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Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic
acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted
by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to
management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of
this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to
identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including
their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers
of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of
environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined.
Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction
for future research.

1. Introduction

Organic acids, vitamins, and carbohydrates play an important
role in soil. Organic acids (aliphatic, cyclic, and aromatic)
play key roles in rhizosphere ecology, pedogenesis, nutri-
ent acquisition, allelochemical interactions, availability and
detoxification of aluminium and pollutants, regulation of soil
pH, enzymatic activities, and in food-web interactions [1–9].

Carbohydrates represent dominant compounds of plant
root exudates. They play an important role in the estab-
lishment and functioning of mycorrhizal symbioses and the
stabilisation of heavy metals in soil [10–12]. Determination
of soil carbohydrates is mostly related to the evaluation of
the effect of land use change on soil organic matter status,
particularly in terms of microbial transformation [13–15].

While there is little knowledge on occurrence of vitamins
in soil, vitamins are known to play a number of important
roles in plants including resistance to pathogens, plant-
microbe symbioses, microbial growth stimulation, and stim-
ulation of organic pollutant degradation [16–19].

2. Organic Acids in Soil

2.1. Aliphatic Organic Acids. A wide range of organic acids
has been found in soil. These include aliphatic acids such as
acetic, citric, isocitric, fumaric, tartaric, oxalic, formic, lactic,
malic, malonic, butyric, succinic, trans-aconitic, propionic,
adipic and glycolic acids, and cyclic and aromatic acids such
as benzoic, phenylacetic, shikimic, phthalic, ferulic, syringic,
p-coumaric, vanillic, p-hydroxybenzoic, m-hydroxybenzoic,
benzoic, caffeic, protocatechuic, gallic, gentisic, sinapic, ros-
marinic, and transcinnamic acids [3, 20–33].

Knowledge of the behaviour of aliphatic organic acids
in soil in terms of nutrient acquisition by plants, microbial
degradation and adsorption, their role in pedogenesis and in
Al detoxification, extraction, and analysis was reviewed by
Jones [1], Jones et al. [2], and Van Hees et al. [34]. Separation
of low molecular weight organic acid-metal complexes by
HPLC was reviewed by Collins [35]. Organic acids were
reported to form 4% of dissolved organic carbon (DOC)
and up to 27% of acidity in mor layers of coniferous forests
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[36, 37]. Individual aliphatic organic acids occur in soils from
different ecosystems in concentrations up to 6000𝜇M and
within individual ecosystems, and the broadest spectrum of
these acids was found in forest soils (Table 1).

Concentrations of aliphatic organic acids commonly
decrease with soil depth, except in the case of some ecosys-
tems such as those containing podzolized soils, where organic
acids (e.g., formic acid) reportedly increased in concentration
with depth [38]. Of the individual organic acids, fumaric acid
was present in higher concentrations in mineral horizons
of alkaline soils [45], while citric acid was reported in
concentrations of between 20 and 1000𝜇M in upper soil
layers [21, 34, 38, 46]. Citric acid played the most important
role in terms of buffering capacity [24].

Organic acids are involved in the formation of complexes
of Al and Fe. The amount of complexed Al and Fe declines
with soil depth [47]. Different organic acids play a role in the
formation of complexes of Al and Fe within soil profiles. For
example, citric acid has been reported as the most important
complexing agent in O and E horizons, whereas oxalic acid is
reported to play the most significant role in horizon B [47].
Citric, oxalic, and malic acids are thought to be particularly
important in rhizosphere ecology and pedogenesis [2, 5, 6].

The primary production rate of organic acids in different
types of soils was predicted to be within the range of
between <1 and 1250 nmol/g soil/d [6]. Acetic and formic
acids increased in concentrationwith decomposition ofwood
chips during amycoremediation process [48]. Lowmolecular
weight organic acids are thought to be responsible for mini-
mizing crop damage by the root-knot nematodeMeloidogyne
incognita (Kofoid and White (Chitwood)) [49]. Production
of gluconic acid by rhizosphere soil bacteria presents an
efficient strategy to avoid protozoan grazing. Gluconic acid
was shown to cause encystment or death of protozoa [9].
Succinic acid decreased the growth and conidial germination
of Fusarium oxysporum f. sp. niveum [50], while propionic,
acetic, lactic, malic, and citric acids were all demonstrated to
have significant antibacterial effects [51].

