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Abstract  
Tau protein, a microtubule-associated protein, has a high specific expression in neurons and axons. Because traumatic spinal cord injury 
mainly affects neurons and axons, we speculated that tau protein may be a promising biomarker to reflect the degree of spinal cord injury and 
prognosis of motor function. In this study, 160 female Sprague-Dawley rats were randomly divided into a sham group, and mild, moderate, 
and severe spinal cord injury groups. A laminectomy was performed at the T8 level to expose the spinal cord in all groups. A contusion lesion 
was made with the NYU-MASCIS impactor by dropping a 10 g rod from heights of 12.5 mm (mild), 25 mm (moderate) and 50 mm (severe) 
upon the exposed dorsal surface of the spinal cord. Tau protein levels were measured in serum and cerebrospinal fluid samples at 1, 6, 12, 
24 hours, 3, 7, 14 and 28 days after operation. Locomotor function of all rats was assessed using the Basso, Beattie and Bresnahan locomotor 
rating scale. Tau protein concentration in the three spinal cord injury groups (both in serum and cerebrospinal fluid) rapidly increased and 
peaked at 12 hours after spinal cord injury. Statistically significant positive linear correlations were found between tau protein level and spinal 
cord injury severity in the three spinal cord injury groups, and between the tau protein level and Basso, Beattie, and Bresnahan locomotor 
rating scale scores. The tau protein level at 12 hours in the three spinal cord injury groups was negatively correlated with Basso, Beattie, and 
Bresnahan locomotor rating scale scores at 28 days (serum: r = −0.94; cerebrospinal fluid: r = −0.95). Our data suggest that tau protein levels 
in serum and cerebrospinal fluid might be a promising biomarker for predicting the severity and functional outcome of traumatic spinal 
cord injury.
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Introduction 
Traumatic spinal cord injury (SCI) is one of the major caus-
es of death and disabilities among all traumas. The reported 
incidence of SCI ranges from 9.2 to 246 cases per million 
(Jazayeri et al., 2015). Between 1993 and 2012, the incidence 
of acute traumatic SCI in the United States remained rela-
tively stable; however, the total number of cases increased 
(Jain et al., 2015). To date, much effort has been made to 
evaluate the severity and the potential of recovery in patients 
with traumatic SCI; however, a reliable method for evaluat-
ing the severity and predicting the outcome following trau-
matic SCI, especially in the acute stages, has still not been 
achieved (Krishna et al., 2014; Silva et al., 2014). The current 
evaluation of traumatic SCI severity is still predominant-
ly limited to neurological evaluation and imaging studies 
(Cheran et al., 2011; Pouw et al., 2014; Yokobori et al., 2015), 
which are often imprecise due to the unstable conditions of 
patients (such as the phenomenon of spinal shock) and the 
artifacts of metal implants after spinal operations. The lim-
itation of current evaluation methods is also an obstacle for 
the development of new treatments for SCI patients (Hulme 
et al., 2017). Therefore, it would be beneficial and necessary 
to supplement current methods of evaluation with chemical 
biomarkers that reliably quantify traumatic SCI severity. 

Tau protein is a microtubule-associated protein that is 
primarily localized in neurons (Breuzard et al., 2013). Tau 
protein has been shown to be a promising biomarker for 
axonal injury, because this protein binds to axonal micro-
tubules and forms axonal microtubule bundles (Caprelli et 
al., 2017). Numerous studies have reported that tau protein 
concentrations in cerebrospinal fluid (CSF) and serum can 
serve as a biological marker for injury severity of the central 
nervous system, such as in traumatic brain injury (Liliang et 
al., 2010a, b; Magnoni et al., 2012), cerebral stroke (Bitsch et 
al., 2002; Wunderlich et al., 2006), Alzheimer’s disease (Lew-
czuk et al., 2004; Tatebe et al., 2017; Mukaetova-Ladinska 
et al., 2018), and other central nervous system diseases 
(Brettschneider et al., 2005; Buongiorno et al., 2011). How-
ever, only one previous study has evaluated the relationship 
between tau protein levels and injury severity in traumatic 
SCI (Yokobori et al., 2015). Following traumatic SCI, neu-
ronal cell death at the injury site is likely to cause a release 
of intracellular microtubule binding proteins, such as tau, 
into the extracellular space, where they are transported by 
convective bulk flow to CSF and peripheral blood. Recently, 
only one study in dogs with intervertebral disc herniation 
has reported that CSF tau levels were positively associated 
with the severity of spinal cord damage and may serve as a 
biomarker for severity of intervertebral disc herniation (Ro-
erig et al., 2013). 

