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Keratoconus (KC) is a corneal thinning disorder that leads to loss of visual acuity through ectasia, opacity, and irregular astigmatism.
It is one of the leading indicators for corneal transplantation in the Western countries. KC usually starts at puberty and progresses
until the third or fourth decade; however its progression differs among patients. In the keratoconic cornea, all layers except the
endothelium have been shown to have histopathological structural changes. Despite numerous studies in the last several decades,
the mechanisms of KC development and progression remain unclear. Both genetic and environmental factors may contribute
to the pathogenesis of KC. Many previous articles have reviewed the genetic aspects of KC, but in this review we summarize
the histopathological features of different layers of cornea and discuss the differentially expressed proteins in the KC-affected
cornea. This summary will help emphasize the major molecular defects in KC and identify additional research areas related to
KC, potentially opening up possibilities for novel methods of KC prevention and therapeutic intervention.

1. Introduction

The cornea is the outermost avascular and transparent part
of the eye consisting of epithelium, Bowman’s layer, stroma,
Descemet’s membrane, and endothelium. In 2013, a novel
collagenous, acellular layer, the Dua layer, was identified
between corneal stroma and Descemet’s membrane [1]. Each
layer has a specific important function, and a defect in any of
these layers can lead to corneal disorders. The most common
corneal ectatic disorder and a leading indicator for corneal
transplantation in developed countries is keratoconus (KC)
[2, 3]. KC is a bilateral, progressive ectatic disease where the
cornea becomes cone shaped due to significant thinning of
the corneal stroma (Figure 1). Visual impairment develops
frommyopia and irregular astigmatism [4]. Early forms ofKC
can be more accurately detected and potentially quantified in
a reproducible manner with corneal topography [5].

Although KC has long been described as a nonin-
flammatory disorder, recent reports have indicated possible

inflammatorymechanisms [6–8]. KCusually starts at puberty
and progresses until it stabilizes in the third or fourth decade.
An inverse correlation has been noticed between age and
KC severity [9, 10]. The earlier the onset of KC, the more
severe the clinical phenotypes. KC appears in all ethnicities
and has no gender preference [5, 11]. The prevalence of KC
varies greatly worldwide; it was reported at 0.0003% in Russia
[12], 0.086% in Denmark [13], 0.249% in Iran [14], and 2.3%
in central India [15]. Not only do geographical variations
change KC prevalence, but also the source of the collected
data does. For example, in the USA, the prevalence of KCwas
found to be 600/100,000 in a population based study [16] and
54.5/100,000 in a hospital records based study [17].

Many reviews have previously summarized the genetic
studies linked to KC incidence [18, 19], whereas others have
discussed the various advances in treatment modalities [20,
21]. Despite recent advances in KC research, the molecular
and pathological mechanisms of KC still remain unclear. To
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Figure 1: Cone shaped phenotype of the cornea in a keratoconus
patient.

Figure 2: Sign of Vogt’s striae showing fine vertical lines in deep
stroma and Descemet’s membrane of a keratoconus patient.

our knowledge, there is currently no comprehensive article
that collectively summarizes the clinical and histopatholog-
ical phenotypes associated with molecular and biochemical
changes inKC.We hope that a better understanding of patho-
logical changes associated with KC may promote further
research to identify novel therapeutic targets that could stop
or delay KC progression.

1.1. Clinical Signs of KC. Clinically, the primary symptoms
of KC are reduced visual acuity, photophobia, monocular
diplopia, and glare. Due to disease progression, KC patients
usually need frequent adjustment of their spectacle correc-
tion, and often vision cannot be corrected to 20/20 with
spectacles alone [22]. In moderate to advanced KC, slit
lamp examination can often capture clinical signs of KC,
such as Fleischer’s ring (iron lines partially or completely
surrounding the cone), Vogt’s striae (fine vertical lines in
deep stroma and Descemet’s membrane, Figure 2), corneal
thinning, and Münson’s sign (bulging of the lower lid during
downgaze, Figure 3). Other accompanying signs that might
appear are increased visibility of corneal nerves, apical thin-
ning, anterior stromal clearing lines, subepithelial fibrillary

Figure 3: Münson’s sign in a keratoconus patient which appears as
bulging of the lower lid during downgaze.

lines, and central or eccentric corneal protrusion [5]. Corneal
topography, a key diagnostic method for KC, has greatly
aided in diagnosis and treatment of KC and forme fruste, the
subclinical presentation of KC, leading to earlier treatment of
these patients.

1.2. Etiology. KC is a complex multifactorial disorder, and
changes in numerous genes and environmental factors are
thought to be responsible for the disease development and
progression [23].

1.2.1. Genetic Factors. Themajority of KC cases are sporadic;
however, 6–23.5% of keratoconic patients have a positive
family history [24]. First-degree relatives of KC patients
have a risk of developing KC that is 15–67 times higher
than the general population [25]. The suggested pattern
of inheritance in these familial cases is mostly autosomal
dominant (reviewed in [18]). Monozygotic twins have been
reported to be concordantly affected with KC, rather than
discordant for KC, which is considered important evidence
for genetic contribution in the pathogenesis of KC [26].Wang
et al. have suggested that KC is inherited likely due to a
major gene defect [27], while Kriszt et al. have indicated
that KC is a complex non-Mendelian disease [28]. Family-
based linkage analyses have identified at least 17 genomic loci
from 12 different studies [29–40]. Mutations in the MIR184
gene have been found to cause KC, but the majority of the
mutations remain to be identified (reviewed in [18]).

