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ABSTRACT: Transmembrane proteins act as an intermediary for
a broad range of biological process. Making up 20% to 30% of the
proteome, their ubiquitous nature has resulted in them comprising
50% of all targets in drug design. Despite their importance, they
make up only 4% of all structures in the PDB database, primarily
owing to difficulties associated with isolating and characterizing
them. Membrane protein docking algorithms could help to fill this
knowledge gap, yet only few exist. Moreover, these existing
methods achieve success rates lower than the current best soluble
proteins docking software. We present and test a pipeline using our
software, JabberDock, to dock membrane proteins. JabberDock docks shapes representative of membrane protein structure and
dynamics in their biphasic environment. We verify JabberDock’s ability to yield accurate predictions by applying it to a benchmark of
20 transmembrane dimers, returning a success rate of 75.0%. This makes our software very competitive among available membrane
protein−protein docking tools.

■ INTRODUCTION

Transmembrane proteins play an essential role as a mediator for
many functions critical to an organism’s survival. Situated within
a lipid membrane that compartmentalizes two distinct biological
regimes, their tasks include sensing, signaling, motility,
endocytosis, and anchoring. Their malfunction is responsible
for a multitude of diseases,1 and consequently, they are a
frequent target in drug design. The formation of complexes,
wherein two or more transmembrane proteins will oligomerize
into either helix bundles or β-barrels, is of vital significance to
both the function and malfunction of these processes. Yet, of the
∼170,000 structures available on the PDB database, only∼7000
(4%) are transmembrane proteins2 despite them making up
20%−30% of the proteome and 50% of all known drug targets.3

This relatively small number of available structures is primarily
due to the greater technical difficulties associated with
characterizing them compared to soluble proteins. A computa-
tional tool capable of accurately predicting complexes would
therefore help address some of this knowledge gap, provide
understanding to underlying biological mechanisms, and inform
drug design.
A plethora of increasingly sophisticated protein−protein

docking approaches have been developed to address the
problem of protein assembly prediction.4 These efforts are
nucleated around the community-led CAPRI competition,
which is used to identify the most reliable algorithms, promising
methodologies and current hurdles.5 However, the vast majority
of these methods center around the docking of two or more
soluble proteins. While docking transmembrane proteins is
facilitated by limitations on the search space imposed by the
lipid bilayer, membrane docking algorithms must consider the

impact of the lipid bilayer on a protein’s recognition of a partner
in tandem with the solvent. In this context, there are only a small
number of tools currently available. MPDock,6 utilizing existing
Rosetta sampling and scoring methods in an integrative
modeling context, found a successful high ranking pose in
three out of five applied bound complexes. Hurwitz et al.’s
programMemdock7 uses a traditional rigid docking, refinement,
reranking method, with energetic terms representing the
membrane’s hydrophobic environment included in the final
stage. Comparing the performance of Memdock and GRAMM-
X8 on 11 unbound complexes, the authors showed that the first
yielded a success rate of 36.4% and the latter of 9.1%. Viswanath
et al. used the DOCK/PIPER9 docking algorithm with an
additional reranking step that considered the membrane transfer
energy, achieving a success rate of 36.6% for 26 unbound
complexes. Testing other software on the same data set, the
authors reported success rates of 30%, 46.6%, and 56.6% for
ZDOCK+ZRANK,10,11 CLUSPRO,12 and GRAMM-X,8 re-
spectively. All of these approaches were only tested against cases
featuring α-helical transmembrane proteins. Koukos et al., using
HADDOCK13 without any specific membrane protein opti-
mization, achieved a blind docking success rate of 19.2% on their
dimeric unbound data set of 26 complexes that included β-
barrel, monotopic, and α-helix proteins. Of these 26 test cases,
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11 featured a pair of integral proteins as binding partners, and
only three of these were unbound-ligand-to-unbound-receptor
docking. The latter achieved a success rate of 36.4%.
HADDOCK has also very recently been combined as a
refinement tool with the LightDock14 docking algorithm and
tested against 18 transmembrane-soluble protein complexes,15

achieving a success rate of 61.1%. At the time of publication,
MPDock was presented as a proof of concept, not yet designed
for widespread use. The DOCK/PIPER membrane energy
reranking tool is available for download, but it must be applied to
models obtained independently. Memdock is usable as a web
server, although requires input structures to have their solvent-
exposed regions manually removed.
We recently released our protein−protein docking software,