This study attempted to measure tau protein levels in se-
rum and CSF in rats with traumatic SCI. Our aims were to 
determine whether: (1) tau protein is detectable in serum 
and CSF samples of traumatic SCI, and (2) the tau protein 
level reflects the severity of the injury.

Materials and Methods
Animals
One-hundred sixty female Sprague-Dawley rats, aged 8–9 
months and weighing 230–280 g, were purchased from 
Beijing Experimental Animal Center of China (animal li-
cense No. SYXK (Jing) 2015-0046). All rats were housed in 
a climate-controlled barrier facility with 12-hour light/dark 
cycles at 24 ± 2°C, and allowed free access to food and water 
for a period of at least 1 week prior to the experimental pro-
cedures. All protocols were reviewed and approved by the 
Ethics Committee of Southwest Hospital, China (approval 
No. SWH20160126) on August 22, 2016. All experiments 
were performed in accordance with the National Institutes 
of Health Guide for the Care and Use of Laboratory Animals 
(NIH Publication No. 80-23, revised 1996). 

All rats were randomly and equally divided into four 
groups: sham group, mild SCI group, moderate SCI group 
and severe SCI group. Each group was further subdivided 
according to eight time points (1, 6, 12, 24 hours, 3, 7, 14 
and 28 days after operation) to collect CSF and peripheral 
blood samples (n = 5 for each subgroup at each time point).

Group assignment and model establishment 
The graded contusion models of SCI were performed us-
ing the NYU-MASCIS (New York University-Multicenter 
Animal Spinal Cord Injury Study) impactor according to 
previous methods (Agrawal et al., 2010). Briefly, rats were 
anesthetized via intraperitoneal injection of 10% chloral-
hydrate (3.0 mL/kg), and the vertebral column of the rats 
was exposed. A laminectomy was performed at the T8 lev-
el to expose the cord. A contusion lesion was made with 
the NYU-MASCIS impactor by dropping a 10 g rod from 
heights of 12.5 mm (mild SCI group), 25 mm (moderate SCI 
group) and 50 mm (severe SCI group) upon the exposed 
dorsal surface of the spinal cord. Rats in the sham group 
received laminectomy only. Paralysis of the lower limbs 
was observed along with tail swinging and spasms. These 
responses confirmed successful establishment of the model. 
After operation, rats were placed back into their cages with 
heating pads, and were closely observed until they were con-
scious. As a prophylactic for infections, penicillin (200,000 
unit/animal/d) was subcutaneously given for 3 consecutive 
days after operation. Saline was subcutaneously injected im-
mediately after lesioning and then daily for 7 days. Food and 
water were provided ad libitum. Post-operative care includ-
ed manual expression of bladders twice a day until a reflex 
pattern of emptying the bladder was established.

Behavioral scores 
Locomotor functions of all rats were assessed using the 
Basso, Beattie, and Bresnahan locomotor rating scale (Bas-
so et al., 1995), a 21-point scale to assess and analyze the 
hind limb movements of a rat in an open field, at 1, 6, 12, 
24 hours, and 3, 7, 14 and 28 days after operation. The Bas-
so, Beattie, Bresnahan scale ranges from 0 to 21, where 0 = 
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complete paralysis and 21 = normal. Two investigators who 
were blinded to treatment assignment assessed the motor 
function of the rats at each time point.

