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molecular biology has documented that monocytes play a 
central role in this process. Also, epidemiological data have 
documented a certain risk of inflammation in CHD (3). At 
the same time, obesity and inflammation processes in adi-
pose tissue have been shown to be major contributors to 
insulin resistance, diabetes, and CHD (4, 5). Recently, the 
relationship between monocyte behavior and the effects of 
cholesterol molecules was found to be bidirectional (6). It 
is now clear that not only do high atherogenic lipoprotein 
particles influence macrophage changes both in adipose 
tissue and the arterial wall (7), but also that the acute phase 
response downregulates reverse cholesterol transport (8).

Several direct effects of dietary cholesterol on local in-
flammation of adipose tissue have been described (6, 9) 
and reviewed (10) in experimental models. LDL particles, 
particularly mildly oxidized LDL, have been reported as 
being able to influence adipocyte differentiation, associ-
ated endoplasmic reticulum stress, and elevated mRNA of 
protein mediators of development of subclinical inflamma-
tion (11). In an experimental model using LDL receptor 
KO mice, alimentary cholesterol not only accelerated ath-
erogenesis but also increased adipocyte hypertrophy, plasma 
concentration of the proinflammatory cytokine TNF- and 
macrophage infiltration of adipose tissue (12). In an animal 
model sharing a very similar lipoprotein profile with humans, 
the pig, a hypercholesterolemic diet increased atherogenic 
lipoprotein and proinflammatory cytokine plasma concen-
trations and macrophage infiltration of visceral adipose 
tissue (12, 13). Based on these in vitro data and in vivo ex-
perimental models, it can be concluded that lipid overload 
influences adipose tissue development and proinflamma-
tory functionality.

Much less is known about the response of adipose tissue 
to atherogenic stimuli in humans. Although adipose tissue 
has been shown to play an important role in insulin resis-
tance and diabetes in humans (14, 15), macrophage status 
in adipose tissue has been described in detail in an animal 
model (16) but is still poorly understood in humans. High 
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The effect of cholesterol molecules on coronary heart 
disease (CHD) has been studied for more than a century with 
a substantial increase of the number of these studies coming 
after World War II (1). A high plasma LDL particle concen-
tration is still considered one of the main risks of athero-
sclerosis (2). In the past two decades of the 20th century, 
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Lipoprotein concentrations
Blood of kidney donors was obtained by venipuncture after 10 h 

fasting, immediately before surgery (prior to anesthesia induction). 
Samples were spun down within 30 min, and plasma was sepa-
rated. Cholesterol and triglycerides were determined using a 
Hoffmann-LaRoche (Switzerland) enzymatic kit on a COBAS 
MIRA+ autoanalyzer. Concentrations of HDL fractions were ana-
lyzed using the same method after precipitation of apoB-containing 
particles with phosphotungstate. Non-HDL cholesterol concen-
trations were calculated as total cholesterol minus the HDL cho-
lesterol fraction. Data of donors and population sample were 
analyzed using identical methods at the same laboratory (con-
trolled quarterly by the Centers for Disease Control, Atlanta, GA).

Statistical methods
Data are presented as means with SDs for continuous variables, 

and percentages with SDs for categorical variables. Intergroup 
comparisons of continuous variables and multiple linear regres-
sion adjustment were performed by the unpaired t-test with JPM 
10.0 software. Correlation analysis was performed using biostatisti-
cal GraphPad Prism software, version 6 (GraphPad Software Inc., 
San Diego, CA). In all tests, P values higher than 0.05 were consid-
ered statistically nonsignificant.

RESULTS

The study group of living kidney donors (LKDs) included 
individuals who were slightly healthier compared with a well-
selected representative population sample, WHO MONICA 
Study (25). The BMI of the LKD group was slightly yet sig-
nificantly lower compared with the representative popula-
tion sample (Table 1). Total cholesterol concentration and 
non-HDL cholesterol concentration were much lower in 
LKDs (13% and 14%, respectively). Prevalence of hyper-
cholesterolemia (>5 mM) and high non-HDL cholesterol 
concentration was much lower in LKDs (13% and 14%, re-
spectively). Five LKD individuals had dyslipoproteinemia, 
and five individuals were treated with statin and two re-
ceived antihypertensive drugs.