JabberDock,16 after testing it against a standard benchmark of
226 soluble complexes developed by the CAPRI community.17

It obtained a greater than 54% success rate, with the notable
achievement that the flexibility of the individual structures made
little difference to its overall success. JabberDock’s defining
feature is its usage of a novel protein volumetric representation
called spatial and temporal influence density (STID) maps,
which are built from short molecular dynamics (MD)
simulations. STID maps are generated via a physical model
describing the protein’s shape and electrostatic and residue-level
dynamics. Through a comprehensive benchmark, we identified
an ideal cutoff value (isovalue) to transform STID volumetric
maps into three-dimensional surfaces. JabberDock docks
proteins represented by these shapes, attempting to maximize
their surface complementarity. A key characteristic of STID
maps is that the ideal isovalue to transform them into shapes
emerges naturally from the MD simulation, specifically from the

relationship between the solvent accessible surface area and the
average STID value. Thus, crucially, it is environmentally
independent. This property makes STID maps an attractive
representation for membrane proteins, exposed to a biphasic
environment. The STIDmap representative of a transmembrane
protein can be obtained by independently simulating the
preoriented partners immersed in an explicit lipid bilayer.
Docking then requires maximizing the complementarity of two
membrane protein surfaces, with the ligand’s translational
motion perpendicular to the membrane and rotations into the
plane of the bilayer constrained. Preliminary work in this
endeavor yielded encouraging results: we predicted the
transmembrane dimeric complex formed by bo3 oxidase with
our top-scoring pose corroborating available mass photometry
data.18 Herein, we present and test our methodology to dock
integral membrane protein dimers, now available in JabberDock
as an automated pipeline.

■ RESULTS
JabberDock docks transmembrane proteins via a multistage
process summarized by the flow diagram in Figure 1 and fully
detailed inMethods. In short, JabberDock requires input protein
structures to be aligned with the center of mass for the
transmembrane region of the proteins at z = 0, where the z-axis is
perpendicular to the bilayer plane. In our tests, we obtained
these preorientated structures via the OPM server.19 Structures
are repaired where necessary using the Modeller package,20

before being immersed in a POPE bilayer via the PACKMOL-
memgen tool.21 GROMACS22 is then used to generate the
simulation data using the Amber14SB23 and SLipid24 force
fields, which enables the generation of STID maps. The maps of

Figure 1. JabberDock transmembrane protein docking pipeline. Full details of each step, including a convergence benchmark for Step 4, are available in
Methods. This example’s target complex is the homodimer 1Q90 (BF), using 2ZT9 (A) as the ligand (blue) and receptor (red). Step 7 features a
representation of the fifth best model; an intermediate success overlaid on the bound structure (gray).
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both binding partners are then converted into isosurfaces using a
predetermined cutoff and docked such that their surface
complementarity is maximized16 (see SI and Figure S2). This
surface-based scoring function is effective because it bypasses
the need to explicitly handle packing of interfacial atoms,
yielding smoother and gentler gradients compared to typical
atomistic representations (see SI and Figure S3). Here, the
search space is navigated using the particle swarm optimisation
algorithm implemented in the POWer optimization engine.25

On average, our full docking pipeline requires 3 days for
simulation and 12 h for docking on our hardware (see details in
SI).
There does not yet exist a standard transmembrane protein

docking benchmark equivalent to the soluble proteins one made
available by the CAPRI community.17 To test JabberDock, we
selected all the unbound cases involving pairs of transmembrane
proteins within Memdock,7 HADDOCK,13 and DOCK/
PIPER9 benchmarks. To avoid testing against similar examples,
and thus biasing our statistics, we only selected one
representative within test cases featuring greater than 80%
sequence homology. This resulted in a diverse benchmark set
featuring 20 α-helical complexes. We summarize our results for
each test case in Table 1. Full details, including the three metrics
used to define success by the CAPRI community (RMSD of the
best pose, with its corresponding ratio of correct residue
contacts ( f nat.) and interfacial RMSD), are given in Table S1,
spreadsheet.
JabberDock was successful (i.e., yielding at least one

acceptable model or better among its top 10 candidates) in
75% of the cases in our benchmark set, producing an
intermediate quality success in 40% of cases (see Figure 2,
Figure S5 and Table S1). This remarkable performance is
explained by JabberDock’s ability to identify the binding
interface correctly, primarily due to its sensitivity to the
dynamics of individual amino acids. Indeed, as shown in Figure