Organic acids were found to increase the activity of
acid phosphomonoesterase in soil at low concentrations
(<1 𝜇mol/g), whereas higher concentrations (>5 𝜇mol/g) of
citric, oxalic, malic, and tartaric acid inhibited this activity
[52]. Organic acids also act as adsorbents of acid phospho-
monoesterase [4] from minerals and colloids (desorption
by up to ca. 60%). This indicates the changes in behaviour
of acid phosphomonoesterase in the rhizosphere, where
organic acids are released from plant roots, compared to
bulk soil. Organic acids in soil are produced by plant root
exudation and by activity of soil microorganisms. Phosphate-
solubilizing bacteria (Bacillus, Rhodococcus, Arthrobacter,
Serratia,Chryseobacterium,Delftia,Gordonia, and Phyllobac-
terium) which increase P-uptake by plants were reported to
produce aliphatic organic acids such as citric, gluconic, lactic,
propionic, and succinic acids [53].

Average respiration rates of organic acids (oxalate, citrate)
were reported to be around 209 nmol/g soil/d, and respiration
of organic acids increased with soil depth [6, 39]. Van Hees
et al. [21] and Ström et al. [54] reported rapid degradation
of citric, malic, and oxalic acid in most soils. In some cases,

organic acid degradation may be inhibited by complexation
with Ca (oxalate in calcareous soils); degradation of indi-
vidual organic acids may also differ between rhizosphere
and bulk soil [39, 54]. Forest soils differ in their abilities
to anaerobically consume organic acids such as oxalate.
The addition of electron donors (acetate, glucose, vanillate,
or hydrogen) or acceptors (nitrate or sulphate) did not
affect anaerobic consumption of oxalate, whereas CO

2
or

bicarbonate totally repressed it [55].
There is a paucity of literature on organic acid enan-

tiomers, but what does exist points to the need for urgent
study. Liao et al. [25] identified D-tartaric acid in concen-
trations up to 6 𝜇g/g in the rhizosphere of Lactuca sativa
L., which, along with L-citric acid, formed the dominant
organic acid. A recent review has highlighted the potential
importance of future research in this area [56].

2.1.1. Role of Aliphatic Organic Acids in Soil Decontamination.
Organic acids play an important role in the phytoremediation
of polluted soils and in the availability of heavy metals
and organic compounds. Mobilisation of polycyclic aro-
matic hydrocarbons (PAHs) such as pyrene or phenanthrene
by organic acids (citric, oxalic, tartaric, lactic, or acetic)
is dependent on the type of organic acid, pH, and soil
organic matter content [8, 57]. For example, citric acid has
been reported to be efficient in pyrene and phenanthrene
extraction [8, 57]. Lower extractability of PAHs was found
in soils of higher organic matter content, while adsorption
of pyrene in the presence of organic acids decreased with
increasing pH. Citric and malic acids inhibited adsorption
of chemotherapeutics in soil. Soil pH, surface properties, and
competitive adsorption of other cations affected this process
[58].

Introduction of Bacillus thuringiensis (B
𝑡
) to soil, as a

result of rapid planting of B
𝑡
-transformed crops, may cause

hazards for soil ecosystems; thus, the factors affecting its
mobility need to be determined. Organic acids (citric, oxalic,
and acetic) are one of the factors affecting mobility of B

𝑡

toxin in soil. Fu et al. [59] reported decreased adsorption of
B
𝑡
toxin by minerals such as kaolinite, goethite, and silicon

dioxide due to low concentrations of organic acids, whereas
high concentrations of these acids promoted adsorption of
the toxin. Increasing concentrations of oxalate and citrate
inhibited adsorption of B

𝑡
toxin by montmorillonite.

Organic acids such as citric and tartaric acids were found
to reduceCr(VI) toCr(III) in the soil [60] and to affectmobil-
ity of heavy metals due to their desorption, complexation,
and precipitation. Dissolution of minerals in fly ash from
smelters allowed conversion of heavy metals to their mobile
forms [61–64]. Cu phytoextraction by Nicotiana tabacum L.
was enhanced by citrate, whereas Pb phytoextraction was not
stimulated by aliphatic organic acids, probably due to the rate
of degradation of organic acids in soil, which is reported to be
high for metals of low mobility and bioavailability [65].

