras) associated binding Gua-

nosine Triphophatases (Rab GTPases), proteins that drive the phagosome progression to mat-

uration [31]. Despite the potential of activated macrophages to kill pathogens, the bacilli can

escape this fate and survive within the host macrophage through mediation of pathogen-

dependent inhibition of phagosome-lysosome fusion, thus helping it to persist within the

immature phagosomal compartment [32]. Further, it was shown that some Mtb strains that

were poorly adapted within endocytic vesicles of infected macrophages, through activation of

host cytosolic phospholipase A2, rapidly escaped from phagosomes and established residence

in the cytoplasm of the host cell, thus creating an alternative survival path for Mtb within the

host macrophage [33].

Mtb antigen presentation by dendritic cells, potentially aided by neutrophils, in the drain-

ing lymph nodes induces a local immune response that results in the recruitment of various

cell types to the site of infection, including monocytes, macrophages, neutrophils, and den-

dritic cells. Together, these cells form a primary granuloma, which, while enclosing the infec-

tion, may also permit Mtb growth until T cells are recruited to the infection site (Fig 1) [34].

Protection against active TB is known to require a clearly delineated T-helper type 1 (Th1)

response, mediated by interferon-gamma (IFNγ), interleukin-2 (IL2), and tumor necrosis fac-

tor-alpha (TNFα) [35–37], which may clear infection or drive it into an immune-mediated
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containment or latency. Th1 cell responses play a role in the proinflammatory functions neces-

sary for the development of cell-mediated immune responses [38]. IFNγ may also act on cells

other than macrophages, and one important function may be to limit polymorphonuclear cell

(PMN)-driven inflammation [39]. Mouse models have shown that most susceptible mouse

strains exhibit high PMN infiltration in the lungs once infected [40–42], and inhibition of this

infiltration improves survival. However, mice that lack IFNγ exhibit high PMN infiltration

compared to those lacking cluster of differentiation (CD)4+ T cells.

Humans deficient in the production of Th1-type cytokines like IFNγ and its receptor are

also known to be susceptible to fulminant mycobacterial infections, including Mtb [42]. IFNγ
has been shown to be important in macrophage activation with the resulting stimulation of,

for example, nitric oxide synthase and L-arginase production [43–44] and vitamin-D–depen-

dent autophagy, phagolysosome fusion, and bacterial cell death [45].

Immune responses to helminths and Mtb

Helminths induce a strong Th2 host response that promotes, for example, mucus secretion,

collagen deposition, and wound healing mechanisms that are critical for helminth expulsion.

Yet despite the induction of such protective Th2 responses, helminths often persist in the host,

resulting in chronic infection [46]. Persistence is achieved, in part, by the induction of immu-

noregulatory pathways that are favorable to helminth survival. Among the immunoregulatory

cells induced during chronic helminth infection, regulatory T cells (Tregs) producing cyto-

kines such as transforming growth factor β (TGFβ) and interleukin 10 (IL-10) have been well

documented (Fig 1). This expanded population of Tregs can down-modulate both Th1 and

Fig 1. Pathway for the suppression of TH1 by TH2 immune response; a classical scenario of helminth and TB co-

infection. IL, interleukin; TH1, T-helper type 1; TGF-β, transforming growth factor β; TNF-α, tumor necrosis factor-

alpha.

https://doi.org/10.1371/journal.pntd.0008069.g001
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Th2 inflammatory responses and interfere with their effector T-cell functions [47–51, 52]. Not

surprisingly therefore, prolonged exposure to parasitic helminth infection has been associated

with generalized immune hyporesponsiveness [53]. Th2, Tregs, and the immunoregulatory

cytokines they produce (such as interleukin-4 [IL4], IL10, and TGFβ) generated during hel-

minth infection may act as potent inhibitors of the Th1 responses which are required for

immunity against Mtb infection [54–55] (Fig 1).

