
Fetal membrane at the feto-maternal interface: An 
underappreciated and understudied intrauterine tissue

Lauren Richardson,

Ramkumar Menon

Department of Obstetrics & Gynecology, Division of Basic Science and Translational Research, 
The University of Texas Medical Branch at Galveston, Galveston 77555, TX, USA

INTRODUCTION

While most intrauterine tissues are thoroughly studied for their role in pregnancy 

maintenance and their contribution to labor initiation, the fetal membranes (i.e., 
amniochorionic membranes) are primarily overlooked.[1,2] The fetal membrane lines the 

intrauterine cavity (Figure 1A) and provides critical mechanical, immune, and endocrine 

support to protect the fetus during gestation[1,3–12] and has been shown to provide vital labor 

initiating signaling at term and preterm.[2,5,13–20] The function of the fetal membrane is 

derived from its unique makeup of multiple collagen layers,[21–23] along with fetal-derived 

cells that line with maternal decidua, forming the feto-maternal interface. A summary of the 

structure and function of the fetal membranes and the challenges researchers face studying 

this tissue are described below.

FETAL MEMBRANE ANATOMY

The fetal membrane and the maternal decidua form one of the feto-maternal interfaces 

during gestation (Figure 1B). The fetal membrane comprises two epithelial membranes, the 

amnion, and chorion, that are connected by collagen-rich multiple layers of extracellular 

matrix.[2,24] The amnion membrane, which maintains most of the fetal membranes’ tensile 

strength,[10,11,25–29] consists of an amnion epithelial layer connected to the fibrous-spongy 

layer of the extracellular matrix via a Type IV collagen-rich basement membrane.[22,23] 

These collagen layers contain various stromal cell types, including amnion mesenchymal 

cells, fibroblasts, immune cells, and chorion mesenchymal cells.[30–34] Stromal cells within 

the fetal membrane secrete Type I and III collagens to create a variety of extracellular 

matrix layers, forming a fibrous skeleton responsible for maintaining membrane integrity.
[22,35] The chorion membrane plays a crucial role in immune tolerance.[36–38] It contains 

the reticular layer and connects to the chorion trophoblast cells through another Type IV 
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collagen-rich basement membrane.[39,40] These fetal membrane layers are fused with the 

maternal decidua parietalis containing leukocytes to form the feto-maternal interface during 

pregnancy.[24,41–43]

REGIONS OF THE FETAL MEMBRANE

The fetal membranes are divided into different regions based on their proximity to maternal 

or fetal organs. They are generally divided into a region lining the placental bed (i.e., 
the region lining the apical side of the placenta), or reflective membranes that line the 

intrauterine cavity.[44,45] Though they have similar architecture, the membrane lining of the 

placental bed contains a condensed extracellular matrix and chorion layer. It only includes 

a small portion of the overall surface area of the fetal membrane.[46] Furthermore, the 

reflective membranes can be classified as the peri-placental zone (i.e., two–three inches from 

the placenta), mid-zone (i.e., middle and largest region), and cervical zone (i.e., overlaying 

the cervix) depending on their proximity to the placenta or the cervix.[44,45] Within the 

cervical zone is a region of the fetal membrane termed the zone of altered morphology 

(ZAM) which contains loose collagen structures that may contribute to the rupture of the 

membranes at term.[21,47,48] A better understanding of the region from which membranes 

are sampled and its histology is essential when studying fetal membrane structure and its 

cellularity and function.

FETAL MEMBRANE FUNCTION DURING GESTATION AND PARTURITION

The fetal membrane is not an inert tissue that lines the maternal decidua or the inner 

uterine cavity, instead, it is a complex multicellular organ that plays a distinct and vital 

role in maintaining pregnancy and the onset of labor signaling.[49] Throughout gestation, 

the amnion component of the fetal membrane plays a critical role in sustaining membrane 

integrity by undergoing cellular remodeling.[4,50–53] This process upholds the amnion tensile 

strength providing a watertight barrier and structure to the intrauterine cavity. The chorion 

component of the fetal membrane plays a distinct role from the amnion, as it is responsible 

for creating immune homeostasis in various ways. Chorion trophoblast cells modulate the 

immune environment by producing anti-inflammatory hormones[9,36,54,55] and cytokines,[12] 

and by buffering maternal (decidual) immune cell invasion[47,56] and immune intolerance 

by abundant expression of human leukocyte antigen G (HLA-G).[3] These endocrine 

and paracrine signalers help to maintain immune cell homeostasis at the choriodecidual 

interface.[12,57]