1.2.2. Environmental Factors. Besides genetic factors, many
environmental factors have been documented as contributors
to KC pathogenesis in patients with and without any family
history [18]. These factors include contact lens wear [20],
vigorous eye rubbing [41, 42], atopy [43–45], ultraviolet light
exposure, and other factors that can be related to increased
oxidative stress in the cornea [46, 47].

1.3. Other Disorders Associated with KC. Usually KC is
thought to be a sporadic disease; however, it has been
described in association with many syndromes and diseases.
Down syndrome patients were found in several studies to
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develop KC at a higher frequency [11, 25, 48–52], while
other studies reported the absence of KC in this subset of
patients [53–55]. Interestingly, studies of Down syndrome
patients who are less than 18 years old observed less or no
incidence of KC compared to controls [52–55], while adult
Down syndrome patients had a greater prevalence of KC [50,
51, 56, 57]. KC has also been associated with Leber congenital
amaurosis. Up to 30% of Leber congenital amaurosis patients
were reported to have KC, possibly due to the mechanical
effects produced by eye rubbing [58–61]. Previous studies
have also linked KC with many connective tissue diseases,
including but not limited to Ehlers–Danlos syndrome [62],
osteogenesis imperfecta [63], mitral valve prolapse [64, 65],
Mediterranean fever [66], and joint hypermobility disease
[67]. In contrast, another study has shown lack of association
between KC and mitral valve prolapse or joint hypermobility
[68]. A negative association has been identified between dia-
betesmellitus andKC (i.e., a reduced risk of developing KC in
diabetic patients) [11, 69, 70]. In patients with diabetes melli-
tus, high levels of glucose may cause glycosylation of corneal
fibers and induce collagen cross-linking in the stroma, in
turn preventing biomechanical weakening of the cornea and
reducing the risks of ectasia and KC [69, 71]. Additionally,
Nemet et al. have reported a strong correlation between
KC and allergic immune disorders, as well as autoimmune
diseases [43], adding evidence to the positive relationship
between KC and inflammation. Dry eye symptoms, such
as lowering in tear secretion, tear film break up time,
and corneal sensitivity, have been reported in KC patients
[72–74]. Impairment of the corneal sensory nerve activity
[74], decreased mucin production in tears [73], or elevated
inflammatory mediators have been proposed to account for
these dry eye associated symptoms in KC patients [72].

2. Histopathological Abnormalities in KC

The cornea is composed of six distinct layers: the outer strati-
fied, squamous nonkeratinized epithelium, the acellular Bow-
man’s layer, the inner connective tissue stroma with its res-
ident keratocytes, the pre-Descemet’s Dua layer, Descemet’s
membrane, and the cuboidal monolayered endothelium.
The cornea is surrounded anteriorly by the tear film and
posteriorly by aqueous humor. Maintenance of corneal shape
and transparency is critical for optimizing the eye’s refrac-
tive power [75]. Researchers have used a variety of differ-
ent advanced techniques to evaluate major morphological
corneal changes in KC patients [76–82]. Light microscopy,
confocal microscopy, and optical coherence tomography
(OCT) have been used to examine the cornea in vivo [76, 83–
86], while electron and light microscopy have been used
to investigate fixed and processed corneal tissues in vitro
[84, 87, 88].

An in vitro study with 95 KC-affected cornea specimens
has categorized keratoconic corneal tissues into two micro-
scopic patterns: typical and atypical [88]. The typical pattern
has both stromal and central epithelial thinningwithmultiple
Bowman’s layer breaks, while the atypical one lacks breaks in

Bowman’s layer and has less thinning of the central epithe-
lium [88].The typical pattern has been identified inmore than
80% of the corneas and is present in 72% of the patients with
bilateral corneal transplants. Using OCT, an in vivo study by
Sandali et al. proposed a classification system for KC using
five distinct stages to characterize the keratoconic progres-
sion [85]. Patients in stage 1 have a thinner corneal epithelium
and stroma at the conus than control. In stage 2, hyperreflec-
tive anomalies in Bowman’s layer are noticed with thickening
epithelium and opaque stroma. In stage 3 there is increased
epithelial thickening and stromal thinning with disruptions
in Bowman’s layer. Stage 4 shows pan-stromal scarring, and
finally, stage 5 is considered as the acute form of keratoconus
(hydrops) with Descemet’s membrane rupture and total
corneal scar [85]. Brautaset et al. have proposed that KC is a
pan-corneal thinning disorder based on the corneal thinning
appearance in the peripheral and central ectatic region [86].

2.1. Corneal Epithelium. Corneal epithelium functions as a
diffusion barrier towater and solutes and as amechanical bar-
rier tomicroorganisms. It is one of themost highly innervated
parts of human body and accounts for approximately 10%
of the corneal thickness. The epithelial cells tightly adhere
to each other and to the basement membrane [75]. Various
studies have reported that basal epithelial cells in KC patients
exhibited enlargement, irregular arrangement, and a signifi-
cant reduction in cell density when compared to the control
group [77–79, 88]. Though epithelial thickness is thought
to be negatively correlated with the KC severity [77, 89],
other studies have demonstrated either no significant change
of corneal epithelium [80] or thickened corneal epithelium
in KC patients [76, 90, 91]. Corneal epithelial apoptosis,
resulting in epithelium thinning, could result from chronic
epithelial injury due to various environmental risk factors and
could result in the release of apoptotic cytokines [87, 92].