Reactivation of LTBI and severity of active TB

In humans, endogenous reactivation of LTBI has been associated with increased production of

IL10 and TGFβ by circulating monocytes and possibly Tregs [56] and also with the inhibition

of proinflammatory TNFα, for example, in patients treated with TNFα antagonists for other

conditions [57]. Studies have also shown that in patients with LTBI, co-infection with hel-

minths (filariae and hookworms) can induce down regulatory roles on the protective Th1 and

Th17 responses required for the control of Mtb infection in LTBI, potentially predisposing

towards the development of active disease [58–60]. In the case of filarial infection, this effect

may be mediated by both the cytotoxic T lymphocyte antigen (CTLA)–4 and programmed

death (PD)–1, with resulting down-regulation of the Th1 proinflammatory cytokines IFNγ,

IL-17, IL-12, and IL-23 and restored following antifilarial chemotherapy [59, 61]. However,

studies investigating co-existing helminth infection and prevalence of active TB can differ in

their conclusions, with one study in Ethiopia showing a doubled risk of active TB in intestinal

helminth coinfected individuals [62], while another larger study of intestinal and filarial hel-

minths in India suggested little effect on progression from latent to active pulmonary TB [63].

Experimental rodent models have examined whether helminth co-infection can exacerbate

TB pathology. Cotton rats, a natural host for the filarial nematode Litomosoides sigmodontis,
coinfected with Mtb showed no greater granulomatous inflammation or bacterial burden in

the lung when compared to Mtb-only infected animals [64]. Whether this lack of TB exacerba-

tion was due to the induction of regulatory cells and cytokines in this model was not investi-

gated; however, it was noted that the IFNγ responses to tuberculin purified protein derivative

(PPD) were the same in Mtb-only and helminth-Mtb coinfected rats. As natural hosts for L.

sigmodontis, it is possible that cotton rats have evolved immune-regulatory pathways that miti-

gate the effects of this helminth. Overall, the association between helminth infections and

immunosuppression is complex since several factors may determine whether infection with

the parasite suppresses, exacerbates, or has no effect on immune responses to other infections

or unrelated antigens. These factors include the species of the helminth, the parasite load, and

whether the host is experiencing a recent or a chronic infection [65].

BCG immunogenicity

BCG is the most widely used vaccine worldwide and is the only registered vaccine available

against TB and leprosy [66–67]. Nevertheless, it has a highly variable efficacy (from 0% to

80%) against pulmonary TB [27], and its protection against this disease has been hypothesized

to wane due to gradual attrition of mycobacteria-specific T cells [68]. While BCG vaccination

of newborns and infants significantly reduces the risk of childhood complications of TB,

because the infant immune system is immature [69–71], it shows a bias towards Th2 cell polar-

ization and low cytokine production, compared with those of adults. BCG vaccination gener-

ally induces strong Th1 cell responses, while the degree and quality of these responses vary in

different settings [72–74].

Where helminth infection is endemic, particularly in SSA, the newborn is further primed

immunologically in utero by its mother to helminth antigens with resultant effect of
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immunological bias towards Th2 and/or immunoregulatory responses—another route by

which helminth infection can ultimately culminate in a reduced immunogenicity of the BCG

vaccine [75] and negatively impact upon vaccination programs designed to boost BCG-vac-

cine-induced immunity. It is known that young children in the United Kingdom and Malawi

responded differently to BCG vaccination, with a differential expression of Th1 and Th2 cyto-

kines, respectively, and smaller BCG scars in Malawian infants [76–77]. Whether there was a

helminth component acting here was not investigated.

TB vaccines other than BCG are also potentially at risk of helminth-associated reductions

in efficacy. The modified vaccinia Ankara virus expressing the immunodominant mycobacte-

rial antigen 85A (MVA85A) is known to induce strong durable Th1 memory cells in adults

but only modest cell-mediated immune responses in infants [78–79]. Exploration of the effect

of concurrent schistosome infection on the BCG-boosting immunogenicity of the MVA85A

vaccine in adolescents [80], however, suggested no detrimental effect of helminth co-infection

in these individuals. More recently, vaccine protection against active TB in latently infected

adults from South Africa, Kenya, and Zambia has been reported using another subunit vaccine

M72/AS01E [81]. It would be nice to think that any further trials to expand this promising data

would give some attention to the immune preconditioning that can result from helminth

infection.

That a reduced skin test conversion rate following BCG vaccination can result from hel-

minth co-infection was described in 1989 by Kilian and Nielsen [82] in children with oncho-

cerciasis where 45% of helminth-infected children showed vaccine responses, compared to

85% in controls. A later randomized trial showed a lower BCG immunogenicity in individuals

with untreated helminth infection compared to infected individuals who received antihel-

minthic therapy [83]. The reduced responses were associated with a reduced tuberculin PPD-

specific interferon gamma (IFN-γ) and IL-12 production and increased PPD-specific TGF-β
rather than an increased PPD-specific Th2 profile per se. Similarly, 18-to-24-year-old hel-

minth-infected college students in Ethiopia who were dewormed before BCG vaccination had

improved specific immune responses to PPD compared to those who were not dewormed

[84].

