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Abstract: Background: Substantial substance use disorders and related health conditions emerged dur-
ing the mid-20th century and continue to represent a remarkable 21st century global burden of disease. 
This burden is largely driven by the substance-dependence process, which is a complex process and is 
influenced by both genetic and environmental factors. During the past few decades, a great deal of pro-
gress has been made in identifying genetic variants associated with Substance Use and Dependence 
(SUD) through linkage, candidate gene association, genome-wide association and sequencing studies.  
Methods: Various statistical methods and software have been employed in different types of SUD ge-
netic studies, facilitating the identification of new SUD-related variants.  
Conclusion: In this article, we review statistical methods and software that are currently available for 
SUD genetic studies, and discuss their strengths and limitations. 
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1. INTRODUCTION 

 Substance use disorders present a significant global pub-
lic health problem that places a substantial burden on indi-
viduals, health care systems, societies and economies [1, 2]. 
It is estimated that approximately 27 million people in the 
world suffered from substance use disorders in 2013, result-
ing in a remarkable global burden of disease that is expected 
to become more prevalent over time [3]. This burden is 
largely driven by the substance-dependence process, which 
is a complex disorder influenced by both genetic and envi-
ronmental factors.  
 Substance dependence is defined as the syndrome of sub-
stance misuse that leads to adverse consequences and in-
cludes a cluster of symptoms such as tolerance, withdrawal, 
and inability to stop using (see DSM-IV substance depend-
ence for the complete diagnostic criteria) [4]. The term sub-
stance often refers to products with addictive potential, such 
as tobacco, alcohol, cocaine and other licit and illicit drugs. 
The development of the substance-dependence process in-
volves several steps: the initiation of substance use, the tran-
sition from experimental use to regular use, and the actual 
development of dependence [5]. Each step is influenced by 
both environmental and genetic factors. Twin studies have 
suggested a substantial genetic contribution to Substance 
Use and Dependence (SUD) [6]. Over the past few decades, 
we have successfully identified new genetic variants associ-
ated with SUD through linkage, candidate gene association,  
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genome-wide association, animal and sequencing studies. 
Various statistical methods and software have played an im-
portant role in helping the identification of SUD-related 
variants. This article aims to give an overview of the widely 
used methods and software for SUD genetic data analysis, 
including data management, linkage analysis, association 
analysis and other analysis. 

2. DATA MANAGEMENT 

 The quality-control process is an essential step in data 
analysis. It is used to identify and remove inaccurate infor-
mation before the downstream analysis (e.g., genetic associa-
tion analysis). Researchers utilize different quality control 
filters and criteria. While some researchers have imple-
mented stringent criteria in order to have high-quality data, 
others adopt flexible standards to keep as much information 
as possible.  

 Commonly used filters are based on the call rate, Minor 
Allele Frequency (MAF), and Hardy-Weinberg Equilibrium 
(HWE) test. A fixed call rate is commonly adopted in a study 
to remove low-quality SNPs and samples. For instance, if a 
researcher sets a threshold of 1% for sample call rate in a 
project, then samples with more than a 1% failed genotyping 
call are removed; likewise, if a researcher sets a threshold of 
5% for SNP call rate, individual SNPs with 5% failed geno-
typing call are also removed [7]. The thresholds of sample 
call rate and SNP call rate do not have to be the same. Be-
sides the call rate, filters based on MAF and the HWE test 
are also frequently used. HWE tests are often conducted on 
the control samples to exclude low-quality SNPs, while an 
MAF threshold (e.g., MAF>1%) allows the study to focus on 
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common SNPs and reduce the number of tests. Most of the 
above quality control procedures are implemented in the 
PLINK program [8]. PLINK offers several additional quality 
control procedures as well, such as detecting and removing 
duplicate samples.  

 Quality control procedures have also been developed for 
different types of studies. For population-based studies, indi-
viduals are required to be unrelated. PLINK and several 
other software offer a procedure to identify and remove indi-
viduals who are related. For family-based genetic data, sta-
tistical methods and software such as PREST [9] can be used 
to identify sample and pedigree structure errors based on the 
autosomal markers [10]. Misspecified familial relationships 
can also be detected by PREST [9], which infers the underly-
ing relationships from the shared Identical By Descent 
(IBD). The reassigned family relationships can also be veri-
fied by using PREST [11, 12]. However, if the software fails 
to resolve the error, those families are subsequently treated 
as missing [13]. A Mendelian inconsistencies check is an-
other commonly used quality control procedure for family 
data. Mendelian inconsistencies can be detected and set as 
missing by using the PedCheck [14] and Merlin [15] pro-
grams [11]. Markers with a high frequency of Mendelian 
segregation errors are often excluded from the analysis [13].  