Generally, citric acid is the most effective in terms of
desorption of different heavy metals, followed by malic >
acetic > tartaric > oxalic acid (Cu, Hg, Pb, Cd, Zn, and 137Cs)
[66–73]. Schwab et al. [72] found citric acid to be the most
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efficient in desorption of Zn and Cd in sandy loam, but it had
little impact on Pb movement. Desorption of heavy metals
in soil by organic acids depends on the concentration and
degradability of the organic acids, pH, and concentration
of competing cations such as Ca2+ [61, 62, 74]. Effective
mobilisation of Zn in soil due to formation of citrate-Zn
complexes was reported by Lombnæs et al. [62]. Citric acid
rapidly degrades, even in heavy metal-polluted soils, with
20% degradation between 1 and 4 days being reported by
Wen et al. [74]. Fast degradation of organic acids in soil leads
to low migration [6, 54]. On the other hand, complexation
of organic acids with Al slightly decreases their degradation
[5]. Metal complexes of organic acids differ in their micro-
bial degradability, with higher degradation for citrate-metal
complexes compared to oxalate-metal complexes [68].

Huang et al. [75] reported a stimulating effect of low
molecular weight organic acids for Cd and Pb adsorption by
goethite andmontmorillonite, but only at low concentrations.
At higher concentrations of these acids, decreased heavy
metal adsorptionwas recorded.While citric and tartaric acids
enhanced desorption of Cu in soil, oxalic acid was effective in
desorption of Cu and Cd [61]. The mechanism of desorption
was explained as competition in complexation, adsorption,
and precipitation. Gao et al. [76] reported desorption of
Cd and Cu by citric and tartaric acids, especially at higher
concentrations. Low concentrations of these acids inhibited
desorption.

Organic acids appeared to be efficient in the release
of 137Cs from contaminated soils, efficiency being in the
order citric > tartaric > oxalic > succinic > acetic acid [73].
Desorption occurs in two phases: fast and slow.The fast stage
of desorption corresponds with the interaction of organic
acids with the surface of clay minerals, whereas the slow
stage (occurring over a much longer period) is attributed to
inter- and intraparticle diffusion. Debela et al. [64] reported
the release of Pb from pyromorphite [Pb

5
(PO
4
)
3
Cl] by citric,

malic, acetic, and oxalic acids. Interestingly, low concen-
trations of organic acids may increase adsorption of heavy
metals in soil [77].

2.2. Cyclic and Aromatic Organic Acids in Soil. Cyclic and
aromatic organic acids play a range of roles in soils, including
allelopathic interactions, inhibition of microbial growth, and
weathering of minerals [78, 79]. Some aromatic acids in soil
solution may also be used to distinguish between vegetation
types in forests [40]. Asao et al. [3] reported that benzoic,
m- and p-hydroxybenzoic, vanillic, and adipic acids inhibited
plant growth. Of these, benzoic acid was the strongest
inhibitor. Ferulic acid is released from plant roots and from
decomposition of soil organic matter and may be involved in
allelopathic interactions. Caspersen et al. [80] reported the
presence of bacteria in commercial hydroponicLactuca sativa
L. culture which were able to ameliorate the toxic effects of
ferulic acid.

Aromatic acids (salicylic and phthalic) are adsorbed by
soils of different charges, and the adsorption of these acids
differs significantly according to the soil tested. Adsorption
of aromatic and aliphatic acids decreased the zeta potential

of soils and oxides [81, 82]. Adsorption of salicylate in
soil appeared to be significantly lower compared to citrate
(Freundlich constant for adsorption K

𝐹
0.499 versus 0.107)

[69]. Adsorption of gallic acid was not influenced by soil
depth or land use [26]. Gallic acid decreased the amount
of total inorganic nitrogen extractable from soil by KCl and
increased solubility of Ca and Mn through formation of
metal-gallic acid complexes and redox reactions. However,
gallic acid did not affect extraction of total soluble-N.