2a, in nearly every test case, at least one prediction in the top 10
results features a correctly identified binding interface. We also
notice that results obtained here are superior to those we
reported for JabberDock against soluble proteins (54%). Given
that our STID map-based scoring function performs com-
paratively in a water and membrane environment (see Figure
S2), this substantial increase can be explained by the added
benefit of a priori knowledge about the orientation of the
proteins with respect to the bilayer, coupled with the strict
constraints imposed by the lipid membrane.
Expanding the pool of candidate structures to the whole 300

models returned by JabberDock does little to improve its overall
success rate (with a successful model produced in 85.0% of
cases, see Figure 2b), in contrast to other protein docking
software and the soluble benchmark. This is because
JabberDock returned a top 10 successful model for the majority
of cases it dealt with (15 out of 20). The few unsuccessful cases,
also challenging for other docking algorithms, possess similar
structural features to those complexes in the soluble benchmark
that JabberDock found problematic. The NavAb voltage-gated
sodium channel (PDB: 3RVY) features an interlocked arrange-
ment where, following the unboundMD simulation, the binding
site closed up, preventing the ligand STID surface from
navigating into the binding pocket. The wild type cytochrome
c oxidase (PDB: 1M56) lacks characteristic surface features (i.e.,
it is relatively smooth), making it difficult for JabberDock to
differentiate between nonbinding and binding regions (see
Figure S4). All remaining cases that were not successful featured
either, individually or as a combination, surfaces devoid of
feature-rich regions (see SI and Figure S4), or relatively small
binding interfaces, particularly demanding to identify given the
goal of the optimizer to maximize surface complementarity.
Some proteins can form multiple complexes by interacting

with different binding partners. In our previous work,16 we
observed that knowledge of a protein’s bound state with a

Table 1. Results of Membrane Docking Benchmarka

Target Receptor Ligand Rank of first successful model Quality of best pose in top 10

1BL8 (AB) 1K4D (C) 1K4D (C) 2 ∗∗
1EHK (AB) 3S33 (A) 3S33 (B) 1 ∗
1H2S (CD) 1GU8 (A) 2F95 (B) 1 ∗∗
2WIE (AB) 3V3C (A) 3V3C (A) 1 ∗∗
1E12 (AC) 3A7K (A) 3A7K (A) 2 ∗
1M56 (AC) 3OMI (A) 1QLE (C) X −
1Q90 (BF) 2ZT9 (A) 2ZT9 (A) 5 ∗∗
1ZOY (CD) 1YQ3 (C) 1YQ3 (D) 159 −
2QJY (AD) 1ZRT (C) 1ZRT (C) 3 ∗∗
3CHX (BJ) 1YEW (B) 1YEW (B) 8 ∗
3KLY (AB) 3KCU (A) 3KCU (A) 5 ∗∗
3OE0 (AB) 3ODU (A) 3ODU (A) X −
3RVY (AB) 3RW0 (A) 3RW0 (A) X −
4DKL (AB) 4EA3 (A) 4EA3 (A) 1 ∗∗
2NRF (AB) 2IC8 (A) 2IC8 (A) 1 *
2VT4 (AB) 2Y00 (A) 2Y00 (B) 8 ∗∗
3KCU (AB) 3Q7K (A) 3Q7K (A) 1 ∗
1M0L (AC) 1C8S (A) 1C8S (A) 7 ∗
2K9J (BA) 2RMZ (A) 2K1A (A) 1 ∗
2KS1 (BA) 2N2A (A) 2M0B (A) 135 −

aThe target complex is provided with two composite chains (name indicated in parentheses), which the receptor and ligand correspond to
respectively. The rank of the first successful model, either of acceptable (∗) or intermediate (∗∗) quality as determined by the CAPRI criteria (see
Methods), is given along with the quality of the best pose found in the top 10 predictions. X indicates that no successful pose was found within the
300 models produced. See Table S1, spreadsheet, for details.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c01315
J. Chem. Inf. Model. 2021, 61, 1493−1499