3. LINKAGE ANALYSIS 

 Linkage analysis uses family data to locate genetic re-
gions that are in linkage with a given trait. It was one of the 
most commonly used tools to infer the location of trait-
related genes on chromosomes before the age of Genome-
Wide Association Studies (GWAS) [16]. Linkage analysis 
can be classified into model-based linkage analysis and 
model-free linkage analysis. While model-based linkage 
analysis assumes a particular genetic model (e.g., the causal 
allele frequency, penetrance functions) [17], the model-free 
linkage analysis does not require such assumptions. These 
two analyses are sometimes referred to as parametric and 
non-parametric, although both of them require the estimation 
of parameters [18]. 
 Model-based linkage analysis is powerful for scenarios 
with prior knowledge of the underlying genetic models, and 
has been implemented in several software packages (e.g., 
Merlin, FASTLINK). However, for complex traits like SUD, 
we have limited knowledge about the underlying genetic 
model. Misspecification of model parameters in SUD model-
based linkage analysis can lead to biased estimators and in-
correct inferences.  
 Model-free linkage analysis is based on allele-sharing, 
which usually compares genetic similarity among affected 
relatives inferred from data to that from expectations. Be-
cause the model-free linkage methods do not require the 
specification of the inheritance parameters of a genetic 
model, they have been adopted in many genetic studies of 
SUD [17]. One of the most popularly used model-free link-
age methods is the Haseman-Elston algorithm [19], which 
was later extended by Sham et al. [20]. The extended algo-
rithm can perform genome-wide linkage analyses and has 
been implemented in the program Merlin [21]. GENE-
HUNTER [22], another linkage method for affected sib-pair 
analysis, has also been used by many SUD researchers [23]. 

The variance component method has also been widely used. 
It partitions the phenotype variations among family members 
into different variance components explained by the effects 
of the genes in the region of interest, additive genetic effects 
of other genes, and non-shared environmental determinants 
[24]. Software such as Merlin can be used to perform a vari-
ance components linkage analysis. All of the above pro-
grams can be used to conduct both two-point or multi-point 
linkage analyses.  

 Model-free linkage analysis is a robust but less powerful 
approach. Although including unaffected individuals gener-
ally provide more power for linkage analysis, there is a po-
tential loss of power in the event of misclassification of af-
fection status [23]. On the other hand, model-based linkage 
analysis requires knowledge of the parameters of the genetic 
model, and has advantages in terms of efficiency and a better 
location solution. Researchers, therefore, need to determine 
which methods to use based on the study purpose.  

 Although linkage analysis can be used to map genes, the 
SUD-related chromosome regions identified by linkage 
analysis can be up to several million bases and contain thou-
sands of genes. Moreover, family data especially those with 
large pedigrees are difficult to collect. Compared to linkage 
analysis, association analysis is generally more powerful and 
can be used for fine mapping. Thus, linkage analysis is used 
less often than association analysis in the recent SUD genetic 
research. To borrow the strengths from both analysis, some 
researchers [11] have adopted a multistage design that com-
bines linkage analysis with association analysis to identify 
genetic variants associated with SUD. 

4. ASSOCIATION ANALYSIS 

 Linkage analysis has been successfully implemented in 
many family studies, identifying genetic regions linked to 
SUD. However, linkage analysis is subject to a few limita-
tions, including low power for detecting variants with small 
effects and being less useful for the fine mapping of causal 
variants. As stated above, some of these limitations can be 
overcome by association studies [25]. Association analysis is 
based on the concept of linkage disequilibrium. It can be 
classified into population-based association analysis and 
family-based association analysis. In other words, SUD-
based association studies aimed at identifying genes related 
with SUD can be conducted by means of a population-based 
design (e.g., case-control design) with unrelated individuals 
or a family-based design with related individuals [25]. This 
section provides an overview of the current statistical ap-
proaches and software for population-based and family-
based SUD association studies. 

4.1. Population-based Association Study 

 Population-based association studies are conducted on 
unrelated samples. The most commonly adopted population-
based association studies are case-control studies, which 
compare the distribution of genetic variants in affected sub-
jects with those in unaffected subjects. We summarize below 
methods for single-locus association analysis, multi-locus 
association analysis, and briefly discuss the issues of popula-
tion stratification and multiple testing.  
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4.1.1. Methods for Single-locus Association Analysis 