Sample collection
CSF and peripheral blood samples were immediately col-
lected from all four groups at each time point while the rats 
were terminally anesthetized using an overdose of 10% chlo-
ralhydrate. CSF was collected from the cisterna magna as 
described previously (Shapiro et al., 2012). The 27 G needle 
syringe was inserted into the cisterna magna through the 
occipital membrane, and approximately 50 μL of CSF was 
collected. CSF samples were centrifuged at 2500 r/min at 
−4°C for 15 minutes to remove cellular debris. Immediately 
after CSF collection, 3 mL of blood was collected by cardiac 
puncture as described previously (Kim et al., 2014; Zhang 
et al., 2016). To harvest cell-free serum, the blood samples 
were drawn into a tube containing clot activator. After 
standing upright at 37°C for 30 minutes, the blood samples 
were centrifuged at 1500 r/min and 4°C for 15 minutes and 
the supernatant was collected as the serum component. The 
serum component and CSF were immediately frozen in liq-
uid nitrogen and stored at −80°C until further testing. 

Enzyme-linked immunosorbent assay (ELISA) 
Concentration of serum and CSF tau protein was measured 
using the commercial Rat pτ (phospho-Tau protein) ELISA 
kit (BioSource, Camarillo, CA, USA) according to the man-
ufacturer’s instructions. The minimum detectable dose of 
tau protein was 12 pg/mL. The detection methods were as 
follows: standards or test samples were added to the wells, 
incubated and washed to remove unbound proteins. An an-
ti-tau-horseradish peroxidase-conjugated detector antibody 
was then added, incubated and unbound conjugate was 
washed away. An enzymatic reaction was produced through 
the addition of 3,3′,5,5′-tetramethylbenzidine substrate, 
which was catalyzed by horseradish peroxidase generating 
a blue color product that changes to yellow after adding 
acidic stop solution. The absorbance value was measured at 
450 nm using a microplate reader (Thermo Fisher Scientific, 
Waltham, MA, USA). The concentration of tau in the sam-
ples was then determined by comparing the optical density 
of the samples to the standard curve.

Statistical analysis
Data, expressed as the mean ± SD, were analyzed with SPSS 
19.0 software (IBM, Armonk, NY, USA). Results were eval-
uated by one-way analysis of variance followed by Bonfer-
roni’s post hoc test. The relationship between variables was 
determined by the Spearman or Pearson correlation coeffi-
cient method. A value of P < 0.05 was considered statistically 
significant. 

Results
Tau protein levels in serum and CSF
As shown in Figure 1, the tau protein level in serum and 
CSF was slightly increased in the sham group at 12 hours 

after SCI compared with 1 hour after SCI. However, there 
was no significant difference in comparison with the rest 
of the time points. In all SCI rats, the levels of serum and 
CSF tau protein were increased at 1 hour to 6 hours after 
SCI, reached a peak at 12 hours, and then slowly decreased. 
However, tau protein levels in serum and CSF were rela-
tively high for a period both in the moderate and severe SCI 
groups. Significant correlations were detected between CSF 
tau protein levels and serum tau levels at each time point in 
SCI rats (Table 1).

Basso, Beattie, and Bresnahan locomotor rating scale scores  
SCI caused complete paralysis of both lower extremities 
in all rats 12 hours post surgery, with a Basso, Beattie, and 
Bresnahan locomotor rating scale score of 0–1. Over the 
4-week period, a gradual recovery was observed in all SCI 
groups (Figure 2). Significant motor functional improve-
ment was detected in the mild SCI group compared with 
moderate and severe SCI groups at 24 hours following SCI (P 
< 0.05). The Basso, Beattie, and Bresnahan locomotor rating 
scale scores were negatively correlated with SCI severity at 
24 hours, 3, 7, 14 and 28 days after SCI (Table 2).