At term, close to 40 weeks gestation, both fetal and maternal tissue contribute to 

an increased inflammatory load and immune cell activation that promotes myometrial 

contractions and cervical ripening leading to delivery of the baby.[1,2,20,58] The fetal 

membrane has been recently shown to play a substantial role in initiating this labor cascade.
[2,17,20] Traditionally, it is known that fetal membranes produce cyclooxygenase-2 and 

prostaglandins that contribute to membrane weakening and rupture at term.[59–64] Recent 

studies suggest that fetal membranes from both humans and mice undergo a reactive oxygen 

species induced (due to intrauterine oxidative stress at term), telomere-dependent, activation 

of p38 mitogen-activated protein kinase (p38MAPK).[24,31,65–68] p38MAPK is a stress 
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signaler that can contribute to various cell fates.[66,69,70] Increased p38MAPK activation at 

term causes fetal membrane senescence, or a mechanism of tissue aging, and secretion 

of senescence-associated secretory phenotypes (SASP) comprised of pro-inflammatory 

cytokines, chemokines, growth factors, cell-free fetal DNA, and matrix metalloproteinases.
[24,29,34,54,71,72] SASP represents sterile inflammation in fetal tissues that propagates to 

the maternal side and transitions the quiescent myometrium and cervix into a contractile 

(active/labor) phenotype. This induction of stress-activated p38MAPK also causes fetal 

membrane epithelial cells (i.e., amnion and chorion) to undergo cellular transitions (i.e., 
epithelial-to-mesenchymal transition or EMT).[5,50,52,53,73] EMT increases the number of 

mesenchymal cells, promotes collagen degradation, and changes the inflammatory status at 

the feto-maternal interface.[50,73] These mesenchymal cells promote collagen degradation 

by increasing matrix metalloproteinases nine that can contribute to the development of 

microfractures (i.e., biologic fissures) within the extracellular matrix of the membranes.
[17,40,53] It is postulated that these pro-labor inflammatory signals described above could 

propagate in two different ways: diffusion through microfractures or exosomes (30–160 nm 

size extracellular vesicles) released from fetal membrane cells. Microfractures are higher 

in number and morphometrically (width and length) at term.[17,40,53] Experimentally, we 

have recapitulated that in vitro conditions mimicking labor also increases appearance of 

microfractures with larger and deeper features.[17,40,53] This suggests their relevance in the 

propagation of parturition signals. Exosomes are capable of carrying contents from the cell 

of their origin. It is reported that exosome cargo from oxidatively stressed fetal membrane 

cells contains active forms of p38MAPK and SASPs capable of promoting labor signaling.
[14,16,74–76]

CHALLENGES STUDYING FETAL MEMBRANES

Researchers studying fetal membranes must overcome many obstacles to rationalize the 

importance of studying their tissue of interest to journal editors and funding agencies. The 

first hurdle they must overcome is the definition of the fetal membrane and the second is to 

convince reviewers that the fetal membranes are separate from the placenta. Heterogeneity 

in the nomenclature of the membranes (i.e., amniotic sac, amniochorionic membrane, fetal 

membrane, placental membrane, feto-maternal interface) and which cell layers should be 

included in this terminology creates ambiguity.

The Fetal Membrane Society (FMS) is formed to educate reproductive biologists and 

perinatal biologists and scientists on the relevance and significance of the membranes. FMS 

is also involved in creating awareness of the importance of fetal membrane research among 

the public. As a major contributor to pregnancy maintenance and a determining factor in 

the timing of birth at term and preterm. As a contributor to fetal signals of parturition, 

regulating its pathological functions is critical to reducing the incidences of preterm birth. 

This topic was one of great interest at this year’s FMS meeting held during the 2022 Society 

of Reproductive Investigation International meeting. The FMS concluded that a white paper 

should be published to define “fetal membranes” and standardize the nomenclature in the 

literature. The hope is that a set nomenclature will improve reproducibility and provide 

clarity when documenting the important role, the fetal membranes play during gestation and 

parturition. Additionally, the fetal membranes are classically misidentified as an extension of 
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the placenta. As it is well known now, the fetal membranes are not a mere extension of the 

placenta but play very important mechanical, immune, endocrine, and communication roles 

between the mother and fetus.[1] These functions regulate membrane growth and maturation 

which contributes to pregnancy homeostasis. Misclassification of the membranes and not 

identifying them as a distinct tissue from the placenta has slowed fetal membrane-specific 

research and funding. This and the lack of an advocacy group or international organization 

that focuses on this topic have restricted scientific awareness of this fascinating tissue. The 

FMS has been trying to address some of these issues and developing strategies to generate 

awareness and fill knowledge gaps in fetal membrane biology and function.