 Assuming that a genetic variant is a Single Nucleotide 
Polymorphism (SNP) with three genotypes, AA, Aa and aa, 
where A is the minor frequent allele. One way to code the 
SNP is assuming an additive allelic effect (i.e., AA=2, Aa=1, 
aa=0). The additive model, indicating that each additional 
copy of the A allele increases the disease risk [26], is com-
monly used in SUD association analysis [27]. In certain cir-
cumstances, where researchers have prior knowledge of the 
underlying mode of inheritance, other models can also be 
used. For instance, we could assume the SNP follows a 
dominant mode of inheritance (i.e., AA=Aa=1, aa=0) or a 
recessive mode of inheritance (i.e., AA=1, Aa=aa=0) [28]. 
Based on the coded genetic variable, classic statistical meth-
ods can be employed to link the SNP to different types of 
phenotypes.  
 Standard contingency table methods can be used to test 
the null hypothesis of no association of the SNP with a cate-
gorical phenotype. While the Z test and Chi-squared test are 
the typical methods, the Fisher’s Exact Test can be adopted 
for studies with a small sample size. A contingency table 
method, such as Cochran-Armitage trend statistics [29] can 
be used to assess the association between a binary phenotype 
and an SNP with additive coding, which is equivalent to the 
score test in a logistic regression [30]. A logistic regression 
model is another popular method for analyzing data with a 
binary phenotype. It is more flexible than the Cochran-
Armitage trend test and can accommodate covariates and 
model interaction effects [31]. A Manhattan plot is often 
used to visualize the results from a single-locus association 
analysis, and a Quantile-Quantile (Q-Q) plot is drawn to 
check systematic biases (e.g., bias due to population stratifi-
cation) [32]. 
 Similar to logistic regression, linear regression can be 
used for testing an association between a genetic marker and 
a quantitative phenotype, allowing for covariates adjustment 
[33]. Linear regression assumes that the quantitative pheno-
type follows a normal distribution. For non-normally distrib-
uted phenotypes, it is necessary to transform the phenotypic 
data to normal before model-fitting or use a non-parametric 
method (e.g., U statistics). Popular transformations include 
log transformation, Box-Cox transformation, and normal 
quantile transformation. Both linear regression and logistic 
regression are special cases of Generalized Linear Models 
(GLM), which have been implemented in most of existing 
statistical software packages. 

4.1.2. Methods for Multi-locus Association Analysis 

 Complex diseases are often caused by multiple genetic 
variants and other factors (e.g., environmental determinants) 
[34]. Since each genetic variant plays a small role in com-
plex diseases, a joint association analysis of multiple SNPs 
(e.g., all SNPs in a gene) is able to accumulate the effects 
from multiple SNPs and reduce the multiple testing issue 
[18, 31].  
 Methods used for single-locus analysis can also be ex-
tended for analyzing multiple SNPs. For instance, multiple 
logistic regression can be adopted for multi-locus association 
analysis. The corresponding score test is a generalization of 
the Armitage test and is related to the Hotelling-T 2 statistic 
[35].  

 Most of the methods introduced in the multiple-SNP 
analysis section do not consider Linkage Disequilibrium 
(LD) among SNPs. To take LD into account, haplotype-
based analysis can be used to infer an association of a spe-
cific haplotype or haplotypes with a disease phenotype of 
interest. Before we perform a haplotype test, we need to first 
infer the haplotype phase based on genotypes. The likeli-
hood-based approach and the Expectation-Maximization 
(EM) algorithm can be used to infer possible haplotype 
phases. A nice feature of the likelihood-based approach is 
that a likelihood-ratio test can be easily formed to test the 
association of the inferred haplotypes with the disease phe-
notype. Alternatively, we can also adopt a score test, which 
is computationally efficient and is widely used in SUD ge-
netic research. The score test has been implemented in the 
program HAPLO.STATS [36, 37]. Other programs for 
haplotype phase estimation include Bayesian approaches, 
such as those implemented in PHASE and HAPLOTYPER 
[18]. The Bayesian approach and the partition-ligation (PL) 
algorithm implemented in the program PHASE [38] are re-
ported to be more accurate in reconstructing haplotypes than 
the EM algorithm [39, 40].  
 Similar to multiple-SNP association analysis, a haplotype 
analysis can potentially reduce the multiple testing burden 
and be more powerful than a single-locus association analy-
sis, especially when there are strong haplotype-specific ef-
fects. Nevertheless, a haplotype-based association analysis 
may also be subject to issues of uncertain phasing and low 
power due to a large number of inferred haplotypes [31]. 
There are several applications of haplotype-based analysis. 
For instance, Wang et al. found that both CHRNA2 and 
CHRNA6 were significantly associated with Nicotine De-
pendence (ND) [41] based on the haplotype-based analysis. 