1495

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_002.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_002.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_002.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01315/suppl_file/ci0c01315_si_002.xlsx
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c01315?ref=pdf


specific partner may facilitate its docking with a different one;
i.e., the bound state of the native complex from which the ligand
or receptor is sourced can be used as a surrogate for the target
complex. Here, we tested this approach with the 1M56 test case,
comprised of two binding partners that have had their structures
solved as part of an alternative complex. As reported in Table S1,
when docking STID maps generated from MD simulations of
monomeric binding partners (i.e., extracted from their existing
complexes and simulated in the unbound state), none of the 300
candidate models were successful. In contrast, docking STID
maps generated from surrogate bound-state conformations (i.e.,
from simulations of alternative complexes) yielded eight
successful poses, the best one at rank 51. This improvement,
although not featuring a top 10 successful result, indicates that
membrane protein docking may benefit from STID maps
representing bound dynamics extracted from other known
complexes these membrane proteins are involved with.

■ DISCUSSION AND CONCLUSION

We have presented a pipeline enabling our blind soluble
protein−protein docking software, JabberDock, to successfully
tackle cases involving integral membrane protein dimers. This
success is due to the molecular representation we adopt to dock
proteins (STID maps), casting electrostatics, dynamics, and the
protein’s shape into a single volumetric representation. The
preliminary stages in the building of a STIDmap require an MD
simulation; thus, the different characteristics expressed by the
protein in both the soluble and lipid environments are
encapsulated in the isosurface’s topography. Consequently,
other than an extended MD simulation, one only needs to
restrict the search space of the ligand in the docking protocol to
regions occupied by the lipid membrane. The problem is,
therefore, more manageable overall than a soluble protein
docking one.
As no standard transmembrane protein docking benchmark

exists, we applied JabberDock to an unbound benchmark of 20

transmembrane α-helix proteins taken from three other
benchmarks,7,9,13 which returned a success rate of 75%. These
results correspond to correctly identifying seven versus DOCK/
PIPER’s two out of eight cases,9 eight versus Memdock’s four
out of eleven cases,7 and one versus HADDOCK’s one out of
three cases13 (note that two cases were tested by more than one
of these methods, hence, 22 individual comparisons from 20
cases). Applying the same difficulty classification method
employed by CAPRI to soluble protein docking (see Methods),
we see that acceptable models within the top 10 candidates were
obtained even for some of the most flexible cases. Unsuccessful
cases were primarily those where the STID maps featured flat
interfaces, a similar issue encountered with the soluble
benchmark set. In this context, we have observed that docking
binding partners using STID maps generated from alternative
complexes could improve the docking quality of an otherwise
unsuccessful docking case. The observed increase in docking
accuracy was less significant than what we previously observed
for globular proteins, where the improvement yielded several
successful complexes in the top 10 predictions. This difference is
potentially because the change in dynamics from switching a
binding interface from lipids to a protein is smaller than the
equivalent with a water solvent. It nevertheless demonstrates
that there is scope for increasing JabberDock success rate by
refining our STID map representation. Given the success of the
results presented here and that previously demonstrated with
globular proteins, we expect JabberDock to also perform well
with transmembrane-solvent proteins, regardless of whether the
ligand is extracellular, periplasmic, or cytoplasmic.

■ AVAILABILITY

JabberDock is available for download under GPL license at
https://github.com/degiacom/JabberDock, along with input
and target structures used in our benchmark. Authors will release
the atomic coordinates of all produced models upon article

Figure 2. (a) Quality of best models within the top 10 results for every docking case. For each case, the lowest α-carbon RMSD between the prediction
and crystallized homologue is presented against the associated native residue fraction ( fnat.). The dark- to light-shaded regions represent the criteria for
high to acceptable quality results. Thus, a point landing in one of these regions indicates a success. (b) Percentage of cases yielding an acceptable
(purple) and intermediate (pink) success as a function of the number of ranked structures considered as candidate models. The region corresponding
to the top 10 models is shaded and magnified in the inset.
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publication using Durham Research Online Data sets Archive
(DRO−DATA).