2.2. Nerve Fibers. Increased visibility of the nerve fibers on
slit lamp examination is one of the characteristic signs of
KC [93, 94]. Although thinning of the cornea is the main
reason for this increased nerve visibility [95], several sub-
sequent studies have identified morphological abnormalities
in corneal nerves. In KC, the architecture of the subbasal
corneal nerve plexus (located between the Bowman layer and
the basal epithelium) has been shown to have a fragmented
plexus [96] and a reduced central nerve fiber density [97].
Additionally, localized nerve thickening has been observed
in close proximity to breaks in Bowman’s membrane with
wrapping of anterior keratocytes around the nerve [98, 99].

2.3. Bowman’s Layer. Bowman’s layer, also known as the
Anterior Limiting Lamina, is an acellular collagen fibril
matrix at the interface between the corneal epithelium and
the stroma [100]. The actual function of Bowman’s layer is
still unknown. Many mammals have no Bowman’s layer, yet
corneal stability is not compromised. In KC, cellular compo-
nents have been observed in Bowman’s layer, despite typically
being acellular [101]. Other studies have demonstrated rup-
tures within Bowman’s layer [81, 88] and the coexistence of
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a proliferative collagenous tissue derived from the anterior
stroma just beneath Bowman’s layer [102]. Isolated Bowman’s
layer transplantation has reduced and stabilized corneal
ectasia in eyes with progressive and advanced KC [103], but
it remains unknown whether Bowman’s layer contributes to
the pathogenesis of KC.

2.4. Stroma. Stroma (Substantia Propria) accounts for
approximately 80% of the cornea thickness [100]. It is a highly
organized collagenous matrix consisting of multiple collage-
nous lamellae and keratocytes. Keratocytes are specialized
mesenchymal cells that reside between lamellae. Within each
lamella, collagen fibrils are parallel, tightly packed, and highly
uniform in diameter. This organized architecture is responsi-
ble for the transparency of the cornea, and any disruption in
this organization results in a severely opaque cornea [104].
Stromal keratocytes secrete and maintain the stromal matrix
components and account for 10% of the stromal volume
[75]. In KC, a significant decrease in the number of lamellae
without thickness alteration [105, 106] and the appearance of
nonkeratocyte cells and tissue debris have been demonstrated
[87]. These nonkeratocytes are agranular and may have a
role in the break down and phagocytosis of corneal tissues
[87]. Significant reduction has been reported in anterior and
posterior keratocyte density [78, 80, 81, 87, 99].

The collagen lamellae at the anterior stroma of a normal
cornea are interwoven and narrow and form a steep angle
with Bowman’s layer. With progression towards Descemet’s
membrane, these lamellae become wider and their angle
relative to Bowman’s layer becomes flattened [107]. However,
in KC collagen lamellae are wider and form a smaller angle
with Bowman’s layer. It has been suggested that collagen
lamellae are expanded in association with protrusion of the
cone [107]. Stromal lamellae in KC-affected cornea undergo
splitting into multiple bundles of collagen fibrils with loss of
the anterior lamellae [108]. Since the ACTB gene encoding 𝛽-
actin has been shown to be downregulated in KC [109, 110],
these data suggest that the decrease of stromal keratocytes
in KC may contribute to the reduced expression of 𝛽-actin,
destabilization of cytoskeleton, and finally the thinning and
weakening of the stroma [110].

2.5. Descemet’s Membrane. Descemet’s membrane, also
referred to as the Posterior Limiting Lamina [100], is the
membrane which separates the endothelial layer from the
stroma. Like Bowman’s layer, it is an acellular layer and
is not continuous with the collagen fibrils of the stroma.
Ruptures of Descemet’s membrane have been observed in
KC [111].The commonmorphological folds and irregularities
in Descemet’s membrane do not show any consistent
alterations with its extracellular matrix components [47].
Apparent Descemet’s folds have been found in 8.3% of
the KC cases associated with pleomorphism (variation in
shape) or polymegethism (variation in size) of endothelial
cells [91]. Rupture in Descemet’s membrane with entering
of aqueous humor into corneal epithelium and stroma is a
serious complication for KC, which is known as acute corneal
hydrops [112]. Sutures in either Descemet’s membrane or Dua

layer have been reported as an efficient surgical treatment for
acute hydrops [113, 114].

2.6. Endothelium. The endothelium is a monolayer of regu-
larly sized polygonal cells, which mainly function to regulate
the water content of corneal stroma. In several studies, this
layer does not exhibit any changes during KC progression
[79, 83, 85, 115]. Conversely, some studies have reported slight
increase in endothelial cell density in KC [72], while others
have shown significant decrease in moderate to severe KC
[78, 91]. Several studies have demonstrated that endothelial
cells in the peripheral region have a higher density than
those in the central region [80, 116–119], suggesting that
human corneal endothelial stem/progenitor cells are mainly
distributed in the periphery [120]. These studies empha-
size the necessity of determining whether the endothelial
morphological changes in KC are within the center or the
periphery of the cornea [76, 83].