4.1.3. Issues in Population-based Association Analysis 

 Multiple testing is an important issue in association 
analysis, especially for a genome-wide association analysis 
involving millions of SNPs. Performing an association 
analysis on such a large number of SNPs without consider-
ing the issue of multiple testing could result in substantial 
false positive findings. The Bonferroni correction is an easy 
way to address this issue [42]. For genome-wide association 
data with 1 million SNPs, the Bonferroni correction at a fam-
ily-wise error rate (FWER) of 5% results in a genome-wide 
significance level of 5 × 10−8 [42-44]. While the Bonferroni 
correction is easy to implement, it tends to be conservative 
and does not consider the LD among SNPs [45]. Neverthe-
less, the Bonferroni correction is still the most popular ap-
proach in SUD genetic research. Another popular approach 
for multiple testing correction is the False Discovery Rate 
(FDR) approach, which controls the expected proportion of 
false positives among all rejected hypotheses [46]. FDR 
tends to less conservative than the Bonferroni correction. 
 In population-based association studies, spurious associa-
tions could be caused by a variety of confounding factors. 
Confounding bias has been of concern in SUD genetic stud-
ies using samples from multiple ethnic groups (i.e., popula-
tion stratification), especially in large-scale national/inter- 
national studies. For genome-wide association studies, Q-
Q plot is a useful tool for visualizing a systematical bias 
due to factors such as population stratification. Deviation
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Table 1. Summary information of statistical software for SUD genetic research. 

Software 
Packages 

URL  Platform 
Programming 

Language 
Limitations 

Computational 
Cost 

Public/ 
Commercial 

PLINK https://www.cog-genomics.org/plink2 
Windows/ 

Linux/ 
Mac 

C, C++ -- -- Public 

PREST http://www.utstat.toronto.edu/sun/ Software/Prest Linux C++   -- Public 

PedCheck https://watson.hgen.pitt.edu/register/ docs/pedcheck.html 
Windows/ 

Linux/ 
Mac 

C, C++ 

PedCheck 
performs 

single-locus 
analysis 

only.  

-- Public 

Merlin http://csg.sph.umich.edu/abecasis/ Merlin/download/ 
Windows/ 

Linux/ 
Mac 

C++ -- -- Public 

FASTLINK https://cran.r-project.org/web/packages /fastLink 
Windows/ 

Linux/ 
Mac 

R 

FASTLINK 
is likely to 
have diffi-

culty of 
producing 

high-quality 
matches 
when the 
overlap 

between two 
data sets is 

small. 

-- Public 

GENE-
HUNTER 

http://www-genome.wi.mit.edu/ ftp/distribution /software/genehunter 
Windows/ 

Linux/ 
C 

It is not 
suitable for 
analyzing 

large multi-
generational 
pedigrees. 

-- Public 

HAPLO. 
STATS 

https://cran.r-project.org/web/packages/haplo.stats  
Windows/ 

Linux/ 
Mac 

R --   Public 

PHASE http://www.stat.washington.edu/stephens/software.html 
Windows/ 

Linux/ 
Mac 

C++ 

When haplo-
type analysis 
is conducted 

on a large 
number of 

loci, many of 
the resulting 
haplotypes 
will have 
small fre-

quencies. The 
power of 
haplotype 
analysis is 

hence signifi-
cantly re-

duced due to 
the large 

number of 
degrees of 

freedom [18].  

It is computa-
tionally slower 

than the 
HAPLOTYPER 

program. 

Public 

(Table 1) contd…. 
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Software 
Packages 

URL  Platform 
Programming 

Language 
Limitations 

Computational 
Cost 

Public/ 
Commercial 

HAPLO-
TYPER 

http://www.people.fas.har 

vard.edu/~junliu/Haplo/click.html 

Windows/ 
Linux/ 

Mac 

C++ 

Efficiency 
may be lost 

because of 

incorrect prior 

information. 

When the 

sample size is 

small, the 

power of 

haplotype 

analysis is 

reduced 

[110].  

It is computa-
tionally faster 

than the PHASE 

program. 

Public 

EIGENSTRAT http://genepath.med.harvard.edu/~reich/EIGENSTRAT.htm Linux C++ 

Researchers 

should pay 

attention to 

the experi-

mental de-
sign, match-

ing the ances-

try and labo-

ratory treat-

ment of cases 

and controls 

to the fullest 

extent possi-

ble [111]. 

-- Public 

STRUCTURE 
http://web.stanford.edu/group/pritchardlab/structure_software/release_v

ersions/v2.3.4/html/ 

structure.html 

Windows/ 

Linux/ 

Mac 

C, Java -- -- Public 

SKAT http://cran.r-project.org/ web/packages/SKAT 
Windows/ 

Linux/ 

Mac 

R -- -- Public 

FBAT, PBAT http://www.biostat.harvard.edu/~clange/default.htm 
Windows/ 

Linux/ 

Mac 

C, C++ 

FBAT are 
designed for 

analyzing 

nuclear 

families, but 

in practice 

general 

pedigrees are 

commonly 

collected 
[112]. 