■ METHODS
System Building.Here, we detail the operations required to

prepare the binding partners, corresponding to steps 1 and 2 of
Figure 1. Proteins must be preoriented before input; i.e., the
center of the transmembrane domain of both binding partners is
at the origin with the appropriate orientation given that the
bilayer will be built parallel to the x−y plane. Such prealignment
comes as standard for structures downloaded from the OPM
server.19

(1) Structures are initially checked and, where necessary,
repaired using the Modeller program.20 Specifically, the
FASTA sequence of the protein is downloaded from the
PDB database2 (placing the FASTA file in the folder is
enough if there is no connection to the Internet), and this
is used to patch up to 15 consecutive missing residues.
Modeller will also placemissing atoms. In its current form,
the patching code can only handle two chains at most.
This step can be skipped, but it is necessary for a complete
simulation.

(2) The protein is immersed in a POPE bilayer and solvated
via the PACKMOL-memgen tool21 available through the
AmberTools(v.18+) package. Lipid and TIP3P water
molecules are placed using a random seed, and 80 loops
are performed during PACKMOL’s GENCAN routine to
improve packing with a total of 120 nloops used for all-
together packing. A tolerance of 2.4 Å is used to detect
clashes between molecules. POPE residue names are then
corrected to reflect the SLipid24 nomenclature before the
topology files are generated through GROMACS.22 Since
the SLipid and Amber14SB23 force fields use different
angle and dihedral descriptions, a small fix is applied to
allow the two to work in conjunction after this step.
Finally, the system is neutralized by swapping water
molecules for the appropriate number of Na+ or Cl−

counterions.

Molecular Dynamics. Here, we provide details on the MD
protocol used to simulate the binding partners, corresponding to
step 3 of Figure 1. All simulations are run on the GROMACS22

MD engine, with Amber14SB23 and SLipid24 force fields used
for the protein and lipids, respectively. The system is energy
minimized using a steepest descent algorithm, with a tolerance
threshold set to 200 kJmol−1 nm−1. The initial step size is set to 1
pm and the maximum number of allowed steps to 5 × 106. The
cutoffs for both Coulombic and van der Waals interactions are
set to 1.2 nm.
The protein is then equilibrated for 20 ns within an

isothermal−isobaric ensemble; T is set to 310.15 K and pressure
to 1 bar with a 2 fs step size. The constraint algorithm LINCS26

is applied to the bonds. A particle mesh Ewald summation is
used to treat long-range interactions, and a velocity-rescale
temperature with a coupling constant of 0.1 ps is applied
separately to protein, lipids, and water/ions. A Berendsen
pressure coupling method implemented semi-isotropically
maintains the pressure with a coupling constant of 1.0 ps and
compressibility of 4.5 × 10−5 bar−1. Velocities are randomly
assigned from a Boltzmann distribution at T. A second
equilibration stage is then run for 40 ns with the same settings
but with all constraints removed. Finally, production occurs over
a 10 ns time scale, for reasons shown in Figure S1, again in an

isothermal−isobaric ensemble with the same settings as the
equilibration. Atomic coordinates are saved every 5 ps and used
to generate a STID map following the procedure outlined by
Rudden and Degiacomi.16

Homology Modeling. Several test cases only had their
ligand and/or receptor starting structure known from a
homologue, sometimes bound to an alternative binding partner.
For these cases, receptor and ligand crystal structures were
mutated into their target counterparts via the Modeler
program.20 Motifs up to 15 residues long were permitted to be
patched if they were missing from the structure, and structures
were kept frozen to prevent optimization of models. The roto-
translations returned by JabberDock were applied to these
structures to yield the final predicted complexes. Table S1
reports on the sequence identity between homologues and the
target structure. Their RMSD, determining case difficulty (see
below), is also provided. We note that three benchmark cases
(1ZOY, 2VT4, and 1EHK) feature binding partners extracted
from a known complex that is a homologue to the target.
Although not a real-world test case, these are suitable benchmark
cases as the conformations of subunits in the two dimers differ.