Correlation of tau protein levels and SCI severity  
A statistically significant, negative linear correlation was 
found between the concentration of serum tau protein and 
SCI severity at each time point; the same relationship was 
also found between CSF tau protein level and SCI severity 
(Table 3).

Correlation of tau protein levels and Basso, Beattie, and 
Bresnahan locomotor rating scale scores
The concentrations of serum tau protein were negatively 
correlated with the Basso, Beattie, and Bresnahan locomo-
tor rating scale scores at each time point except 1, 6 and 12 
hours, and the same relationship was also found between the 
CSF tau protein level and SCI severity (Table 4). We also 

Table 1 Correlation of tau protein levels (pg/mL) in cerebrospinal 
fluid and serum in SCI rats (Pearson correlation analysis)

1 hour 6 hours 12 hours 24 hours 3 days 7 days 14 days 28 days

r 0.83 0.97 0.98 0.98 0.96 0.81 0.77 0.51
P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.02

The data are analyzed from the four groups (sham group, mild SCI 
group, moderate SCI group and severe SCI group, n = 20). SCI: Spinal 
cord injury.

Table 2 Correlation between SCI severity (mild, moderate, severe) 
and BBB scores (Spearman correlation analysis)

1 hour 6 hours 12 hours 24 hours 3 days 7 days 14 days 28 days

rs –0.41 –0.45 –0.46 –0.83 –0.89 –0.91  –0.97 –0.97
P 0.13 0.07 0.13 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Two variables of the correlation analysis were: Basso, Beattie, and 
Bresnahan locomotor rating scale (BBB) scores and SCI severity (sham 
= 1; mild = 2; moderate = 3; severe = 4), respectively. All groups were 
involved in the analysis (n = 20). 
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analyzed the relationship between the peak concentration of 
serum and CSF tau protein at 12 hours and the Basso, Beat-
tie, and Bresnahan locomotor rating scale scores at 28 days. 
Results showed a significant negative correlation in CSF tau 
protein levels with 28 days’ Basso, Beattie, and Bresnahan 
locomotor rating scale scores (r = −0.95, P < 0.01); similar 
results also were found with serum tau protein level (r = 
−0.94, P < 0.01) (Figure 3).

Discussion
In this study, a standardized rat injury model with 
NYU-MASCIS impactor was used to evaluate the relation-
ship between tau protein level and SCI severity. This allowed 
us to define the severity of injury (mild, moderate, and 
severe) as described previously (Agrawal et al., 2010). A sig-
nificant positive correlation was found between tau protein 
levels (both in CSF and serum) and measures of severity in 
rats with traumatic SCI. 

The pathophysiology of traumatic SCI includes prima-
ry and secondary injuries to the spinal cord (Zhang et al., 
2018). The primary injury is mainly due to the mechanical 
force to the spinal cord, which results in the disruption of 
axons. The injury then leads to a cascade of biological events, 
described as ‘‘secondary injury’’, which occurs over the 
course of minutes to weeks, and leads to further neurological 
damage (Wen et al., 2016; Rong et al., 2017; Fan et al., 2018). 
The severity of the injury is thought to be largely dependent 
on the extent of neuronal damage, including the primary and 
second injuries to the spinal cord. The microtubule-associat-
ed protein tau is a cytoskeletal protein expressed primarily in 
the central nervous system, where it stabilizes microtubules 
and regulates microtubule assemblies (Caprelli et al., 2017; 
Guo et al., 2017; Josephs, 2017; Sotiropoulos et al., 2017). 
Therefore, this investigation was designed to evaluate wheth-
er tau protein level in CSF or serum reflects the severity of 
traumatic SCI. 

To our knowledge, this is the first report investigating the 

dynamic changes of the tau protein level in a traumatic SCI 
model. In our study, we found that tau protein level (both 
in serum and CSF) was increased significantly after SCI. The 
peak concentration occurred at 12 hours and remained at a 
relatively high level for 3 days. Similarly, in a model of rat 
traumatic brain injury, the tau protein level was significantly 
increased after injury, and peaked as early as 1 hour (Liliang 
et al., 2010b). Consistent with many other studies of bio-
markers (Wang et al., 2016; Wu et al., 2016), our results also 
showed that the tau protein level in CSF was significantly 
higher than that in serum; furthermore, the level of serum tau 
protein was positively correlated with CSF tau protein level. 