It is computa-
tionally fast.  

Public 

METAL http://www.sph.umich.edu/csg/abecasis/metal/ 

Windows/ 
Linux/ 

Mac/ 

Unix 

C++ -- 

The analysis of 
15 studies and 

36 million 

association tests 

requires <6 min 

computing 

time.  

Public 

(Table 1) contd…. 
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Software 
Packages 

URL  Platform 
Programming 

Language 
Limitations 

Computational 
Cost 

Public/ 
Commercial 

GWAMA http://www.well.ox.ac.uk/GWAMA 

 Win-

dows/ 

Unix 
/newer 

C++, R, PERL -- -- Public 

GCTA http://cnsgenomics.com/software/gcta/#Download 
Windows/ 

Linux/ 

Mac 

C, C++ 

GCTA only 

considers 

additive 

effects and 
SNP data 

while exclud-

ing other 

types of 

genetic 

variations 

(e.g., rare 

mutations, 

CNVs) [113].  

GCTA needs a 

few minutes to 

analyze a sam-

ple with n < 
3000, but needs 

a few hours for 

n > 10,000 [93]. 

Public 

Note: The software packages are arranged in the order where they appear in the article. 

from the diagonal line indicates possible population stratifi-
cation and inflation of spurious associations. One of the most 
common methods for controlling population stratification is 
the principal component analysis. In a principal component 
analysis, each individual receives scores on each principal 
component. These scores, representing continuous variations 
in race and ethnicity, can be used to control for the effects of 
population stratification [47]. The EIGENSTRAT can esti-
mate Principal Components (PCs) on a sufficient number of 
SNPs, which can then be used as covariates in a regression 
model to control for population stratification [35]. Several 
other methods have also been used, including the program 
STRUCTURE. STRUCTURE first classifies the samples 
into different clusters and then tests the association within 
each cluster [48]. The genomic control approach, which es-
timates genomic inflation factor λ, is another fast and easy 
way to detect and adjust for population stratification [37]. 
Unfortunately, most of the above methods are designed to 
adjust for global ancestry, so they could be inadequate when 
local population structure is an important confounding fac-
tor.  

4.2. Rare Variants Association Test 

 While many common variants have been identified to be 
associated with SUD, much of the genetic contribution to 
SUD remains unexplained. There is an increasing interest in 
studying SUD-related rare variants [49-51]. For such a pur-
pose, methods for rare-variants analysis have been devel-
oped. 
 Methods developed for single-locus analysis can also be 
used to detect rare variants. However, due to high dimen-
sional and low frequent features of rare variants, single-locus 
analysis is subject to low power [52]. Single-locus analysis is 
useful only if the sample size is large enough and/or the ef-
fect sizes are large [52].  
 Compared to single-locus tests, multiple-locus test is 
generally more powerful for rare variants analysis. Numer-

ous multiple-locus methods and software have been devel-
oped for analyzing rare variants. Shrinkage methods, such as 
LASSO [53] and Bayesian Lasso [54], can be incorporated 
into the regression framework to select disease-related SNPs 
and to deal with the high-dimensional genetic data. In addi-
tion to these methods, collapsing methods, weighted sum 
methods and linear mixed methods (e.g., SKAT) have also 
been developed to detect rare variants. While several SUD-
related rare variants have been identified, overall they have a 
limited contribution to SUD [55]. 