Immunological imprinting of in utero helminth exposure can affect BCG responses later in

life, as has been shown in neonates who received BCG vaccination within 24 hours of birth in

rural Kenya, with differing responses to PPD at 10 to 14 months of age; children with in utero

sensitization to Wuchereria bancrofti or Schistosoma haematobium produced a 26-fold lower

PPD-specific IFNγ compared to those whose cord blood lymphocytes showed no evidence of

in utero sensitization to these two helminths [85]. However, the antenatal treatment of preg-

nant women in an area of low helminth prevalence with anthelmintic was shown to have no

effect upon the subsequent cellular responses of their children to BCG vaccination [86], sug-

gesting perhaps that the benefit of anthelmintic treatment to BCG vaccine efficacy is mainly to

be found where helminth burden is sufficiently high as to interfere with vaccine responses in

the first instance. Since much helminth diagnostic testing relies upon low sensitivity methods,

like egg counts, this at least provides some confidence that those populations most in need of

deworming (high worm infections) would be identifiable using current methods.

Previous studies of revaccination with BCG in order to boost vaccine efficacy had been con-

flicting, leading WHO to conclude in 1995 that there is no definitive evidence that repeated

BCG vaccination confers additional protection against TB [87]. However, a recent trial to

assess the efficacy of BCG revaccination versus the candidate TB subunit vaccine H4:IC31 in

Cape Town, South Africa [88] has shown both vaccines to reduce transmission (as measured

by sustained IFN-γ conversion), with BCG revaccination potentially having the edge. Again,

some consideration of preexisting helminth infection as part of such vaccination trials could
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add value, especially when rolled out to the more rural areas where helminth infection of vac-

cine recipients might be expected to be higher than in Cape Town.

Exposure to environmental mycobacteria—which like helminths is also considered as

higher in rural communities and developing countries—has long been suspected of affecting

BCG vaccine efficacy; a review of randomized controlled trials concluded that a higher BCG

efficacy was associated with the absence of sensitization with environmental mycobacteria,

these geographical areas being further from the equator [89–90]. While meta-analysis has sup-

ported a greater BCG vaccine efficacy further away from the equator, it highlighted a number

of factors, including environmental mycobacteria, socioeconomic conditions, and nutrition,

that could be important [90–91]. Coincidentally, malnutrition may of course be helminth

induced. A study of randomly selected adults in Peru showed that protein malnutrition corre-

lated with a higher risk of a false-negative tuberculin skin test result [92]. Even among Canadi-

ans, malnutrition was found to be a major risk factor for developing TB [93]. Other possible

contributors to the inconsistency of BCG efficacy include (1) genetic or physiological differ-

ences among study populations and/or differences in Mtb strains within the populations; (2)

strain variation in BCG preparations [94], with strong evidence [95] that genomic differences

in BCG strains will ultimately affect the potency of the strain used in a given setting, and (3)

the method of preparation itself (e.g., the type of culture medium used to grow vaccine stocks

has been shown to influence the later survival of BCG in host cells and the generation of host

protective immunity [96]). Overall, then, helminth infection appears to be one of several fac-

tors that may compromise the efficacy of BCG vaccination, and this highlights the importance

of carefully designed studies to untangle this complex web of observed associations.

TB diagnosis

Similar to the induction of TB vaccination responses, methods for detecting subclinical TB

infection using the tuberculin PPD skin test or the more recent blood IFN-γ tests require a

functional host immune response. Thus, modulation of immune responses caused by concur-

rent helminth infection may reduce the reliability of TB diagnosis. Consistent with this, Stew-

art and colleagues [97] reported an association between onchocerciasis skin microfilariae

density and the down-modulation of cellular responses to PPD plus an age-related skewing of

the immune response towards a Th2 profile.