Additionally, clinical treatment supports the lack of
endothelium involvement in KC pathogenesis. Penetrating
keratoplasty (PK) is a surgical procedure involving the
removal of a full thickness portion of corneal tissue. In
patients withKC, deep anterior lamellar keratoplasty (DALK)
is considered an excellent alternative surgical option to PK.
DALK preserves patient’s endothelial layer, reducing their
risk of graft rejection [121]. The preference of DALK in KC
patients suggests that the most affected corneal layers in KC
are the corneal epithelium and stroma. Histopathological
changes in corneal layers other than epithelium and stroma
maybe secondary to the epithelial and stromalwoundhealing
process [47, 88, 122].

Collagen cross-linking (CXL) and intrastromal corneal
ring segments implantation (ICRS) are alternative procedures
for KC treatment. CXL uses riboflavin and ultraviolet-A
rays to stop the progression of KC via increasing corneal
biomechanical resistance [123, 124]. Postoperatively, confocal
microscopy has been used to examine corneal changes
that may occur after CXL. Histopathological changes such
as demarcation lines, keratocytes apoptosis, and stromal
edema have been reported to disappear within 6 months,
with improvement in the visual acuity; thus CXL has been
considered as an effective and safe procedure [125, 126]. ICRS
implantation is a reversible, minimally invasive procedure for
moderate KCwithout central corneal opacities. ICRS corrects
corneal ectasia via shortening the cone length, causing
corneal flattening to the periphery [127]. Improvements in
the refractive power, topographic measurements, and optical
quality have been reported postoperatively, with an increase
in contact lens tolerability [127–129]. Complications, such
as segment extrusion, segment migration, or shadow effects,
have been found to be rare among patients [127].

3. Disrupted Corneal Homeostasis and KC

KC is known to be degenerative and progressive.Homeostasis
of the corneal microenvironment is controlled and balanced
through various molecular mechanisms; however, the main
molecular mechanisms that contribute to the structural and
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biochemical abnormalities in KC are still unclear. In this
section, we summarize the documented molecular changes
associated with KC and their impact on the integrity and
transparency of the cornea.

3.1. WNT and HH Proteins. The WNT and Hedgehog (HH)
proteins are secreted proteins that regulate a variety of
developmental processes in vertebrates and invertebrates
by inducing transcriptional or morphological changes in
responding cells [130, 131]. It is well documented that WNT
andHH signaling controls stem cell differentiation [132–134].
Inappropriate activation ofWNT andHH signaling pathways
can lead to various diseases [135, 136]. Few studies have been
done to determine the role of those signaling pathways in the
progression of the KC [137, 138].

Cornea epithelial cells undergo continuous renewal from
limbal stem cells [139], and a deficiency in self-renewal can
lead to deleterious effects on corneal wound healing and
surface integrity [140]. Furthermore, improper differentiation
of these stem cells can give rise to keratinized, nontransparent
corneal epithelium [137]. An in vitro study has shown that
the HH and WNT pathways are necessary to maintain
corneal endothelial cell integrity and structure [120]. Knock-
down of WNT7A switches corneal epithelial cells to skin-
like epidermal cells and negatively affects the transparency of
the cornea, suggesting its involvement in corneal epithelium
differentiation [137]. Recently, a missense coding variant
(rs121908120, c.1145T>A, p.228Phe>Ile) in theWNT10A gene
has been associated with KC via decreased corneal thickness
[138]. An intronic variant rs10453441 in the WNT7B gene
has been associated with central cornea thickness [141].These
data illustrate the functional involvement of WNT pathway
components in the pathogenesis of KC.

3.2. Cellular Adhesion Molecules (CAM). Cellular adhesion
molecules (CAM) are cell surface receptors that play impor-
tant roles in various cell-cell and cell-extracellular matrix
interactions in the cornea. KC is associated with various
defects in corneal layer structure and integrity, which may
be related to a disturbance in the expression of CAMs in
the cornea. It has been previously reported that CD34, a
CAM and a hematopoietic stem cell marker, is expressed in
normal human corneal keratocytes [142]. By studying healthy
versus diseased corneal samples including KC, it has been
demonstrated that the loss of CD34 immunoreactivity seems
to be a constant feature and early event in KC [143].

Another CAM, Desmoglein 3 (DSG3), is a desmosomal
cadherin that mediates cell-cell adhesion via desmosomes
[144]. Nielsen et al. have reported significantly increased
DSG3 in themRNAandprotein levels in all of theKC samples
studied [145].

Laminin and fibronectin are CAMs essential for the
binding of basal epithelial cells to the basementmembrane via
integrins. Earlier studies have demonstrated overexpression
of fibronectin in scarred areas of the anterior KC cornea
[47, 146]. Similarly, Deng and colleagues have observed
increased staining of fibronectin in the basement membrane
of corneal epithelial cells, especially in regions of scarring

[147]. Upregulation of DSG3, laminin, fibronectin, and other
types of CAM in KC could be downstream events of the
wound healing cascade.

Corneal wound healing is a complex process. It involves
the integrated actions of multiple growth factors, cytokines
and proteases produced by epithelial cells, stromal kerato-
cytes, and inflammatory cells [148]. Following an epithelial
insult, various cytokines are released to induce a cascade
of events in an attempt to repair the epithelial defect and
modulate remodeling of the stroma, minimizing loss of
transparency and function. However, an unregulated process
of wound repair could result in disease [148]. In 2001, Deng
et al. have proposed that a process similar to wound healing
may contribute to the changes seen in the KC patients [147].