Protein Docking. Here, we provide details on the docking
process of protein surfaces generated from STID maps,
corresponding to steps 5, 6, and 7 of Figure 1. An initial starting
point with the two input monomers’ transmembrane region
centers of mass centered at the origin is used prior to generating
any models. JabberDock uses a seven-dimensional space for
implementation comfort when roto-translating the STID maps.
Three dimensions define ligand translation in the Cartesian
space. Three dimensions define an axis of rotation for this ligand,
and one dimension defines a rotation angle around this axis. The
x and y translation values are limited by the size of the receptor,
and the ligand is only allowed to move ±5 Å along the z-axis.
The axis of rotation is the z-axis, which is permitted to precess by
up to 0.157 radians (9°) into the x−y plane. Possible rotation
angles in radians range between 0 and 2π.
To navigate the potential energy surface (PES) associated

with the scoring function and produce an ensemble of possible
docked poses, JabberDock leverages a distributed heuristic
global optimization algorithm featured in the POWer opti-
mization environment−particle swarm optimization “kick and
reseed” (PSO-KaR).25 PSO-KaR is used to explore the PES over
300 iterations using 80 randomly initialized agents (“particles”).
According to the “kick and reseed” procedure, particles
converging to a local minimum (i.e., with a velocity decaying
to less than 4% of the search space dimension in each direction)
are randomly restarted, and a repulsion potential is placed at
their convergence location. The whole optimization process is
repeated three times, with the memory of previous repulsion
potentials retained from one repetition to the next. In summary,
this docking procedure requires the evaluation of 72,000
docking poses. To obtain a diverse ensemble of solutions, 300
poses were finally selected as representatives from the pool of
poses having a positive score using a K-means clustering
algorithm on the 7-dimensional coordinates associated with
each model.

Assessment of Models Accuracy. Following the CAPRI
guidelines, we used three metrics to determine the quality of a
model: the ratio of correct contact residues (a valid contact
defined as an atom within 5 Å of the binding partner) to the
number of residues in the predicted complex, f nat, the RMSD
between the alpha carbons of the known crystal pose and the
predicted pose, and the RMSD of the two poses between the α-
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carbons at the interface (defined as within 10 Å of the binding
partner). CAPRI guidelines specify four levels of possible
success criteria: (1) incorrect, where RMSD > 10.0 Å and
interfacial RMSD > 4.0 Å OR f nat < 0.1, (2) acceptable quality,
where RMSD ≤ 10.0 Å or interfacial RMSD ≤ 4.0 Å and 0.1 ≤
f nat < 0.3 OR f nat≥ 0.3 and RMSD > 5.0 Å and interfacial RMSD
> 2.0 Å, (3) intermediate quality, where RMSD ≤ 5.0 Å or
interfacial RMSD ≤ 2 Å and 0.3 ≤ f nat < 0.5 OR f nat ≥ 0.5 and
RMSD > 1.0 Å and interfacial RMSD > 1.0 Å, and (4) high
quality, where RMSD ≤ 1.0 Å or interfacial RMSD ≤ 1.0 Å and
f nat ≥ 0.5. The protocol for applying this list of inequalities
follows the order provided, beginning with defining the incorrect
predictions. In the text, we qualify the result of a test as of high,
intermediate, or acceptable quality if at least one in the top 10
ranked models matches the criteria above.
Case Difficulty Classification. Docking cases are classified

under three levels of difficulty associated with their flexibility,
which we quantify via the RMSD difference between the Cα
atoms at the interface after superposing the bound and unbound
interfaces. Cases can be classified as either rigid-body (or easy),
medium, or difficult. Easy cases are those with a minimal
difference between the unbound crystallized structures and the
bound: less than 1 Å difference. In medium cases, the RMSD
difference is between 1 and 2.5 Å. Finally, difficult cases can be
anything greater than 2.5 Å. Thus, the difficult cases are
accordingly significantly more challenging than the other two,
particularly given that the requirements for an acceptable
success are close to the upper boundaries that define the difficult
cases. Our benchmark set featured two easy, 15 medium and
three difficult cases, as detailed in Table S1, spreadsheet. The
RMSDs reported in Table S1, spreadsheet refer to those
between target structures and crystal structures, either of the
unbound molecule or mutated structure from the homologue.
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