Studies of M. bovis infection in cattle, a natural host–pathogen relationship, similarly high-

light helminth infection as a potential confounder of TB diagnostics. Claridge and colleagues

(2014) [98] estimated that exposure to the common fluke Fasciola hepatica in dairy herds

across England and Wales could be contributing to a reduced diagnosis of M. bovis infection

due to the negative effect of this helminth upon the PPD skin test and a reduced Th1 response

in high fluke prevalence areas. However, it was also found that naturally coinfected cattle car-

ried a reduced burden of M. bovis with an associated suppression of proinflammatory cyto-

kines [99]. Therefore, while helminth co-infection may result in a reduced immune-diagnosis

of infected individuals, those individuals could, in fact, pose a lower clinical and TB transmis-

sion risk owing to a helminth-driven reduction in bacillary burden. There are clinical co-infec-

tion studies that support such a view. Mhimbira and colleagues [100] described a significantly

lower sputum bacterial load and lung cavitation among active TB patients in Tanzania coin-

fected with the blood fluke S. mansoni compared to those without helminth co-infection. Simi-

larly, Abate and colleagues [101] found that concomitant asymptomatic helminth infection of

TB patients in Ethiopia resulted in a lower sputum smear positivity together with an increase

in regulatory and Th2 immune responses, a situation that was reversed by antihelminthic drug

administration. In both of these studies helminth-driven reductions in sputum bacilli,
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potentially reflecting an improved host TB infection status (e.g., reduced lung cavitation in

Mhimbra and colleagues), at the same time risks a reduction in the sensitivity of TB diagnosis

and a subsequent delay in treatment. This would also be a consideration for other tests reliant

upon sputum bacillary load such as the XpertMTB/RIF polymerase chain reaction, which has

been shown to correlate with sputum smear counts [102].

That helminth-infected individuals might be able to control or modulate their Mtb infec-

tion was recently reported in a study of Nepalese immigrants to the UK [103]. In this study, a

significant negative association was apparent between hookworm (Strongyloides) infection and

latent TB (as identified by positive IFN-γ responses). Importantly, this study further demon-

strated that blood from hookworm-infected individuals could control the growth of virulent

Mtb in vitro, and this control was lost following anthelmintic treatment.

The use of IFNγ release assays (IGRAs) for TB diagnosis has grown in recent years [104–

105]. These tests (e.g., QuantiFERON-TB Gold, Cellestis Ltd., Australia and T-SPOT.TB,

Oxford Immunotec Ltd., UK) are widely regarded as more sensitive and specific than the skin

test and use specific antigens such as ESAT6 and CFP10 that are present in Mtb and M. bovis
but deleted from the M. bovis BCG vaccine strain [106]. Studies have shown that helminth

infection can reduce IFN-γ production in response to mycobacterial infection, for example,

above in cattle and in Bangladesh children and pregnant Ethiopian mothers [107–108], risking

TB diagnostic sensitivity. However, a recent study of latent TB patients co-infected with hook-

worm shows that reduced TB-specific IFN-γ responses can be reversed following treatment

with anthelmintic [109].

There is evidence to suggest that helminth co-infection does not always have a negative

impact on TB immune responses. A study of Amerindians in Venezuela suggested a positive

correlation between helminth (Ascaris and Trichuris) infection and PPD skin test–positivity in

household contacts of sputum smear–positive patients [110]. And while a cross sectional study

in southern India found no significant association between frequencies of PPD skin test posi-

tivity and intestinal helminth or filarial infection, BCG vaccination responses were associated

with a lower prevalence of hookworm infection in this study [111]. This highlights the impor-

tance of research to understand helminth–TB relationships in a given situation to avoid the

danger of assuming that one size will fit all.

Conflicting issues requiring clarity?

Due to the sometimes-apparent conflicting evidence that helminth co-infection may or may

not affect Mtb infection, vaccination, and diagnosis (see Table 2), overall clarity on the consid-

eration of helminth co-infections in TB vaccination and control programs could be timely.

Pertinently, at a clinical level, should deworming prior to TB vaccination represent best prac-

tice in getting the most effective vaccine response, generating a “window of opportunity” to

allow an effective Th1 memory, and for which populations of vaccine recipients (by age, com-

munity or area of helminth burden?) and against which specific helminth infections would

this be most relevant and beneficial? Indeed, are helminth co-infections a potentially wider

issue (i.e., than TB) that could be affecting vaccine success in general [112]?