Inderjit and Bhowmik [27] reported sorption of ben-
zoic acid in soil which increased with its concentration,
with a nonlinear adsorption isotherm. The authors reported
sorption to be sufficiently strong to protect plants from
phytotoxic effects of this compound and to be pH-dependent.
Benzoic acid is reversibly adsorbed to soil particles by van
der Waal or hydrogen bonding and can be released to soil
solution due to decreasing strength of the soil solution or
presence of competing ions [83]. Evans Jr. [84] reported
decreasing degradation of phthalic acid with depth in forest
soil. Shikimic acid was detected in mor layer extracts in
concentrations of 12𝜇M [37]. Shikimic acid (even in a large
quantity) did not affect decomposition of citrate, malate,
and oxalate in agricultural soils [85] and had a low effect
on sorption of these acids. Oburger et al. [85] reported the
half-life for shikimic acid in different soils to be within a
range from 0.6 to 8.6 h. Caffeic acid inhibited growth of
Frankia isolates [79], while gentisic, o-hydroxyphenylacetic,
and vanillic acid were less inhibitory.

2.2.1. Role of Cyclic and Aromatic Organic Acids in Availability
of Heavy Metals. Cyclic and aromatic organic acids affect
availability of heavy metals in soils. Whereas salicylic acid
decreased availability of Pb, the presence of phthalic or
salicylic acid increased the capacity of exchangeable Al. In
some of the tested soils, salicylic acid decreased the capacity
due to its lower adsorption and its formation of soluble Al-
salicylate complexes [69, 82]. The ability of aromatic acids
to mobilize Al is lower compared to a range of aliphatic
organic acids (citric, oxalic, malonic, malic, and tartaric)
but was higher than in the cases of lactic or maleic acid
[86, 87]. Mobilisation of Al by salicylic acid was decreased
by increasing pH.

Some aromatic acids, such as gallic acid, are efficient
in extraction of heavy metals (Cd, Cu, Zn, and Ni) [70].
Weathering ofminerals (e.g., labradorite ((Ca,Na)(Si,Al)

4
O
8
)

or microcline (KAlSi
3
O
8
)) by formation of Al-organic

complexes by salicylic acid was reported by Huang and
Keller [78]. Salicylic and phthalic acid release Cu from
chalcopyrite (CuFeS

2
) and release Ca and P from apatite

(Ca
5
(PO
4
)
2.82

(FeClOH)
1.54

) [88]. Salicylic and phthalic acid
are less efficient in release of yttrium from phosphate min-
erals (apatite, monazite) than citrate; phthalate efficiency is
comparable to oxalate [89].

3. Carbohydrates in Soil

Glucose, galactosamine, fructose, rhamnose, arabinose,
fucose, glucosamine, galactose, xylose, mannose, ribose,
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mannosamine, muramic, galacturonic, and glucuronic acids
have all been identified in soil [15, 28, 90–96]. Tian et al.
[60] reported ca. 30% of DOC in arable soils was formed by
carbohydrates, representing 4–7% of total organic carbon
[97]. The annual flux of carbohydrates infiltrating mineral
soil of Picea abies (L.) H. Karst. stands was assessed by
Guggenberger et al. [98] to be ca. 70 kg/ha/y. Sugars as well as
phenolic compounds are chemoattractants of rhizobacteria
[99, 100]. Carbohydrates alleviate negative effects of wood
ash on enchytraeid growth and abundance, possibly by
correcting an imbalance in the bacteria: fungi ratio, which
is increased by addition of wood ash [101]. Glucuronic,
galacturonic, and alginic acids (main constituents of
bacterial exopolymeric substances) play a role in stabilisation
of heavy metals such as Cr (VI) in soil under acidic or
slightly alkaline conditions [12]. The ratio of carbohydrate
C/polyphenol C in soil hydrolysates is used as an indicator
of soil organic matter quality [102], and the ratio of total
carbohydrates/K

2
SO
4
extractable total N appears to be a

good predictor of N mineralisation and microbial biomass N
[103].

Adsorption of carbohydrates, such as glucose or fructose,
on alumina interfaces is characterised by an adsorption
isotherm of a typical L-type, and an adsorption mechanism
based on dipolar interaction has been suggested [90]. The
adsorption was pH dependent and was affected by anions
(Cl−, SO2−

4
, and PO3−

4
) and cations; fructose appeared to

be better adsorbed than glucose. Pentoses (arabinose and
xylose) are not synthesised by microorganisms and are
constituents of plant biomass. On the other hand, galactose,
mannose, rhamnose, and fucose are of microbial origin
[14, 104] and up to ca. 16mg/g soil organic carbon from
a range of different soils was ascribed to microbial sugars
[105]. According to Oades [106], the ratio of galactose
plus mannose/arabinose plus xylose is low (<0.5) for plant-
derived sugars and high (>2) for microbial sugars.