3.3. Collagen and Proteoglycans in KC. The cornea has at
least 11 types of collagen. Within the corneal extracellular
matrix (ECM), collagen interacts mainly with two types
of proteoglycans: keratan sulfate (the major proteoglycan
in the cornea by 60%) and chondroitin/dermatan sulfate.
Proteoglycans consist of a core protein and a glycosamino-
glycan side chain. In keratan sulfate, the main core proteins
are keratocan, which is unique to the cornea, lumican,
and fibromodulin. For the chondroitin/dermatan sulfate, the
primary core proteins are decorin and biglycan [75, 149, 150].
As mentioned earlier, the transparency of cornea requires
uniform orientation of collagen fibers in the corneal matrix,
and normal expression of proteoglycans is essential for this
organized architecture [75].

In KC, components of the ECM have been shown to
have altered expression levels or abnormal localizations [47,
151]. Many proteomic studies have identified differences in
the abundance of proteins between normal and keratoconic
corneas (Table 1). Lumican and keratocan have been shown
to be significantly decreased in KC [152, 153], yet keratocan
has been reported to be highly expressed in the stroma of KC
compared to normal or other diseased cornea samples, such
as from Fuchs’ corneal dystrophy or pseudophakic bullous
keratopathy patients [154]. Joseph and colleagues, using the
shotgun proteomics method, have further confirmed a 2.4-
fold increase of the stromal keratocan in KC patients [155].
Collagen types I, III, V, and XII have been identified to have a
lower expression level in KC [152]. Reduction in the collagen
components might be related to a defect in the hydroxylation
of proline due to endoplasmic reticulum stress or chaperone
defects [152]. Collagen synthesis abnormality has been also
linked to decreased amount of sulfated glycosaminoglycan,
especially heparan sulfate, on the stromal cell surface [156–
158]. Although many studies (Table 1) have demonstrated
contradictory expression levels of the ECM components,
these studies indicate the possible disruption in themolecular
mechanisms regulating ECM homeostasis.

3.4. Degradative Enzymes and Their Inhibitors. A bal-
anced equilibrium between degradative enzymes and their
inhibitors is required for microenvironment homeostasis.
Many KC studies have documented that the disruption of
this homeostasis is due to an upregulation of the degradative
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Table 1: List of proteins with expression change in cornea samples affected with keratoconus.

Protein name Functions Corneal layer Method of detection Expression
change Reference

Superoxide
dismutase

Antioxidant enzyme that can
metabolize superoxide radicle

Central portion of the
cornea ELISA Decreased [188]

Annexin A2 Involved in cellular growth
regulation and in signal
transduction pathways

Epithelium 2D-DIGE Decreased
[155]Annexin A8 Increased

Carbonic
anhydrase I

Playing a role in the barrier
function of corneal endothelium

Stroma Nano-ESI-LC-MS
(MS)2 Decreased [152]

Collagen I 𝛼1,
Collagen I 𝛼2 Structural protein Epithelium Nano-ESI-LC-MS

(MS)2 Decreased [152]

Cathepsin B Member of corneal epithelial
lysosomal proteases

Epithelium and
stroma; tears IM; MF10-LTQ-FT MS Increased [159, 162]

Vimentin A type of intermediate filament Stroma; epithelium Nano-ESI-LC-MS
(MS)2 Increased [152, 155]

Keratocan Proteoglycan protein, unique for
cornea Stroma IM, Nano-ESI-LC-MS

(MS)2 Increased [154, 155]

Serotransferrin Iron binding transport proteins Stroma Nano-ESI-LC-MS
(MS)2 Decreased [155]

Transketolase
Enzyme in the nonoxidative
branch of the pentose-phosphate
pathway

Epithelium Nano-ESI-LC-MS
(MS)2 Decreased [155]

Phosphoglycerate
kinase 1

ATP-generating glycolytic
enzyme Epithelium Nano-ESI-LC-MS

(MS)2 Decreased [155]

NADPH oxidase Alarm system for cellular stress
response Epithelium Nano-ESI-LC-MS

(MS)2 Decreased [155]

NADPH
menadione
oxidoreductase 1

Reducing menadione into a
stable hydroquinone that can be
readily conjugated and excreted

Epithelium Nano-ESI-LC-MS
(MS)2 Decreased [155]

Heat shock B1 Involved in stress resistance and
actin organization Epithelium 2D-DIGE Decreased [155]

S100-A4 Binding to several components of
the cytoskeleton Epithelium

WB and IM; 2D-DIGE;
Nano-ESI-LC-MS

(MS)2
Increased [145, 152, 155]

Keratin 1 Structural protein Epithelium Nano-ESI-LC-MS
(MS)2 Increased [155]

Keratin 6A Structural protein Epithelium Nano-ESI-LC-MS
(MS)2 Increased [152]

Keratin 16 Structural protein Epithelium Nano-ESI-LC-MS
(MS)2 Increased [152]

Desmoglein 3 Cell adhesion molecule Epithelium WB and IM Increased [145]

Decorin Proteoglycan core protein Stroma IM; Nano-ESI-LC-MS
(MS)2 Increased [154, 155]

Collagen VI 𝛼1,
Collagen VI 𝛼2,
and Collagen VI 𝛼3

Structural protein Epithelium Nano-ESI-LC-MS
(MS)2 Decreased [152]

Collagen VII 𝛼1 Structural protein Epithelium Nano-ESI-LC-MS
(MS)2 Decreased [152]

Lactoferrin Iron binding transport proteins Tears; epithelium
2D-DIGE;

Nano-ESI-LC-MS
(MS)2

Decreased [152, 208,
209]