At a more fundamental research level, the conflicting scenarios presented by different stud-

ies may not be unrelated to the fact that antigens from different helminth species cause differ-

ent responses towards Mtb within host macrophages [113]—with the effect of either

enhancing or diminishing the bactericidal function of macrophages and potentially priming

the downstream adaptive immune response, such as the recently described DNA methylation

of CD4+ T cells that appears to be helminth-specific [114]. Based upon these, important initial

interactions could result an increased mycobacterial burden [115–116], a reduction [116–118],
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Table 2. Studies implicating and those not supporting helminth co-infection as affecting the diagnosis and outcome of Mtb infections.

S/

N

Location of Study/

Study type

Helminth(s) Findings References

1 �Asia (India)

Human Study

Filaria The investigators revealed that coincident filarial infection exerted a

profound inhibitory effect on protective mycobacteria-specific Th1

and Th17 responses in latent tuberculosis, suggesting a mechanism

by which concomitant filarial (and other systemic helminth)

infections predispose to the development of active TB in humans.

They further reported that IFNγ and IL-12 were significantly down-

regulated in patients in the PPD+Fil+ group, suggesting that the IL-

12/INF- γ pathway in patients with coincident lymphatic filariasis

and latent TB was compromised.

[59]

2 ��North (USA) Filaria The authors indicated that chronic filarial infection does not

exacerbate Mtb infection in cotton rat model. They showed that

PPD-specific cellular proliferation and IFNγ production were not

suppressed in coinfected animals.

[64]

3 �Africa (Ethiopia)

Human Study

Trichuris trichiura, Ascaris lumbricoides, Hookworm,

Tenia spp, Hymenolepis nana, and Enterobius
vermicularis

Elias and colleagues reported that helminth infections reduced BCG

immunogenicity in humans by inducing the production of elevated

TGF-β instead of the usual Th2 induced cytokines (IL-4 and IL-5).

[75]

4 �Africa (Ethiopia)

Human Study

Ascaris lumbricoides, Hookworm, Strongyloides
stercoralis, hymenolepis nana, Tenia spp, Entamoeba
histolytica&Giardia lamblia

Elias and colleagues revealed that helminth infections impaired

BCG vaccination immunogenicity. However, antihelminthic

treatment resulted in enhancement of T-cell proliferation and IFN-

γ proliferation with improved BCG efficacy among college students.

[84]

5 �Africa (Kenya)

Human Study

Filaria and Schistosoma Malhotra and colleagues reported that helminth-specific immune

responses acquired during gestation persisted into childhood and

that this prenatal sensitization biased T-cell immunity induced by

BCG vaccination away from Th1 and IFN-γ responses associated

with protection against mycobacterial infection.

[85]

6 �Europe (UK) Fasciola hepatica The authors indicated that F. hepatica was an additional

environmental risk factor for BTB and, importantly, was negatively

associated with the odds of BTB being diagnosed on a farm. They

suggested that, in the presence of F. hepatica infection, the SICCT

test was less effective.

[98]

7 �Africa (Ethiopia)

Human study

Ascaris lumbricoides They found that concomitant asymptomatic helminth infection

profoundly affected the immune phenotype of TB patients with a

strong leaning towards Th2 types of immune response such as

increased regulatory T cells as well as IL-5 and IL-10 secreting cells.

Furthermore, helminth co-infection was associated with a

significantly lower ratio of sputum smear positivity, which

correlated to the egg load in helminth positive TB patients.

[101]

8 �South America

(Venezuela)

Human Study

Trichuria trichiura and Ascaris lumbricoides Here, the authors confirmed that helminth together with low Th1

were associated with TST positivity in pediatric TB contacts.

[110]

9 ��Asia (India) Filaria and Hookworm Lipner and colleagues showed that neither hookworm nor filarial

significantly influenced the delayed-type hypersensitivity response

to tuberculin. They reported that BCG vaccination had a protective

effect, even in the presence of hookworm and filarial infection.

[109]

10 ���Europe (Sweden) Hymenolepis diminuta, Trichuris muris, and

Schistosoma mansoni
Findings revealed that antigens from different species of helminths

directly affected macrophage responses to Mtb. Antigens from the

tapeworm Hymenolepis diminuta and the nematode Trichuris muris
caused an anti-inflammatory response with M2-type polarization

and reduced macrophage phagosome maturation and ability to

activate T cells, along with increased Mtb burden, especially in T.

muris exposed cells, which also induced the highest IL-10

production upon co-infection. However, antigens from the

trematode Schistosoma mansoni had the opposite effect causing a

decrease in IL-10 production, M1-type polarization, and increased

control of Mtb.