Amino sugars represent major constituents of microbial
cell walls and hydrolysable soil organic matter. Free amino
sugars represent a small part of the dissolved organic C andN
pools [107]. Muramic acid, glucosamine, mannosamine, and
galactosaminemay be used as an indicator ofmicrobial origin
of soil organic matter [108, 109]. Glaser et al. [110] reported
that total amino sugar and muramic acid in soil microbial
biomass varied between 1 and 27mg/kg soil, while microbial
biomass made a negligible contribution to total amino sugar
concentration in soil. Glucosamine and galactosamine were
found in the highest concentrations in different horizons of
forest and prairie soils (up to 5200mg/kg soil) [108, 109].

Carbohydrates from soilmicrobial biomasswere reported
by Joergensen et al. [111] to account for 17% of total car-
bohydrate C, and the content of microbial biomass car-
bohydrates correlated well with microbial biomass C [112].
Carbohydrates are extracted from soil using cold or hot water,
0.5M K

2
SO
4
, 0.25M H

2
SO
4
, 1M HCl, 0.5M NaOH, or 4M

trifluoroacetic acid [13, 105, 111, 113, 114]. Adesodun et al.
[115] and Ball et al. [13] reported extraction of the lowest
carbohydrate fraction (3%) using cold water, 10% by hot
water, 12% by 1M HCl, and 75% by 0.5M NaOH.

3.1. The Role of Carbohydrates in Aggregation. Mineral-
organic associations represent a large amount of carbon
in terrestrial ecosystems; these associations have a high
abundance of microbially derived carbohydrates [116]. Plant
carbohydrates depend on texture type, being higher for loamy
sand than silt loam [117]. Carbohydrates play an impor-
tant role in the formation of stable aggregates [118]. Fungi
increase aggregate stability, due to a supply of extracellular
polysaccharides [119]. On the other hand, Adesodun et al.
[115] reported that aggregate stability correlated very poorly
with carbohydrates fractions. Aggregate stability seems to
better correlate with carbohydrates in hot water or dilute acid
extracts, indicating suitability of these types of extracts to
indicate changes in soil due to land use change [120].

Microaggregates (20–53𝜇m) had a higher ratio of man-
nose plus galactose/arabinose plus xylose than other aggre-
gate fraction of larger sizes up to >212 𝜇m (macro- and
meso-), indicating the importance of microbial processes.
Solomon et al. [14] reported an increase of neutral sugars
and uronic acids in particle size fractions, in the order silt <
coarse sand < fine sand < clay. Soil organic matter in nano-
size structures isolated from a clay fraction accumulated
carbohydrates between groups of other compounds (N-
heterocyclics, peptides, and alkyl aromatics) [121]. Puget
et al. [122] found increasing carbohydrates with aggregate
size, clay, and silt fractions within stable aggregates.

3.2. Carbohydrates in Different Soil Types and Depths. Soil
type has an impact upon sugar synthesis by microorganisms,
reflecting microbial biodiversity and varied ecophysiology
between soils. Derrien et al. [123] quantified sugar synthesis
in soil from 13C labelled substrates using compound-specific
isotope ratio mass spectrometry. The authors reported that
the quality of added substrate (mono- and polysaccharide or
amino acid) had little effect upon sugar production in soil.

The concentration of carbohydrates generally decreases
with soil depth [105, 124]. Carbohydrate content decreased
from litter to soil organic matter and aggregates with incor-
poration of soil [125]. Carbohydrates can accumulate in
horizons with strongly humified organic matter probably due
to the toxic effect of adsorption to some oxides or hydroxide
minerals, especially those with aluminium content. Minerals
such as ferrihydrite and aluminium hydroxide reduced car-
bohydrate decomposition by 15–50% [124].

Osono et al. [126] reported a higher content of soluble
carbohydrates in bleached litter colonised by Clitocybe sp.
than in nonbleached litter. Carbohydrates are amongst the
more rapidly degraded compounds of plant litter, resulting
in organic matter being more enriched in lignin-derived
compounds [127]. The ratio of selected hexoses to pentoses
in needles was 1–15 times lower compared to decomposing
litter [128].