The Basso, Beattie, and Bresnahan locomotor rating scale 
has been widely used to evaluate the behavioral outcome af-
ter SCI (Duan et al., 2018; Fu et al., 2018; Ko et al., 2018). In 
our study, behavioral outcomes measured by Basso, Beattie, 
Bresnahan score were similar to those in previous studies 
(Yahata et al., 2016; Gu et al., 2017; Rink et al., 2018). Mean 
Basso, Beattie, and Bresnahan locomotor rating scale scores 
showed a significant difference between different severity 
groups at the same time point after SCI, and Basso, Beattie, 
Bresnahan scores were negatively correlated with SCI sever-
ity at 7, 14 and 28 days after SCI. Furthermore, a negative 
correlation was found between the levels of tau protein and 
Basso, Beattie, and Bresnahan locomotor rating scale scores 
after traumatic SCI. Thus, a higher tau protein concentra-
tion in serum or CSF at 12 hours suggested worse locomo-
tor function outcome at 28 days. In the current study, the 
tau protein level both in serum and CSF was remarkably 
correlated with SCI severity at 28 days after injury. This as-
sociation would be helpful to evaluate the severity of SCI, 
especially in the early phase of injury. Similarly, in a study 
in dogs with SCI by intervertebral disc herniation, CSF tau 
protein concentrations showed significant differences be-
tween different severities of intervertebral disc herniation 
(Roerig et al., 2013). 

Neuronal cell injury or death is likely to cause a release of 
intracellular microtubule binding proteins, such as tau, into 

Table 3 Correlation between tau protein levels and SCI severity (mild, moderate, severe; Spearman correlation analysis)

1 hour 6 hours 12 hours 24 hours 3 days 7 days 14 days 28 days

Serum rs 0.92 0.97 0.97 0.97 0.89 0.86 0.83 0.78
P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Cerebrospinal 
fluid

rs 0.87 0.97 0.97 0.97 0.92 0.93 0.87 0.78
P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Two variables of the correlation analysis were: Basso, Beattie, and Bresnahan locomotor rating scale score and SCI severity (sham = 1; mild = 2; 
moderate = 3; severe = 4), respectively. All groups were involved in the analysis (n = 20). SCI: Spinal cord injury.

Table 4 Correlation between tau protein levels (pg/mL) and Basso, Beattie, and Bresnahan rating scale score (Pearson correlation analysis)

1 hour 6 hours 12 hours 24 hours 3 days 7 days 14 days 28 days

Serum r –0.13 –0.25 –0.55 –0.81 –0.87 –0.84 –0.82 –0.85
P 0.95 0.78 0.13 0.02  < 0.01  < 0.01  < 0.01  < 0.01

Cerebrospinal 
fluid

r –0.15 –0.31 –0.69 –0.82 –0.81 –0.85 –0.81 –0.71
P 0.87 0.71 0.03  < 0.01  < 0.01  < 0.01  < 0.01  < 0.01

All groups were involved in the analysis (n = 20). 
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the extracellular space, where they are transported by con-
vective bulk flow to CSF (Segal, 1993; Zetterberg, 2017). Pre-
vious studies have reported that biomarkers, such as S100-β 
and serum microRNAs, may have potential to aid the eval-
uation or diagnosis of SCI (Cao et al., 2008; Hachisuka et 
al., 2014; Kuhle et al., 2015; Sabour et al., 2017; Tigchelaar et 
al., 2017). However, because these markers are not involved 
in structural components of neurons, they do not directly 
reflect the functional status of the cells. Further, because of 
their low specificity in patients with multiple traumas, these 
markers seem to be inadequate for diagnosis and outcome 
prediction (Ydens et al., 2017). 