Lipocalin 1 Major lipid-binding protein in
tears Stroma Nano-ESI-LC-MS

(MS)2 Decreased [152]

Hepatocyte growth
factor

Regulating cell growth and
motility Epithelium IM Increased [186]

Nano-ESI-LC-MS (MS)2: Nano-Electrospray Ionization Liquid Chromatography Tandem Mass Spectrometry; 2D-DIGE: two-dimensional-difference gel
electrophoresis coupled with mass spectrometric methods; IM: immunostaining; WB: Western blot; MF10-LTQ-FT MS: prefractionating and enriching the
proteins followed by linear ion trap quadrupole Fourier transform mass spectrometer.
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enzymes and a downregulation of their inhibitors. It is
thought that this disruption may mediate the pathological
progression of KC through degradation of the ECM in the
cornea, resulting in corneal thinning [46, 159, 160].

Lysosomal enzymes, such as acid esterases, acid phos-
phatases, and acid lipases, have been shown to have higher
expression in the epithelium, stroma, and endothelium of
patients with KC [161]. Moreover, cathepsins B and G, which
are proteases in lysosomes and activate caspases, have been
shown to have elevated expression within the keratocytes
of KC corneas [101, 159]. Cathepsin B has also been shown
to be overexpressed in tears of KC patients, and it has
been proposed that these cathepsins may play a vital role in
apoptosis of keratocytes in KC [162].

Matrix metalloproteinases (MMPs) have also been
reported to be highly upregulated in KC (reviewed in
[163]). MMPs are a large family of calcium-dependent, zinc-
containing endopeptidases. MMPs are classified according to
substrate preference into subfamilies including collagenases,
gelatinases, stromelysins, matrilysins, and membrane-type
MMPs [164]. Under normal physiological conditions, MMPs
are minimally expressed and are responsible for tissue
remodeling and degradation of the ECM [165]. Many studies
have reported altered expression ofMMPs inKC (reviewed in
[160, 163, 166]). Shetty et al. showed that MMP-9 was signifi-
cantly overexpressed (alongwith IL-6 andTNF-𝛼) in patients’
corneal epithelial cells [167]. Interestingly, this upregulation
of MMP-9, IL-6, and TNF-𝛼 was reversed successfully upon
treatment with Cyclosporine A (immunosuppressant drug),
which may help in arresting disease progression [167].
MMP-9 has also been shown to be elevated in tears of KC
[167, 168]; however, it had normal expression in subclinical
KC patients [168]. Another study showed elevated levels of
MMP-1, MMP-3, MMP-7, and MMP-13 in KC patients’ tears
[169]. The proteinase inhibitors, on the other hand, have
been reported to be downregulated in KC. These inhibitors
mainly include 𝛼1-protease inhibitor, 𝛼2-macroglobulin, and
tissue inhibitors of MMP [160, 170, 171].

3.5. Inflammation and KC. Various factors have been sug-
gested to cause inflammation for KC patients. Contact
lenses, used as treatment for mild to moderate KC, have
been reported to cause the elevation of proinflammatory
cytokines in KC patients’ tears [172, 173] and to cause dry
eye exacerbation [174]. Abnormal eye rubbing has been
hypothesized to increase KC progression via aggravating
corneal deformities and inflammation [175–177]. Although
CXL is considered as an effective treatment for moderate to
severe KC [126, 178], acute inflammatory response, allergic
conjunctivitis, and bacterial infection have been reported
after CXL [179–181]. Examining tears from patients with KC
or those who underwent CXL treatment, Balasubramanian et
al. have found significant elevations in many cytokines (IL-
4, IL-5, IL-6, IL-8, TNF-𝛼, and TNF-𝛽) in tears from KC
patients and only significant elevation of TNF-𝛼 in the CXL
treated group compared with controls [169]. Recruitment of
immunoinflammatory cells (macrophages, leucocytes, and
antigen presenting cells) has been observed in the epithelium

and stroma of keratoconic cornea [182]. A known marker
for systemic inflammation (neutrophil to lymphocyte ratio)
has been found to be significantly higher in the serum of
patients with progressive KC [183]. Additionally, TGF-𝛽2
has been found to be elevated in both aqueous humor and
corneal epithelial cells inKC [184, 185]. Basal epithelial cells of
keratoconic cornea showed moderate-to-strong immunore-
activity for hepatocyte growth factor and its receptor (c-met)
[186].These data indicate that alterations in homeostasis may
be attributed to dysregulation in inflammatory mediators,
such as cytokines (IL-6, IL-1, IL-17, and TNF-𝛼) and growth
factors (TGF-𝛽, VEGF, and NGF), supporting the potential
involvement of chronic inflammation in the pathogenesis of
KC [6, 7].

3.6. Oxidative Stress. Cellular stress is induced by a sudden
disruption of the cellular physiological local environment,
compromising cell survival. Through various mechanisms,
cells attempt to remove stressors, decrease damage, andmain-
tain or reestablish homeostasis. However, various internal
deleterious changes can happen during this process [187].
In 2003, Kenney and Brown hypothesized the existence of a
relationship between corneal defects and the scavenging of
reactive oxygen species. This was associated with the pro-
gressive events in KC that eventually led to oxidative corneal
tissue damage [46]. Many proteins that are involved in free
radical detoxification, such as glutathione, paraoxonase 1,
catalase, superoxide dismutase, and superoxide glutathione,
have been shown to have decreased activity in KC [188, 189].