Unlike other intrauterine tissues such as the myometrium or placenta, that have established 

in vitro methodology such as commercially available cell lines, ex vivo systems (i.e., 
myograph and placenta perfusion),[77–80] organoids,[81,82] organ-on-chip devices,[83–88] and 

validated animal models, the fetal membranes lack a majority of these resources. Currently, 

there are no commercially available and validated iPS or cell lines for the amnion, chorion, 

or the decidua of the fetal membrane feto-maternal interface. Due to this, researchers are 

forced to use either contaminated (i.e., amnion wish cells – HeLa) or improper cell types 

(i.e., placenta choriocarcinoma – BeWo to mimic the chorion trophoblasts; decidualized 

endometrium to mimic the decidua parietalis) to conduct cellular studies. This limits 

research undertaken in the field and reduces new discoveries. Furthermore, unlike the 

other organs described above, very few organ-on-chip models of the fetal membranes 

exist,[46,52,89–91] and fetal membrane organoids are yet to be developed. These are both 

critical platforms needed in this field to truly understand cell-cell cell-collagen interactions 

responsible for pregnancy maintenance and pathology onset.

SUMMARY

The fetal membranes form a unique barrier that surrounds the neonate and promotes its 

survival during gestation. This membrane is comprised of two components, the amnion 

and chorion layers, that function as distinctly unique epithelial compartments promoting 

homeostasis during development. At term initiated by physiological signals, or preterm 

induced by pathology, these layers promote signaling cascades that contribute to labor onset. 

Advanced in vivo and in vitro methodology to study the fetal membrane, along with the 

formation of advocacy groups, are needed to truly understand and promote this unique 

tissue.

CONCLUSIONS

If studied adequately, the fetal membranes, as one of the feto-maternal interfaces, could 

answer many questions regarding labor induction, inflammation, infection, and pathologies 

that lead to preterm birth. A better understanding of all aspects of fetal membrane origin, as 

well as cellular characteristics, needs to be taken into account to tease out the mechanism 

behind the labor cascade and how to target said pathways therapeutically. A global 

understanding of the role of fetal membranes in parturition highlights the critical function of 

the membranes during pregnancy and in the prevention of adverse pregnancy outcomes.
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Figure 1. 
Intrauterine and fetal membrane anatomy. (A) Within the intrauterine cavity, there are a 

variety of maternal (i.e., myometrium and cervix) and fetal (i.e., placenta, umbilical cord, 

and an amniotic cavity containing amniotic fluid, and the fetal membranes) derived organs 

that surround the fetus and contribute to pregnancy maintenance. The fetal membranes 

(black) line the cavity and are derived from multiple fetal cellular and collagen layers to 

form the feto-maternal interface. (B) The amnion epithelial cells (blue) are connected to 

the basement membrane (dark green) and compact layer (green dashes) of the extracellular 

matrix (ECM) forming an amniotic fluid-tight barrier. Within the first layer of the ECM (i.e., 
the fibrous layer), amnion mesenchymal cells (light purple) migrate and interact with the 

collagen environment. Separating the fibrous and reticular layers of the ECM is the spongy 

layer that separates the amnion (blue) and chorion (yellow) portions of the fetal membranes. 

The reticular layer of the ECM contains chorion mesenchymal cells (dark purple) that is 

connected to the pseudo-basement membrane of the chorion. The multi-layer of chorion 

trophoblast cells (yellow) forms the second epithelial layer of the fetal membranes and 

is critical for immune homeostasis. The fetal chorion layer is directly connected to the 

maternal decidua layer (green) forming the feto-maternal interface of the membranes. 

Resident immune cells predominantly live in the decidua layer but can migrate into the 

chorion and amnion layers if stimulated.

Richardson and Menon Page 10

Placenta Reprod Med. Author manuscript; available in PMC 2023 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	INTRODUCTION
	FETAL MEMBRANE ANATOMY
	REGIONS OF THE FETAL MEMBRANE
	FETAL MEMBRANE FUNCTION DURING GESTATION AND PARTURITION
	CHALLENGES STUDYING FETAL MEMBRANES
	SUMMARY
	CONCLUSIONS
	References
	Figure 1.