The total number of macrophages per gram of visceral 
adipose tissue was not significantly related to non-HDL 
cholesterol in 47 LKDs (Fig. 2A). A borderline level of 
significance was observed when correlating normally po-
larized proinflammatory CD16+ macrophage number to 
non-HDL cholesterol (Fig. 2B). This level of significance 
substantially increased when expressing the proportion of 
these macrophages as the percentage of all macrophages 
in the sample (P < 0.005; Fig. 2C). When including an 
additional surface marker of the normally polarized mac-
rophages, high CD36 (CD36+++) expression, in the correla-
tion analysis, the correlation of macrophages to non-HDL 
cholesterol became very close (P < 0.001; Fig. 2D). To de-
termine whether this correlation was expressly produced 
by the five individuals with the highest concentrations of 
non-HDL cholesterol, those with levels >4 mM were excluded 
from the subsequent calculation (Fig. 2E). Although this 
correlation was limited to individuals within a very narrow 
range of non-HDL cholesterol between 2 and 4 mM, the 
significance of the correlation of the proportion of CD16+, 
CD36+++ to non-HDL cholesterol remained unchanged 

lipoprotein atherogenic risk in humans stimulates circulat-
ing monocyte adhesion (17, 18), their associated micropar-
ticle release (17), and a high subset of positively stimulated 
monocytes in the circulation (18, 19). In our present ex-
periments, we were able to obtain macrophage phenotypes 
of adipose tissue from healthy human individuals and re-
late them to non-HDL cholesterol concentrations.

METHODS

Living kidney donors
All 47 individuals (enrolled between June 2013 and June 2015) 

were fully informed about the process of kidney donation and 
transplantation and, also, about adipose tissue sampling during 
organ cleaning before transplantation. All individuals signed in-
formed consent forms and were interviewed with regard to their 
medical history and major cardiovascular risk factors. The design 
of the study was approved by the Ethics Committee of the Institute 
for Clinical and Experimental Medicine and Thomayer Hospital, 
Prague, Czech Republic.

Tissue samples
Samples of visceral and subcutaneous adipose tissue were ob-

tained peroperatively after hand-assisted laparoscopic nephrectomy. 
Adipose tissue samples (2 g) were immediately cooled and 
transferred to the laboratory within 20 min. After removing visible 
blood vessels and connective tissue, each sample was dissected us-
ing scissors to facilitate homogeneous collection of small pieces 
(2 mm2). After shaking incubation of tissue samples with colla-
genase (2 mg) for 20 min (37°C), the homogenate was filtered 
(50 m) and centrifuged. The stromal vascular fraction (SVF) was 
purified twice by resuspension. The final SVF sample was analyzed 
immediately by flow cytometry (CyAn; Beckman Coulter, Brea, 
CA). Monoclonal antibodies and fluorochromes (CD14, Phycoer-
ythrin-Cyanine, CD16, Phycoerythrin-Texas Red X, CD36, FITC 
and CD163 Phycoerythrin, PE/Clone RM 3/1) were used to de-
fine different subsets of monocytes/macrophages. Flow cytometry 
data were analyzed using Kaluza Software (Beckman Coulter). 
The viability of analyzed cells was measured for each sample using 
7-AAD (7-Aminoactinomycin D), and only samples with a viability 
higher than 75% were considered. Due to difficulties in delineating 
CD16-positive cells in the SVF, CD16-positive monocytes were first 
identified and delineated in the blood samples where a CD16-
positive subpopulation was clearly visible. The setting was fixed 
and subsequently used for SVF analysis. The gating strategy for 
identifying SVF macrophage subpopulations is shown in Fig. 1. 