In the present study, tau protein was identified both in 
serum and CSF as a promising biomarker for evaluating the 
severity of SCI in the acute phase. The levels of tau protein 
both in serum and CSF were higher with increasing severity 
of SCI. Although the tau protein level was lower in serum 
compared with CSF at the same time points, a positive cor-
relation was found between them. When a neuron is severe-
ly injured, tau protein is released into the extracellular space 
through the damaged membrane (Lee et al., 2018). Because 
the blood-brain barrier was probably damaged at the same 
time of traumatic SCI, tau protein likely flowed into the 

blood as well (Caprelli et al., 2018). Tau protein directly re-
flects neuronal injury because tau protein is primarily local-
ized in axons (Qi et al., 2016). Therefore, we believe that the 
tau protein level may be a perfect biomarker for evaluating 
the severity of SCI. Monitoring tau protein level in serum 
may have a profound use for the prediction of neuronal 
functional outcomes after SCI. As tau protein contributes 
to microtubule assembly and stabilization in axons, further 
research will focus on the possibility of using a microtubule 
stabilizer to prevent abnormal tau release from healthy neu-
rons and to improve its function after traumatic SCI.  

There were certain limitations to our study. First, although 
our study suggests that tau has potential as a biomarker 
of SCI, further studies in patients with varying degrees of 
SCI are needed. The use of such biomarkers in clinical tri-
als may accelerate the development of novel therapeutic 
approaches of SCI. Second, it is worth mentioning that in 
recent years, immune cells have been shown to play an in-
creasingly important role in the pathophysiology of brain 
and SCI (Feng et al., 2016; Barbagallo et al., 2017; Li et al., 
2017). Recent studies have found that mice show a strong 
inflammatory response accompanied by activation of glial 
cells and involvement of necroptosis signaling following 

Figure 1 Tau protein levels in 
serum and cerebrospinal fluid of 
rats following SCI.  
(A) Serum tau protein levels; (B) 
cerebrospinal fluid tau protein 
levels. *P < 0.05, vs. sham group; 
#P < 0.05, vs. mild SCI group; †P < 
0.05, vs. moderate SCI group. Data 
are expressed as the mean ± SD (n 
= 5; one-way analysis of variance 
followed by Bonferroni’s post hoc 
test). SCI: Spinal cord injury; h: 
hour(s); d: days. 

Figure 2 Temporal changes in BBB 
scores of rats following SCI. 
(A) Changes of BBB score over time; 
(B) Comparison of BBB score among 
groups. *P < 0.05, vs. sham group; #P 
< 0.05, vs. mild SCI group; †P < 0.05, 
vs. moderate SCI group. Data are ex-
pressed as the mean ± SD (n = 5; one-
way analysis of variance followed by 
Bonferroni’s post hoc test). BBB: Basso, 
Beattie, and Bresnahan locomotor 
rating scale; SCI: spinal cord injury; h: 
hour(s); d: days.
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chronic ischemic injury (Yang et al., 2017; Cruz et al., 2018). 
Furthermore, inflammatory cytokines expression levels are 
markedly increased in brain ischemic injury (Xu et al., 2016; 
Chen et al., 2017). Further studies are needed to explore 
whether associations exist between immune cells and tau 
protein following central nervous system damage.

Taken together, there is clearly an urgent need to innovate 
more sensitive and reliable biomarkers in the acute stages 
of SCI, because successful management of SCI necessitates 
an appropriate diagnostic standard for the acute stages after 
injury. To our knowledge, this is the first study to investigate 
the relationship between tau protein level and injury severity 
in rats with traumatic SCI. Our preliminary data showed that 
tau protein level (both in serum and CSF) was positively cor-
related with the injury severity and negatively correlated with 
the locomotor outcome. Therefore, we suggest that tau protein 
level may be a perfect biomarker for evaluating the severity of 
SCI. Further studies in patients are warranted to increase the 
evidence for tau protein as an injury severity marker.
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