Rumpel et al. [129] evaluated the effect of soil type on
carbohydrate content and found that carbohydrate content
was generally higher in Cambisol than Podzol. Sugars were
enriched in mineral-bound fractions of organic matter, often
with microbial monosaccharides. On the other hand, bulk
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soil was characterised by higher contributions of plant-
derived sugars. The type of extractant has an effect on the
proportion of carbohydrates in total organic C within a
profile. Water-soluble carbohydrates are generally not pro-
portional to the total organic carbon content in soil [130].
The ratio of hydrolysable carbohydrate C/total organic C
increased with soil depth, with an increasing importance
of cellulosic polysaccharides in the B horizon. In hot water
extracts, the ratio was similar throughout the whole profile
[131, 132]. Sugars (other than cellulosic) were maintained at
a relatively constant level within the soil profile (12–15% of
organic carbon).

Generally, glucose was found in the highest concentra-
tions in the upper humus layer [131]. The importance of
microbially derived sugars increased with soil depth [105].
The ratio of mannose plus galactose/xylose plus arabinose
increased from the litter layer to the H horizon, indicating
the increasing importance of microbially derived sugars. The
type of extractant used has an effect on the ratio of galactose
plus mannose/xylose plus arabinose. Hot-water extraction
was 1–1.6 compared to a NaOH extraction, with the ratio
0.4–0.7 indicating a higher microbial contribution in hot-
water extracts [13]. Verchot et al. [118] reported decreased
concentrations of carbohydrates in soil with depth; arabinose
and mannose were the most abundant sugars within aggre-
gate fractions (micro-, meso-, macro-, and bulk soil). Amino
sugars were also found to decrease downward in the profiles
[133].

A high level of water (in Bg horizon) negatively affects
the proportion of amino sugars within the total organic
carbon. Enhanced drying of soil decreased the contribution
of plant and microbial sugars to soil organic matter in the
O and A horizons even though the sugar content of the
original plant material increased with drying [105]. However,
the concentration of mannitol and trehalose (stress-induced
fungal metabolites) increased at low soil moisture [134].

3.3. The Effect of Land Use on Soil Carbohydrates. The con-
centration of soluble sugars in soils from different ecosystems
changes over the course of the vegetative season [113, 134]
and is affected by the type of plant coverage, soil properties,
and microbial activity. The concentration of pentoses during
a growing season corresponded with litterfall, ground grass
cutting in forest sites, drying of grass in grasslands, and
harvest in agroecosystems [135].

Management of ecosystems may affect carbohydrate
quantity, quality, and distribution within soils [13, 14, 136,
137]. Generally, management of soil has no effect on the
occurrence of dominant carbohydrates in soil hydrolysates
(Table 2). Carbohydrate content in soils will increase in
a number of situations, including integrated crop-livestock
systems, cultivated fields compared to tropical woodlands,
establishment of pasture on acid savanna soils, arable com-
pared to fallow sites, manuring, application of organic wastes
such as poultry manure or composts in saline soils, larvae
(Trpula paludosa), addition of Aspergillus niger with Beta
vulgaris L. wastes, inoculation with Bacillus cereus, mixing
of mineral soil with the litter layer, forests compared to

pastures or cropland, elevated CO
2
, reduction of fungicides,

mycorrhizal inoculation, and the addition of Beta vulgaris L.
or rock phosphate [14, 60, 98, 103, 113, 120, 138–148].The type
of management of arable land influences distribution of soil
carbohydrates, beingmore uniformwithin depth in ploughed
compared to drilled soils [13].

Manure application, crop rotation, and avoiding tillage
for 6 years all increased amino sugar content in soil [120,
138]. Amino sugar content was at its highest on plots with
continuous Zea mays L. monoculture (up to 1317mg/kg)
compared to a Zea mays L.—Glycine max (L.) Merr. rotation
field [158]. Carbohydrates (especially glucose and xylose) are
dominant components of dung [120, 138] and are thought to
contribute significantly to carbon stock and aggregate stabil-
ity in manured soils, replacing the existing pool. Amaximum
of 60% of dung-derived C was found as carbohydrates after
56 days incubation. Management of land has effects on the
utilisation of dominant compounds in water-soluble root
exudates. For example, nontilled plots had higher microbial
utilisation of carboxylic acids and lower utilisation of amino
acids and carbohydrates compared to conventionally tilled
or rotatory-tilled soils [159]. Stevenson et al. [160] reported
higher utilisation of carbohydrates and amino acids and lower
utilisation of carboxylic acids in soils of pasture relative to
forest soils.