3.6.1. Aldehyde Dehydrogenase. One of the important detox-
ifying enzymes that may be involved in KC is aldehyde
dehydrogenase 3 (ALDH3). ALDH3 is dimeric zinc metal-
loenzyme that catalyzes the reversible oxidation of alcohols to
aldehydes. ALDH3 accounts for approximately 20–40%of the
soluble protein content in corneal epithelial cells of mammals
(reviewed in [190]). ALDH3 directly absorbs UV light and
removes cytotoxic aldehydes produced by UV-induced lipid
peroxidation [191]. Mice with defective ALDH3 have been
reported to be susceptible to UV-induced corneal clouding
[192]. Lack of ALDH3may lead to lipid peroxidation through
UV-induced oxidative destruction of cell membranes and
accumulation of cytotoxic aldehydes, such as malondialde-
hyde (MDA) [193]. A significant and distinct staining for
MDA has been identified in 26 corneal tissues with KC
but not in healthy tissues [194]. This data suggests that the
presence of MDA in the KC corneal tissues may result from
low expression of ALDH3 in these samples [194]. Another
ALDH member, ALDH1B, has been reported by Mootha et
al. to have a 212-fold reduced expression levels of bothmRNA
and protein in fibroblasts from KC patients [195].

3.6.2. Oxidoreductase. Oxidoreductases catalyze the transfer
of electrons from electron donors to electron acceptors, and
many of them have been identified as potential sources of
superoxide anions in mammalian cells [187]. NADPH dehy-
drogenase is an oxidoreductase catalyzing the production of
reactive oxygen species (ROS) [196]. Studies have discovered
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that acute exposure of keratinocytes to UV can lead to
rapid activation of NADPH dehydrogenase and generation of
ROS, which may have distinct physiologic importance [197–
199]. NADPH dehydrogenasemay represent a cellular “alarm
system” that can alert and prime the cells to either adapt to the
stress or undergo apoptosis [187]. It has been reported that
there is a 7-fold decrease in the expression of NADPH dehy-
drogenase and NADPH menadione oxidoreductase in KC-
affected corneal epitheliums [155].This significant expression
reductionmay be one of the pathways throughwhichUV rays
affect the progression of KC.

3.6.3. Mitochondrial DNA. Another consequence of corneal
oxidative stress is damage to mitochondrial DNA (mtDNA),
which has been previously observed in KC corneal tis-
sue [200]. mtDNA is a covalently closed, double-stranded
molecule and is located in close proximity to the respiratory
chains, which are themain cellular source of ROS.Mitochon-
drial dysfunction and mtDNA damage, in response to oxida-
tive stressors, have been identified in cultured KC fibroblasts
[201]. In human colorectal carcinoma cells, oxidative stress
has been reported to lead to the degradation ofmtDNA [202].

3.7. Lactoferrin/Transferrin. Fleischer’s ring, or iron deposi-
tion at the base of the cone in the cornea, is a common
clinical sign of KC [203]. Physiologically, healthy corneas
need iron for the completion of the citric acid cycle and
production of ATP, and iron is also an essential component
of the rate-limiting enzyme in DNA synthesis [204]. Because
iron is necessary in many corneal functions, disruptions in
iron homeostasis and elevations in its level can lead to corneal
disease [205]. Iron is present extracellularly in the tear film on
the surface of the cornea. Iron is carried by two iron binding
glycoproteins, lactoferrin and transferrin. These glycopro-
teins are found in many mucosal fluids, including tears [206,
207]. Through binding to iron, lactoferrin helps regulate iron
levels, prevent oxidative damage, and strengthen the cornea’s
antibacterial defenses [205]. Decreased expression of lacto-
ferrin has been reported in KC corneal epithelial cells [152].
Several studies have also reported lower expression of lacto-
ferrin in the tears collected from KC patients [169, 208, 209],
and transferrin has been shown to be expressed at lower levels
in the corneal stroma in patients with KC [155]. All these data
indicate that reduced expression of iron binding proteinsmay
contribute to deposition of iron in the cornea of KC patients.

Although numerous studies have been done to either
investigate the mechanism underlying the progression of KC
or report the histopathological changes in KC corneas, some
of the results are contradictory. This could be due to many
factors. The first factor is inconsistency in the different types
of cornea samples, such as whole cornea, epithelium, stromal
layer, or keratocytes, used in the various studies. The second
factor is the usage of original host tissues versus cultured
cells from KC cornea, and the third factor is the variation in
the experimental platforms used to investigate the expression
of selected proteins. For example, quantifying a specific
protein known to be expressed among the different corneal
layers could be misleading, because the expression of specific

proteins in the different corneal layers could vary during the
progression of KC. To better understand KC, we need to
standardize the reporting of expression levels for our target
and their locationwithin the cornea, especially since previous
studies have identified abnormal location and expression of
certain proteins in different corneal layers in KC (Table 1).
This underlines the importance of taking into account the
part of the cornea used for the analysis as the differential
protein expression differs from one layer to another.

4. Hormones in KC

Sex steroid hormones, namely estrogen, progesterone, and
testosterone, are produced by ovaries in females and testes
in males. Although they circulate through blood, their
effects rely on the receptors present in specific tissues and
organs. These receptors are widely expressed in different
ocular tissues, including the cornea. Corneal tissues express
estrogen receptors types 𝛼 and 𝛽, progesterone receptors, and
androgen receptors. However, themechanism throughwhich
hormones regulate corneal homeostasis still remains unclear
(reviewed in [210]).