[111]

(Continued)
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Table 2. (Continued)

S/

N

Location of Study/

Study type

Helminth(s) Findings References

11 ��North America

(New Jersey, USA)

Experimental Study

Nippostrongylus brasiliensis Here, Potian and colleagues identified an AAM which was induced

via the IL-4Rα signaling pathway in Nippostrongylus brasiliensis
mouse model. Th2 response in the coinfected mice did not impair

the onset and development of the protective Mtb-specific Th1

cellular immune responses. However, the helminth-induced Th2

environment resulted in the accumulation of AAMs in the lung.

[116]

12 � Experimental Schistosoma mansoni Using a pulmonary mouse model of Mtb infection, the authors

demonstrated that S. mansoni co-infection or immunization with S.

mansoni egg antigens can reversibly impair Mtb-specific T cell

responses without affecting macrophage-mediated Mtb control.

Instead, S. mansoni infection resulted in accumulation of high

arginase-1–expressing macrophages in the lung, which formed type

2 granulomas and exacerbated inflammation in Mtb-infected mice.

Treatment of coinfected animals with an antihelminthic improved

Mtb-specific Th1 responses and reduced disease severity.

[117]

13 ��New Jersey, USA Heligmosomoides polygyrus, a murine enteric nematode Rafi and others indicated that prior infection with Heligmosomoides
polygyrus a murine enteric nematode, did not affect the outcome of

primary Mtb infection or challenged infection in vaccinated hosts.

Despite the presence of helminth-induced Tregs, resistance to

primary Mtb infection was not compromised in coinfected mice.

[120]

14 �Europe (UK)

Human study

Strongyloides and Schistosoma Helminth infection was associated with a lower frequency of CD4

+IFN-γ + T cells, which increased following treatment. Patients

with helminth infection showed a significant increase in CD4

+FoxP3+ T cells (Treg) compared to those without helminth

infection. There was a decrease in the frequency of Treg cells and an

associated increase in CD4+IFN-γ + T cells after the anthelmintic

treatment. Here, they showed a potential role of Treg cells in

reducing the frequency and function of antimycobacterial CD4

+IFN-γ + T cells and that these effects were reversed after

anthelmintic treatment.

[121]

15 �Asia (India)

Human Study

Wuchereria bancrofti
and

Strongyloides stercoralis

The authors confirmed that co-existent helminth infection was

associated with an IL-10–mediated (for filarial infection) profound

inhibition of antigen-specific CD4+ T cell (Th1 &Th17) responses

as well as protective systemic cytokine responses in active

pulmonary TB. Their study therefore revealed significant

alterations in the baseline frequencies of mono—and

multifunctional CD4+ and CD8 + Th1 and Th17 cells in TB-

infected individuals with active helminth infection.

[122]

16 �Asia (India) Hookworm The authors revealed that coincident hookworm infection exerted a

profound inhibitory effect on protective Th1 and Th17 responses in

latent TB and therefore predisposed toward the development of

active TB in humans.

[123]

17 �Europe (Sweden)

Experimental

Schistosoma mansoni Elias and others confirmed that S. mansoni infection reduced the

protective efficacy of BCG vaccination against Mtb possibly by

attenuation of protective immune responses to mycobacterial

antigens and/or by polarizing the general immune responses to the

Th2 profile in mice.

[124]

18 �South America

(Brazil)

Toxocara canis and Schistosoma mansoni, Frantz and colleagues demonstrated that the therapeutic effects of

DNAhsp65 (a DNA vaccine that codifies heat shock protein Hsp65

from M. leprae, which is used in therapy during experimental TB)

in experimental TB infection was persistent in the presence of an

unrelated Th2 immune response induced by helminth infections in

mice.

[125]

19 �Europe (Sweden) Schistosoma mansoni The authors indicated that S. mansoni coinfected mice had

significantly higher levels of BCG bacilli in their organs and

sustained greater lung pathology compared to Schistosoma
uninfected controls.

[126]

(Continued)
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or have no effect [119]. Therefore helminth-driven skewing of the earliest immune responses

to mycobacterial infection in the long term could provide novel interventions of immense

potential future value.