In terms of other treatments, UV-B radiation reduced
extractability of carbohydrates from leaf litter of Quercus
robur L., thus changing litter carbon source availability
for soil microorganisms [161]. The ratio of rhamnose plus
fucose/xylose plus arabinose increased on the forest floor and
in the coarse fraction of topsoil after forest dieback [162].The
ratio of mannose plus galactose/xylose plus arabinose was
higher in C-depleted than fertilised plots with the highest
value in fine particles [163].

Change in land use (e.g., pasture to arable land) also
causes a new equilibrium for soil carbohydrates, established
after 14 and 56 years [139]. Carbohydrates occurred in higher
concentration inmacroaggregates thanmicroaggregates, and
the ratio of distribution of carbohydrates between macroag-
gregates and microaggregates did not change over 110 years.
No effect of arable soil fertilisation (organic versus mineral)
on the occurrence of sugars (rhamnose, xylose, glucose,
mannose, arabinose, and galactose) in soil hydrolysates was
reported by Lima et al. [28]. Eleven years after liming of
Picea abies (L.) H. Karst. stands, no significant changes in the
carbohydrate fraction were found by Rosenberg et al. [164].

Soil carbohydrate levels have also been reported to
decrease during boreal forest succession, root exclusion,
grazing of semiarid shrubland, conversion of pasture to
cropland, and during conversion of forests on sandy spo-
dosols to Zea mays L. cropping [15, 97, 136, 137, 165]. Amino
sugar content decreases with afforestation, cultivation of plots
related to grassland, and during clear-cutting of forest related
to cultivated sites [93, 97]. The application of fungicides may
significantly change concentrations of some sugars in soil
(e.g., mannose). Earthworms reduced the concentration of
xylose and glucose, suggesting accelerated turnover of plant
material in the soil [136].
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Table 3: Vitamins in plant root exudates.

Plant Root exudates Formula Reference

Hyoscyamus albus L. Riboflavin

CH3

CH3

NH

O

O

OH

OH

OH

HO

N

N N
[154]

Gossypium hirsutum L.

Thiamine
N

N

S

OH

NH
2

H
3
C H

3
C

N+

[155]
Biotin HN NH

HH

S

O

COOH

p-aminobenzoic acid

NH2

COOH

Pyridoxine

N

OHHO

HO

L-Ascorbic acid

OH

HO

HO

HO

O O

H

Miscanthus x giganteus Greef et
Deu. Niacin

N

OH

O

[156]
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Table 3: Continued.

Plant Root exudates Formula Reference

Other plants Pantothenic acid NH OH

OH

HO

OO

H

[157]

4. Vitamins in Soil

Knowledge of the quantity of vitamins in soils of different
ecosystems is poor. Sulochana [155] found pyridoxine, thi-
amine, p-aminobenzoic acid, and traces of biotin in soil.
Barrera-Bassols et al. [166] suggested that Quercus robur L.
litter could contain high vitamin content, but experimental
proof is currently lacking. Soil algae produce vitamin signals
(lumichrome and riboflavin) that act as agonists within bac-
terial communities through quorum sensing [167]. Vitamins
are also known to act as attractants to Caenorhabditis elegans.

Vitamins may be important in the decontamination
of polluted soils and were reported to stimulate PAHs
degradation [19] and attenuation of alkanes in oil-polluted
desert soil [16, 19]. Vitamins added to soil increased the
rate of degradation of 2,4,6-trinitrotoluene (TNT) [168]. The
addition of vitamins B

1
+ B
6
+ B
12

enhanced the growth of
fungi in the presence of phenol [169], while the addition of
a vitamin solution containing biotin, folic acid, riboflavin,
niacin, and thioctic acid increased phenolic degradation by
between 7 and 16% [170]. Minor adsorption of vitamin B

12

on kaolinite clay and sand, with no detectable adsorption to
alumina, was reported by Hashsham and Freedman [171].