Based on data from the literature (19–21) and our recent re-
sults (22), we suggest that macrophages with a combined pheno-
type characterized by the expression of CD14 and CD16 and high 
expression of the phagocytic receptor CD36 (23) should corre-
spond with normally stimulated M1 macrophages. On the other 
hand, macrophages with no CD16 expression, but with CD163 
(24) positivity, might be considered anti-inflammatory M2 macro-
phages. At the same time, we are well aware that this classification 
could oversimplify the in vivo situation where the full phenotypic 
spectrum of transient phenotypes between M1 and M2 might exist. 
All other minority fractions represent <20% of the total of macro-
phages. The proportion of phenotype subpopulations was ex-
pressed as a percentage of all monocytes/macrophages. The 
absolute number of monocyte/macrophage cell lines per gram of 
adipose tissue was obtained by calculation of the dilution and 
amount of adipose tissue applied.
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analysis by multiple linear regression method (JMP 10.0) 
did not document any effect of these parameters, and the 
relationship of all macrophage phenotypes to non-HDL 
cholesterol concentration remained at the same level of sig-
nificance with the exception of a negative correlation of alter-
natively stimulated macrophages (CD14+CD16+CD163; 
Fig. 2F), where the level of significance was only 0.002 com-
pared with original the 0.0005.

Although the correlation pattern of the total macro-
phage and CD14+CD16+ macrophage contents (Fig. 3A, B) 
and the proportion of CD14+CD16+ and normally stimu-
lated macrophages CD14+, CD16+, CD36+++ (Fig. 3C, D) of 
subcutaneous adipose tissue to non-HDL cholesterol were 
similar to those of visceral tissue, the significance was much 
lower (only P < 0.05) and only borderline in all relations. 
Also, the correlation of alternatively stimulated macrophages 
in subcutaneous adipose tissue to non-HDL cholesterol 

(P < 0.001). Finally, after calculating the correlation of the 
proportion of alternatively polarized macrophages to non-
HDL cholesterol concentrations, a significant inverse cor-
relation was found (Fig. 2F). All these relationships were 
also analyzed when the number of macrophages and their 
proportions were adjusted for sex, age, and BMI. This 

Fig. 1. Example of SVF flow cytometric analysis. A: CD16-positive monocytes were first identified and delineated in the blood sample (left, 
CD16-positive macrophages in the upper part). The settings were fixed and subsequently used for SVF analysis (B). Total macrophages in 
SVF were identified by positivity for CD14 (C), and, based on the CD16 marker, two subpopulations were distinguished (B, CD16-positive 
macrophages in the upper part). The CD16+ subpopulation was divided according to the CD36 marker (D), with the highly positive subpopu-
lation at the top and the low positive in the middle (based on blood macrophage analyses). E: CD163 expression was determined within the 
CD16-negative subpopulation and divided (CD163-positive macrophages in the upper part). This scheme is partly simplified, as a few minor 
fractions (already measured) are not mentioned.

TABLE 1. Characteristics of LKDs group (men, n = 17; women,  
n = 30) 

Characteristics N Mean ± SD

Age (years) 47 46.05 ± 10.60
BMI (kg m2) 47 25.75 ± 3.58
Cholesterol (mM) 47 4.40 ± 0.95
HDL cholesterol (mM) 47 1.16 ± 0.38
Non-HDL cholesterol (mM) 47 3.24 ± 0.92
Triglycerides (mM) 47 1.45 ± 0.80

Data are expressed as mean ± SD.
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for normally and alternatively polarized macrophages. In 
recent literature, the presence of the CD16 receptor to-
gether with CD14 has been considered for identifying pro-
inflammatory, normally polarized macrophages (26). On 
the other hand, the CD16+ marker on the surface of circu-
lating monocytes has been suggested to belong to alterna-
tively stimulated macrophages (18, 23). One can hardly 
accept the possibility of a substantial change of circulating 
monocytes from pro- to anti-inflammatory phenotypes 
upon invading adipose tissue and their eventual transfor-
mation to macrophages. Based also on our earlier data 
(22), we suggested CD16 positivity as a marker of the pro-
inflammatory phenotype. To develop a more precise defi-
nition of the proinflammatory phenotype, we analyzed the 
presence and absence of the CD36 receptor. We found a 

exhibited the same pattern as visceral adipose tissue, but 
with a lower level of significance (Fig. 3F).