4.3. Family-based Association Analysis 

 Compared to population-based association studies, fam-
ily-based association studies provide robust protection 
against population stratification at the design stage. In a fam-
ily-based association study, a typical Transmission Dise-
quilibrium Test (TDT) compares the alleles that are transmit-
ted to an affected child from parents to the alleles that are not 
transmitted. Therefore, it matches the ancestry background 
of samples within families, and provides robustness against 
population stratification at a locus-specific level. Many 
methods have been proposed for family-based association 
analysis. Some of these methods are extensions of popula-
tion-based association methods while accounting for familiar 
correlations. We only review a few of methods commonly 
used for SUD genetic research. There are several popularly 
adopted family-based study designs, such as case-parent trio 
design and case-sibling design. We briefly introduce these 
designs and then summarize methods associated with these 
designs (Table 1). 
 A case-parent trio design is one of the most popularly 
used family-based study designs, in which cases and their 
parents are recruited. The well-known method for case-
parent trio design is the Transmission Disequilibrium Test 
(TDT) [56]. The classic TDT is essentially a McNemar test 
that compares the distribution of alleles transmitted from 
parents to affected offspring with that of the non-transmitted 
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alleles [57]. The original form of TDT can only be applied to 
one affected child with known parental genotypes. It has 
been further extended to continuous phenotype, multiple 
offspring, and missing parental genotypes. 
 Case-sibling design, in which each proband is matched 
with one or more unaffected siblings, is an alternative design 
when the parental genotypes are missing. Case-sibling de-
sign requires at least one affected offspring and one unaf-
fected offspring, and their genotypes can’t be identical. Al-
though case-sibling designs are generally robust to popula-
tion stratification, they are not as powerful as unrelated case-
control design because of the similarity of siblings [58].  
 A Family-Based Association Test (FBAT) is the most 
commonly adopted method for SUD family-based associa-
tion analysis. FBAT can be considered an extension of TDT, 
which allows for any type of genetic model, affected and 
unaffected siblings, qualitative and quantitative phenotypes 
and multiple markers [59-62]. FBAT has also been extended 
to incorporate haplotypes and gene-environment interaction 
analysis [63]. A software package for FBAT is freely avail-
able online. An association test implemented in the FBAT 
program has the option of computing the p-value from the Z 
statistic using Monte Carlo sampling under the null hypothe-
sis of no linkage and no association [63]. P-value from 
FBAT can be computed either by asymptotic theory or by 
permutation test. FBAT has been successfully used in many 
studies. For instance, Shirley et al. identified 6 SNPs associ-
ated with alcohol dependence by using FBAT [64]. The TDT 
and FBAT approaches are usually applied to nuclear family 
data, but in practice, general pedigrees are commonly col-
lected. A Pedigree Disequilibrium Test (PDT) is a method 
specifically designed for general pedigrees [65], and has 
been widely adopted in family-based association analysis of 
SUD. It is also worthwhile mentioning that the integrated 
software package PBAT (v. 3.5), which contains tools for the 
design of family-based association studies as well as tools 
for data analysis [66].  

5. G-G/G-E INTERACTION ANALYSIS 

 Significant progress has been made toward the identifica-
tion of genetic variants contributing to SUD. Despite these 
achievements, a large proportion of SUD phenotype varia-
tions remain unexplained. Gene-gene and gene-environment 
(G-G/G-E) interactions could play an important role in the 
SUD development process. The identification of these G-
G/G-E interactions not only explain additional SUD varia-
tions, but also elucidate how genetic variants interplay with 
environmental determinants to cause SUD. A G-G/G-E in-
teraction study, either using a population-based design or a 
family-based design, takes into account the complex rela-
tionship between genetic variants and environmental deter-
minants, and could lead to novel G-G/G-E interactions con-
tributing to SUD.  
 Most of G-G/G-E interaction studies incorporate a popu-
lation-based design. While conventional methods, such as 
contingency-table-based methods and regression-based 
methods [67, 68], are very useful for G-G/G-E interaction 
analysis on a handful of variables, they are subject to low 
performance when there are a large number of genetic vari-
ants. Efforts have been made to extend the classic methods 

to high-dimensional genetic data, such as the development of 
stepwise logistic regression [69-71] and LASSO [72, 73], but 
the implementation of these methods on genome-wide data 
remains a great challenge [74]. One of the popular methods 
for SUD G-G/G-E interaction analysis is the Multifactor 
Dimensionality Reduction (MDR) [75]. The fundamental 
principle of MDR is pooling multi-locus genotypes into 
high-risk and low-risk groups based on case-to-control ratio, 
which effectively reduces the data dimensions. The General-
ized Multifactor Dimensionality Reduction (GMDR) method 
further extends the original MDR method for handling vari-
ous phenotypes, taking covariates into consideration [76]. 
MDR, as well as GMDR, employ an exhaustive search algo-
rithm, which could be computationally expensive when con-
sidering high-order interactions or a larger number of genetic 
variants. GMDR-GPU, developed by Zhu et al., not only 
allows for GWAS data but also runs much faster than the 
earlier version of the GMDR program by utilizing a more 
computationally efficient implementation [77, 78]. GMDR 
has been successfully used in detecting an ND-association 
interaction between CHRNA4 and CHRNB2 [79]. Other ad-
vanced methods, such as a neural network and random for-
est, have been used in the G-G/G-E interaction analysis, 
though none of them have been widely used in SUD G-G/G-
E studies. 
 Methods have also been developed for family-based G-
G/G-E interaction analysis. FBAT, which allows various 
pedigree structures, various phenotypes and multiple mark-
ers, has been extended to G-G/G-E interaction analysis [57]. 
Similarly, the extensions of MDR and GMDR, MDR-PDT 
[80] and PGMDR [81], have also been developed for family-
based G-G/G-E interaction analysis. PGMDR allows for 
covariate adjustment and could attain more power than 
MDR-PDT. 