Vitamins (riboflavin, vitamin B
12
, niacin, thiamine,

ascorbic and pantothenic acid, p-aminobenzoic acid, biotin,
𝛽-carotene, pyridoxine, and tocopherol) [154, 172–174] enter
soil fromdifferent sources including root exudation (Table 3),
plant biomass, and bacterial production [154, 172, 174–177].
For example, the distribution of vitamin E (𝛼-, 𝛽-, and 𝛾-
tocopherol) in Picea abies (L.) H. Karst. was reported by
Franzen et al. [178]. While 𝛼-tocopherol was found in all
organs, 𝛽- and 𝛾-tocopherol were restricted to seedlings and
seeds. Phosphate-solubilising bacteria, azotobacters, and rhi-
zobia are significant producers of vitamins [172, 174, 179, 180].
Hodson et al. [180] isolated the soil bacteriumMesorhizobium
loti, whose genome sequence is known to support growth of
the vitamin B

12
auxotroph Lobomonas rostrata. Application

of some insecticides may inhibit microbial production of
vitamins in soil by bacteria such as Azospirillum brasilense
[181].

5. Conclusions

Aliphatic, cyclic, and aromatic organic acids play an impor-
tant role in soil and rhizosphere ecology, as well as in
decontamination of polluted sites. Despite much work on the
occurrence and behaviour of organic acids in soil, current
knowledge is mostly restricted to their L-enantiomers. In
future research, determination of the occurrence and role of

D-enantiomers of organic acids in soil and rhizodeposition
should become a significant focus, particularly relating to
their potential in allelopathic interactions, decontamination
of polluted sites, and in terms of their roles in plants suitable
for phytoremediation purposes. Carbohydrates represent an
abundant group within soil organic matter, serving as an
indicator of the quality of soil organic matter and of land
use changes. Despite the existence of a broad literature on
soil carbohydrates and their fractionation within soils across
many ecosystems, there still remains a paucity of research
on the effects of environmental factors, especially altered
soil water content, on qualitative and quantitative changes
in soil carbohydrates. Vitamins play an important role in
biochemical soil processes and decontamination of polluted
sites. More research is needed on their occurrence and
behaviour in soil.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This text was created within the framework of the Grants
TA02020867, QJ1320040, and the IGA Project 55/2013.

References

[1] D. L. Jones, “Organic acids in the rhizosphere—a critical
review,” Plant and Soil, vol. 205, no. 1, pp. 25–44, 1998.

[2] D. L. Jones, T. Eldhuset, H. A. De Wit, and B. Swensen,
“Aluminium effects on organic acid mineralization in a Norway
spruce forest soil,” Soil Biology and Biochemistry, vol. 33, no. 9,
pp. 1259–1267, 2001.

[3] T. Asao, K. Hasegawa, Y. Sueda et al., “Autotoxicity of root
exudates from taro,” Scientia Horticulturae, vol. 97, no. 3-4, pp.
389–396, 2003.

[4] Q. Huang, Z. Zhao, and W. Chen, “Effects of several low-
molecular weight organic acids and phosphate on the adsorp-
tion of acid phosphatase by soil colloids and minerals,” Chemo-
sphere, vol. 52, no. 3, pp. 571–579, 2003.

[5] A. M. Fransson, S. Vinogradoff, D. L. Godbold, P. A. W. Van
Hees, and D. L. Jones, “Aluminum complexation suppresses
citrate uptake by acid forest soil microorganisms,” Soil Biology
and Biochemistry, vol. 36, no. 2, pp. 353–357, 2004.

[6] P. A. W. Van Hees, D. L. Jones, L. Nyberg, S. J. M. Holmström,
D. L. Godbold, and U. S. Lundström, “Modelling lowmolecular
weight organic acid dynamics in forest soils,” Soil Biology and
Biochemistry, vol. 37, no. 3, pp. 517–531, 2005.



10 The Scientific World Journal

[7] Z.-A. Li, B. Zou, H.-P. Xia, Y.-Z. Ding, W.-N. Tan, and S.-L. Fu,
“Role of low-molecule-weight organic acids and their salts in
regulating soil ph1 1 project supported by the national natural
science foundation of china (Nos. 30670393 and 30630015),
the knowledge innovation program of the chinese academy
of sciences (No. KSCX2-SW-133), the science and technology
planning of guangdong province (No. 2006A36703004),” Pedo-
sphere, vol. 18, no. 2, pp. 137–148, 2008.

[8] C. An, G. Huang, H. Yu, J. Wei, W. Chen, and G. Li, “Effect of
short-chain organic acids and pH on the behaviors of pyrene in
soil-water system,” Chemosphere, vol. 81, no. 11, pp. 1423–1429,
2010.
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