Previously, the development of KC has been proposed to
be correlated with the hormonal changes that occur during
puberty, pregnancy, or menopause [211–213]. However, the
clinical information related to sex hormones for patients with
KC is often limited, presenting a significant barrier to further
study. In 2010, Fink et al. studied the effects of gender and
hormone status on the severity and progression of KC in
both men and women over a 3-year period [214]. This study
grouped women into hormone-active and hormone-inactive
groups during menopausal transition but failed to identify
any significant difference in KC progression between these
groups [214].

Conversely, there have been other reported cases inwhich
pregnancy has induced the progression of KC [212, 213, 215],
and some studies have postulated that pregnancy may be
considered a risk factor for KC [212, 215]. The hormonal
changes that occur during pregnancy had a negative impact
on corneal biomechanics, as measured by changes in corneal
topography [212, 215]. Hoogewoud et al. have reported that,
during the gestational period, women have experienced a
significant progression in KC, as indicated by a decrease in
corrected distance visual acuity (CDVA) and reversible fluc-
tuations in corneal topography [213]. Another large study has
reported a similar decrease in CDVA during pregnancy, but
changes returned to normal postpartum once the lactation
period ended [216]. Women’s use of contraceptives has also
been reported to have an effect on the curvature of the cornea
[217, 218].

Based on the expression pattern of 𝛼 and 𝛽 estrogen
receptors in corneal cells, it has been postulated that estrogen
is supplied through tears and aqueous humor at concentra-
tions that are approximately half the concentrations found in
plasma [219]. The proposed mode of action of these steroidal
hormones is via the regulation of gene expression in the
nucleus, leading to changes in the concentration of ECM
proteins, which are critical to the maintenance of corneal
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integrity [220]. It is plausible that estrogenmay be responsible
for weakening the cornea via the stimulation of MMPs and
the release of prostaglandins, causing activation of prote-
olytic enzymes for collagen, disruption of collagen networks,
and reduction in corneal-stiffness [220]. Recently, a study
reported progression of KC in 6 eyes of 3 women after receiv-
ing an in vitro fertilization treatment which increases their
estrogen levels [221]. Similarly, a recent study has identified
a significant elevation in salivary dehydroepiandrosterone
sulfate (DHEA-S, a common precursor to other androgens)
levels and a decrease in estrone (a natural estrogen) level in
KC patients independent of gender [222]. Elevated DHEA-S
possibly increases the expression of specific cytokines (IL-16
and stem cell factors) by blocking endogenous glucocorticoid
activity and stimulating the progression of KC [222]. How-
ever, no correlation has been detected between the increased
salivary DHEA-S level and increased severity of KC [222].

Progesterone hormone, on the other hand, inhibits the
prostaglandins that stimulate collagenases. Therefore, it is
plausible that the stabilization in the cornea biomechanics
during the last half of a normal pregnancy may be due to
the action of progesterone, suggesting that progesterone may
have a protective effect against the progression of KC during
pregnancy [223]. Since there is a correlation between changes
in corneal physiology and elevated levels of estrogen, KCmay
be triggered by elevated levels of estrogen coupled with a
genetic disposition to a weaker cornea.

Moreover, some studies correlated KC progression with
thyroxine hormone [224–227]. It was found that thyroxine
levels were higher in tears of KC patients independent
of their serum thyroxine level [225, 227]. Thyroxine has
important roles in the differentiation, growth, metabolism,
and physiological function of almost all tissues, including the
cornea [228–230].

5. Summary

Keratoconus is a complex disorder with both genetic and
environmental factors and may present as a secondary phe-
notype associated with other disorders. The disease progres-
sion of KC affects the epithelium, Bowman’s layer, stroma,
and Descemet’s membrane of the cornea, but not the corneal
endothelium. Extensive research in the histopathology of
KC has provided critical information about the cellular and
molecular mechanisms of KC pathogenesis (Figure 4). A
number of proteins in several different pathways have been
identified to have altered protein abundance in KC-affected
cornea samples (Figure 4). The primary corneal layer(s) with
these abundance alterations will need to be determined. The
lack of replication between different studies might be due to
the following variables: different stages of KC, sample size,
detection technique, and statistical tools for data analysis.
Animal models of KC, which are currently lacking, will
significantly promote our understanding of the pathogenesis
of KC. A better understanding of the proteins and pathways
involved in KC histopathogenesis may provide potential
therapeutic targets for disease prevention and early diagnosis,

Keratoconus

Histopathological changes
(i) Epithelium: cellular enlargement with

(ii) Stroma: loss in collagenous lamella, 
reduction in keratocyte density with
appearance of nonkeratocyte cells

irregular arrangement and apoptosis

Biomechanical
property changes
and corneal
thinning

Genetic mutations Environmental factors
(MIR184)

factors (WNT7A,
Susceptibility

WNT10A)

(contact lenses, eye
rubbing, atopy, UV
exposure, hormonal
changes, comorbidities) 

Molecular changes

(ii) Oxidative stress

(i) ECM degradation (collagen,
proteoglycan, MMPs/TIMPs)

(iii) Inflammation (cytokines,
growth factors)

Figure 4: A potential physiological model for the pathogenesis of
keratoconus.

thus delaying or arresting its progression and improving
treatment of this severe vision threatening disorder.
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