6. META-ANALYSIS 

 GWAS allows us to identify SUD-associated variants 
with large or modest effect sizes. In order to discover SUD-
associated variants with smaller effect sizes or low fre-
quency, large-scale genetic studies with a much larger sam-
ple size are needed [32]. Meta-analysis has become popular 
because it does not require individual-level data and is capa-
ble of integrating information (e.g., p-values and odd ratios) 
from multiple independent studies with a substantially in-
creased sample size [82]. Based on a much larger sample, it 
increases the power of association studies, leading to the 
discovery of novel small-effect variants and low-frequency 
variants [28, 83]. Classic meta-analysis methods typically 
based on combining effect sizes (i.e., fixed effects or random 
effects), p-values, or Z scores [28]. In this section, we sum-
marize the classic methods available for SUD meta-analysis. 
 Prior to conducting a meta-analysis, we need to test het-
erogeneity to make sure that individual studies are similar to 
each other. I2 is a statistic metric that has been widely used 
for evaluating heterogeneity. It measures the proportion of 
total variation between studies attributed to heterogeneity 
[84]. Many programs, such as METAL [85] and GWAMA 
[86], can estimate I2 for the evaluation of heterogeneity.  
 P-value-based meta-analysis methods have been used for 
decades but have become less popular due to their limita-
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tions (e.g., including weights is not a straightforward proc-
ess) [87]. Among these methods, the Fisher’s method [82] 
and the Z-score-based method are often adopted and are 
closely related to each other [34]. In a typical meta-analysis 
study, each site generates p-values or Z test statistics, and 
then uploads the results to a server. A meta-analysis method 
can be implemented to combine the information from all 
sites for the discovery of low-frequent variants or small-
effect variants [82]. 
 Methods for combining effect sizes can be based on two 
types of models: fixed effect models and random effect 
models. A mixed effect model, such as the DerSimonian and 
Laird model [88], is preferred when heterogeneity exists 
among studies. Otherwise, a fixed effect model should be 
used [32]. The major advantage of fixed effect models over 
random effect models is that they maximize discovery power 
[89]. Inverse variance weighting [90] and Cochran-Mantel-
Haenszel [91] are commonly used approaches that provide 
similar results for fixed-effect-based meta-analyses [34]. 
Popularly packages for fixed-effect-based meta-analyses 
include METAL, GWAMA, R and PLINK, among which 
GWAMA and R can also be used for random-effect meta-
analysis.  

7. GENOME-WIDE COMPLEX TRAIT ANALYSIS 

 The genetic variants that have been discovered so far 
only account for a small fraction of SUD heritability [92]. 
We should point out that the heritability discussed in this 
section is the narrow-sense heritability, i.e., the proportion of 
phenotypic variance due to additive genetic variance. Ge-
nome-wide Complex Trait Analysis (GCTA) can help us to 
study “missing heritability” and to identify which parts of a 
genome or categories of variants contribute to SUD heritabil-
ity [93]. Yang et al. [94] developed a versatile tool, GCTA, 
to study heritability. GCTA is a user-friendly software with 
four main functions: data management, genetic relationships 
estimation from SNPs, mixed linear model analysis of vari-
ance and linkage disequilibrium structure estimation [93].  
 GCTA was developed based on a linear mixed method to 
address the “missing heritability” problem [94]. Yang et al. 
believe that “missing heritability” can be partially explained 
by small or medium-effect-size SNPs that don’t reach the 
stringent genome-wide significance level. GCTA first calcu-
lates a Genetic Relationship Matrix (GRM), which estimates 
the genetic relationships between all pairs of individuals 
based on the genetic data. Given the calculated GRM, it fur-
ther estimates the variance components by using a Restricted 
Maximum Likelihood (REML) algorithm from the Linear 
Mixed Model (LMM) [93], and then infers the heritability. 
In LMM, covariates (e.g., sex, age, principle components) 
can also be easily adjusted. Using the actual genetic data, the 
estimated heritability from GCTA is expected to be close to 
that from twins or segregation studies. For example, the es-
timation of heritability of nicotine dependence is close to 
50% [95, 96] provided by twin and family studies. GCTA 
can not only provide a better heritability estimate but also 
allows researchers to investigate which parts of the genome 
or categories of variants contribute to SUD [93].  
 To better model known disease-related variants, Yang  
et al. developed a GCTA-COJO module by treating the ef-

fects of known variants as fixed effects and excluding these 
variants from GRM [97]. This module has been applied to 
SUD data. Clarke et al. used the GCTA-COJO module for a 
stepwise conditional analysis, in which disease-associated 
SNPs are gradually added to the model until there is no SNP 
significantly associated with SUD [98]. Other functions, 
such as the one computing LD scores and the one calculating 
the eigenvectors of GRM, are also included in GCTA [93, 
99, 100].  