Conclusion

Immunity to TB depends upon a protective Th1 response, which may be subverted by parasitic

helminths that are biased towards inducing opposing Th2 responses. Furthermore, the chronic

nature of helminth infections also invoke immune-regulatory responses that can reduce TB

immunity and interfere with induced diagnostic responses upon which TB control programs

depend. Since there is widespread helminth co-infection in areas of high TB incidence in

Africa, the immunomodulation engendered by these common but different helminth infec-

tions may be a critical determinant for host immunity to TB, diagnostic tests, and the efficacy

of preventive vaccines. The impact of these co-evolved microbial and parasitic interactions on

the strategies required for optimal public health would appear daunting, particularly consider-

ing the apparent complexity and conflicting outcomes in disparate helminth–TB co-infection

studies. However, there is the tantalizing potential for improvement in our diagnostic and vac-

cination outcomes by addressing this relatively neglected component of host TB immunology.

Table 2. (Continued)

S/

N

Location of Study/

Study type

Helminth(s) Findings References

20 �Europe (Ireland) Fasciola hepatica Flynn and colleagues demonstrated that F. hepatica altered

irresponsiveness (delayed-type hypersensitivity reaction and

cytokine responses) to virulent M. bovis, thus inducing the

reduction of IFN-γ responsiveness in coinfected animals.

[127]

21 �Europe (Ireland) Fasciola hepatica Flynn and colleagues found the predictive capacity of tests (SCITT

and the IFN-γ) to be compromised in coinfected animals and that

F. hepatica infection altered macrophage function. IL-4 and IFN-γ
expression in whole-blood lymphocytes restimulated in vitro with

M. bovis antigen was also altered in coinfected animals. These

results raised the question of whether F. hepatica infection can

affect the predictive capacity of tests for the diagnosis of BTB and

possibly also influence susceptibility to BTB and other bacterial

diseases.

[128]

AAM, alternatively activated macrophage; BCG, Bacille Calmette Guerin; BTB, bovine tuberculosis; CD, cluster of differentiation; IFN-γ, interferon gamma; Mtb,

Mycobacterium tuberculosis; PPD, purified protein derivative; SCITT, single cervical intradermal tuberculin test; TB, tuberculosis; TGF-β, transforming growth factor β;

Th1, T-helper type 1; Treg, regulatory t cells; TST, tuberculin skin test

�In agreement

�� Not in agreement

��� Indicated both agreement and not in agreement

https://doi.org/10.1371/journal.pntd.0008069.t002

Key learning points

• Africa is characterized by plethora of problems including poverty, poor hygiene, and

sanitation, which are exacerbated by infectious diseases and weak health systems.

Unfortunately, these problems are also worsened by an overlapping burden of hel-

minth and TB co-infection with far reaching public health implications, though cur-

rently attracting little attention.
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• There are contradictory reports of differences in the population responses to BCG vac-

cination. However, reports abound that helminth-specific immune responses acquired

during gestation persisted into childhood. Thus, the prenatal sensitization induced by

helminths, biases the T cell immunity away from Th1 IFN-γ responses associated with

protection against mycobacterial infection.

• There are existing reports on the negative impact of helminthes on TB diagnosis. This

becomes important where asymptomatic helminth infection profoundly affects the

immune phenotype of TB patients with a strong bias towards Th2 types of immune

response, such as increased regulatory T cells as well as IL-5 and IL-10 secreting cells.

• There are increasing challenges that helminth–TB co-infection are also found to be

associated with a significantly lower ratio of sputum smear positivity, which correlates

with the egg load in helminth positive TB patients. This is of great public health impor-

tance in areas of the world, particularly Africa, where the burden of TB is high coupled

with poor diagnostic facilities.

• The association between helminth infections and immunosuppression is complex

since several factors may determine whether infection with the parasite suppresses,

exacerbates, or has no effect on immune responses towards TB. These includes the

species of helminths, the parasite load, and whether the human host is experiencing a

recent or a chronic infection. These are critical issues that need further investigations

in resolving the complex challenges posed by helminth–TB co-infection regarding

diagnosis, treatment, and vaccination strategies in tuberculosis. The prevalent hel-

minth co-infection in areas of high TB incidence in Africa remains an important factor

that will determine the immunomodulation caused by the common but different hel-

minth infections towards host immunity to TB, diagnostic tests, and the efficacy of

preventive vaccines. Moving forward, it will be important to confirm if prior deworm-

ing to TB vaccination imply best practice in achieving optimal vaccine response, and

for which helminth infections and human population groups would this be useful?
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