DISCUSSION

Inspired by a review by Aguilar and Fernandez (11) sum-
marizing recent data on the cholesterol/macrophage rela-
tionship both in obesity and nonobesity experimental 
models, we sought to analyze the relationship between 
proinflammatory macrophage status of adipose tissue 
and cholesterolemia in healthy men and women. Analysis of 
this type of proinflammatory status by determining macro-
phage phenotypes in adipose tissue is rather complicated 
as there is no definitive identification of surface markers 

Fig. 2. The relations between different macrophage subpopulations and non-HDL cholesterol concentra-
tion in visceral adipose tissue. Correlations of macrophage number and proportion of phenotypes with non-
HDL cholesterol in the visceral adipose tissue of 47 LKDs (or their subset in E). Consequently, total CD14+ 
cells (A), CD14+CD16+ cells (B), CD14+CD16+ % (C), CD14+CD16+CD36+++ % (D), CD14+CD16+CD36+++ % 
(limitation 2–4 mM) (E), and CD14+CD16CD163+ % (F).
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In this study, our data document that non-HDL choles-
terol concentrations in subjects are positively related to the 
proportion of proinflammatory macrophages in visceral 
adipose tissue. The correlation coefficient increases with a 
more precise definition of proinflammatory phenotypes 
in the following order: CD14+, CD16+, and CD36+++. This 
relationship was not dependent on the individuals with 
the highest non-HDL cholesterol levels and remained 
close (P < 0.001) after excluding hypercholesterolemic LKD 
individuals.

Data on subcutaneous adipose tissue macrophages in 
humans were published for the first time only recently 
(27), and, surprisingly, an unexpected prevalence of 

more conclusive relationship between non-HDL choles-
terol and normally polarized macrophages (CD14+CD16+) 
when high CD36 positivity (CD36+++) was included. When 
considering all CD14+CD16+ macrophages coexpressing 
also any CD36 marker, the relationship between normally 
polarized macrophages and non-HDL cholesterol almost 
disappeared. The CD36 receptor, also referred to as the 
scavenger receptor B2, plays an important role in the trans-
fer of cholesterol molecules across the macrophage plasma 
membrane and an even more important role in reverse 
cholesterol transport (8). It clearly follows from this find-
ing that this receptor is an important part of membrane 
function of all macrophages.

Fig. 3. The relations between different macrophage subpopulations and non-HDL cholesterol concentra-
tion in subcutaneous adipose tissue. Correlations of macrophage number and proportion of phenotypes with 
non-HDL cholesterol in the subcutaneous adipose tissue of 47 LKDs (or their subset in E). Consequently, total 
CD14+ cells (A), CD14+CD16+ cells (B), CD14+CD16+ % (C), CD14+CD16+CD36+++ % (D), CD14+CD16+CD36+++ 
% (limitation 2–4 mM) (E), and CD14+CD16CD163+ % (F).
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proportions to total cholesterol concentration in visceral 
adipose tissue. Although a positive correlation was found, 
its level of significance was fairly low (P < 0.05). There was 
no relationship of macrophage phenotypes to the con-
centration of HDL cholesterol.

Although the reason for the high correlation of non-
HDL cholesterol concentration to proinflammatory macro-
phages in the visceral adipose tissue has not been clearly 
identified, this fact might have high biological importance. 
In particular, increasing significance of this relationship 
with increasing description of proinflammatory phenotype 
of macrophages should be considered. Increasing proin-
flammatory status of adipose tissue of individuals with high 
non-HDL cholesterol concentrations may represent the 
synergic proatherosclerotic status of these individuals.

Individuals in the highest quintile of non-HDL choles-
terol concentration of our study group have been shown to 
have twice as high a proportion of CD14+, CD16+, and 
CD36+++ macrophages compared with those in the lowest 
quintile. Similarly, the proportion of the anti-inflammatory 
macrophages CD14+, CD16, and CD163 in the highest 
quintile of non-HDL cholesterol concentrations is only 
one-half of this macrophage phenotype compared with the 
lowest non-HDL cholesterol concentration quintile.

Independently of the mechanism, the close relationship 
of non-HDL cholesterol concentration to the proinflam-
mation status of human visceral adipose tissue is consistent 
with the recently summarized data on cholesterol and in-
flammation in experimental models (8).
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