8. POST-GENOMICS AND INTEGRATIVE ANALY-
SIS 

 The advent of high-throughput technologies makes it 
feasible to study multi-level omic data, which includes not 
only genotype data but also other types of data, such as gene 
expression and DNA methylation data. 
 An expression Quantitative Trait Loci (eQTL) is genetic 
loci that regulate gene expression [101]. eQTLs mapping is a 
useful tool to find genomic locations likely regulating tran-
script expression. Methods of eQTL mapping have been de-
veloped to dissect genetic variants affecting gene expression 
[102]. The statistical methods, such as single-marker regres-
sion analysis, interval mapping, and multiple interval map-
ping [103], have been widely used for eQTL mapping. The 
main difference between the eQTL mapping and the QTL 
mapping method is that a large number of gene expressions 
are analyzed simultaneously in eQTL mapping. Therefore, 
the issue of multiple testing need to be considered. Typi-
cally, !-values corresponding to the peaks of LOD score 
curves from each transcript are obtained and are adjusted for 
multiple testing by using FDR [104]. However, this approach 
only takes LOD score peaks into account [105]. In order to 
address this limitation, statistical methods, such as Empirical 
Bayes methods, are developed to control the overall FDR 
[106]. eQTL mapping provides a list of transcripts that can 
regulate transcriptional expression. The identification of the 
hot spots is usually the next task. The easiest way to deter-
mine eQTL hot spots is to directly count the number of lo-
calized transcripts. However, it can lead to spurious identifi-
cations or “ghost” hotspots under a number of situations. 
Therefore, statistical tests, such as a Poisson-based test, are 
used to determine the true hot spots [104]. Additionally, 
Kendziorski et al. summarize evidence across every tran-
script to identify significant eQTL hot spots [106].  
 In addition to eQTL analysis, integrative analysis com-
bining genetic data with other data sources (e.g. transcrip-
tional, epigenetic, and metabolite data) can provide a com-
prehensive view of disease biological mechanism [107]. For 
example, by integrating GWAS and Epigenome-Wide Asso-
ciation Study (EWAS) data, we can not only identify vari-
ants at the DNA and epigenetic level but also identify the 
modulation caused by epigenetic change of genetic variants 
leading to gene expression alterations. Given the rapid de-
velopment in both technology and analytical capability, we 
anticipate that the integrative approach will grow rapidly to 
provide novel means to study SUD [108, 109]. 

CONCLUSION 

 This paper provides an overview of statistical methods and 
software for data management, linkage analysis, association 
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analysis and other analysis involved in SUD genetic research. 
The quality control process is used to identify and remove 
inaccurate information before the downstream analysis. Strin-
gent quality control ensures the results from the downstream 
analysis are reliable. In this paper, we summarized some filters 
commonly used in SUD genetic research and discussed vari-
ous quality control filters and criteria used by researchers.  
 The initial understanding of the genetic influences of 
SUD is assisted by linkage mapping, resulting in the identifi-
cation of several SUD-associated regions. However, regions 
identified through linkage analysis could harbor many genes, 
which makes fine-mapping of the disease-related gene diffi-
cult. This problem can be overcome by an association analy-
sis [25]. Depending on the study design, association analysis 
be classified into population-based association analysis and 
family-based association analysis. Population-based associa-
tion studies have many advantages, such as the easy collec-
tion of study samples and high power. Nevertheless, popula-
tion-based association studies are subject to population 
stratification issues. Although association analysis has been 
widely used in SUD genetic research, the identified SUD-
related variants only explain a small fraction of the heritabil-
ity [93]. GCTA is a versatile and user-friendly tool for esti-
mating the heritability explained by all SNPs. The applica-
tion of GCTA to the SUD genetic dataset suggests that heri-
tability can be explained by small- to medium-effect variants 
and their possible interactions [94]. With the increased sam-
ple size, we are able to detect these small- to medium-effect 
variants. Meta-analysis is an attractive strategy to combine 
information from different studies to detect small- to me-
dium-effect variants [32]. Recently, the development of se-
quencing and other omics technologies have promoted the 
development of advanced statistical methods and software. 
There is a pressing need for the development of new analyti-
cal tools to keep pace with fast-growing technology, and the 
increasing amount of SUD omic data. We anticipate that 
more advanced methods and software will be developed in 
the future, facilitating the SUD genetic discovery process. 
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